Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coagulation, anticoagulation and pancreatic carcinoma

Abstract

An increase in coagulation in patients with pancreatic carcinoma has long been documented. In this Review, we present what is known about the pathophysiology of increased coagulation in cancer and how it applies to pancreatic carcinoma. The relationship between the activation of coagulation or symptomatic thromboembolic disease and the development of pancreatic carcinoma is explored. Data on the relationship between thromboembolic disease and the behavior of pancreatic cancer before, during or after a diagnosis is made are also reviewed. Finally, the rationale and evidence for the use of oral anticoagulants or heparin in patients with pancreatic carcinoma is presented. This Review is a critical appraisal of what is known, and when the evidence is acceptable, on the subject of thromboembolism, anticoagulation, and treatment with anticoagulants in patients with pancreatic carcinoma.

Key Points

  • Pancreatic carcinoma is associated with activation of coagulation, and interplay between activation of coagulation, inflammation and angiogenesis seems to affect the morbidity and mortality of patients with pancreatic carcinoma

  • Thromboembolism predicts an increased risk for the development of an occult cancer, including a pancreatic carcinoma

  • Thromboembolic events are associated with a poorer prognosis in patients with pancreatic cancer than in those with other types of cancer

  • Recurrence of thromboembolism in patients with pancreatic carcinoma predicts reduced duration of survival

  • Use of either warfarin or low molecular weight heparin seems to improve survival in patients with pancreatic carcinoma

  • Two large multicenter studies on the use of low molecular weight heparin plus chemotherapy in patients with pancreatic carcinoma are under way

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A simplified scheme of the coagulation cascade.

References

  1. Moore MJ et al. (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25: 1960–1966

    Article  CAS  PubMed  Google Scholar 

  2. Löhr M (2006) Is it possible to survive pancreatic cancer? Nat Clin Pract Gastroenterol Hepatol 3: 236–237

    Article  PubMed  Google Scholar 

  3. Trousseau A (1865) Phlegmasia alba dolens. Clinique Medicale de l'Hotel-Dieu. Paris: Bailliere JB 3: 654–712

    Google Scholar 

  4. Bariety M (1947) Trousseau, 1801–67. Geneva: Mazenod, 234–235

    Google Scholar 

  5. Khorana AA and Fine RL (2004) Pancreatic cancer and thromboembolic disease. Lancet Oncol 5: 655–663

    Article  CAS  PubMed  Google Scholar 

  6. Sproul E (1938) Carcinoma and venous thrombosis: the frequency of association of carcinoma in the body or tail of the pancreas with multiple venous thrombosis. Amer J Cancer 34: 566–585

    Google Scholar 

  7. Pinzon R et al. (1986) Pancreatic carcinoma and Trousseau's syndrome: experience at a large cancer center. J Clin Oncol 4: 509–514

    Article  CAS  PubMed  Google Scholar 

  8. Virchow RLK (1856) Gesammelte Abhandlungen zur Wissenschaftlichen Medicin. Frankfurt, Meidinger: Sohn & Co. (Reprint edition: Virchow R (1998) Thrombosis and Emboli (1846–1856). AC Matzdorff, WR Bell, transl, Canton, MA: Science History Publications

    Google Scholar 

  9. Brotman DJ et al. (2004) Virchow's triad revisited. South Med J 97: 213–214

    Article  PubMed  Google Scholar 

  10. Haas SL et al. (2006) Expression of tissue factor in pancreatic adenocarcinoma is associated with activation of coagulation. World J Gastroenterol 12: 4843–4849

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Khorana AA et al. (2007) Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 13: 2870–2875

    Article  CAS  PubMed  Google Scholar 

  12. Wojtukiewicz MZ et al. (2000) Expression of prothrombin fragment 1 + 2 in cancer tissue as an indicator of local activation of blood coagulation. Thromb Res 97: 335–342

    Article  CAS  PubMed  Google Scholar 

  13. Rudroff C et al. (2002) Expression of the thrombin receptor PAR-1 correlates with tumour cell differentiation of pancreatic adenocarcinoma in vitro. Clin Exp Metastasis 19: 181–189

    Article  CAS  PubMed  Google Scholar 

  14. Wojtukiewicz M.Z et al. (2001) Localization of blood coagulation factors in situ in pancreatic carcinoma. Thromb Haemost 86: 1416–1420

    Article  CAS  PubMed  Google Scholar 

  15. Kakkar A et al. (1995) Tissue factor expression correlates with histological grade in human pancreatic cancer. Br J Surg 82: 1101–1104

    Article  CAS  PubMed  Google Scholar 

  16. Nitori N et al. (2005) Prognostic significance of tissue factor in pancreatic ductal adenocarcinoma. Clin Cancer Res 11: 2531–2539

    Article  CAS  PubMed  Google Scholar 

  17. Ueda C et al. (2001) Pancreatic cancer complicated by disseminated intravascular coagulation associated with production of tissue factor. J Gastroenterol 36: 848–850

    Article  CAS  PubMed  Google Scholar 

  18. Lindahl AK et al. (1992) Coagulation inhibition and activation in pancreatic cancer. Changes during progress of disease. Cancer 70: 2067–2072

    Article  CAS  PubMed  Google Scholar 

  19. Wojtukiewicz M et al. (2003) Immunohistochemical localization of tissue factor pathway inhibitor-2 in human tumor tissue. Thromb Haemost 90: 140–146

    Article  CAS  PubMed  Google Scholar 

  20. Chaturvedi P et al. (2007) MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Mol Cancer Res 5: 309–320

    Article  CAS  PubMed  Google Scholar 

  21. Lindahl AK et al. (1993) Increased plasma thrombomodulin in cancer patients. Thromb Haemost 69: 112–114

    Article  CAS  PubMed  Google Scholar 

  22. Marguerie GA et al. (1984) The platelet–fibrinogen interaction. Evidence for proximity of the A alpha chain of fibrinogen to platelet membrane glycoproteins IIb/III. Eur J Biochem 139: 5–11

    Article  CAS  PubMed  Google Scholar 

  23. Isenberg JS et al. (2008) Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling. Blood 111: 613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tobita K et al. (2002) Thrombospondin-1 expression as a prognostic predictor of pancreatic ductal carcinoma. Int J Oncol 21: 1189–1195

    CAS  PubMed  Google Scholar 

  25. Wahrenbrock M (2003) Selectin–mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J Clin Invest 112: 853–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kakkar AK (1998) A characterization of the coagulant and fibrinolytic profile of human pancreatic carcinoma cells. Haemostasis 28: 1–6

    CAS  PubMed  Google Scholar 

  27. Andren-Sandberg A et al. (1992) Peaks in plasma plasminogen activator inhibitor-1 concentration may explain thrombotic events in cases of pancreatic carcinoma. Cancer 69: 2884–2887

    Article  CAS  PubMed  Google Scholar 

  28. Jesnowski R et al. (2007) Genes and proteins differentially expressed during in vitro malignant transformation of bovine pancreatic duct cells. Neoplasia 9: 136–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu JL et al. (2005) Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 105: 1734–1741

    Article  CAS  PubMed  Google Scholar 

  30. Redston MS et al. (1994) p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res 54: 3025–3033

    CAS  PubMed  Google Scholar 

  31. Allgayer H et al. (1999) Targeted disruption of the K-ras oncogene in an invasive colon cancer cell line down-regulates urokinase receptor expression and plasminogen-dependent proteolysis. Br J Cancer 80: 1884–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernandez PM et al. (2004) Tissue factor and fibrin in tumor angiogenesis. Semin Thromb Hemost 30: 31–44

    CAS  PubMed  Google Scholar 

  33. Ruf W and Mueller BM (2006) Thrombin generation and the pathogenesis of cancer. Semin Thromb Hemost 32 (Suppl 1): S61–S68

    Article  CAS  Google Scholar 

  34. Tsopanoglou NE and Maragoudakis ME (2004) Role of thrombin in angiogenesis and tumor progression. Semin Thromb Hemost 30: 63–69

    Article  CAS  PubMed  Google Scholar 

  35. Hobbs JE et al. (2007) Alternatively spliced human tissue factor promotes tumor growth and angiogenesis in a pancreatic cancer tumor model. Thromb Res 120 (Suppl 2): S13–S21

    Article  PubMed  Google Scholar 

  36. Alvarez RH et al. (2006) Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin Proc 81: 1241–1257

    Article  CAS  PubMed  Google Scholar 

  37. Hwang RF et al. (2003) Inhibition of platelet-derived growth factor receptor phosphorylation by STI571 (Gleevec) reduces growth and metastasis of human pancreatic carcinoma in an orthotopic nude mouse model. Clin Cancer Res 9: 6534–6544

    CAS  PubMed  Google Scholar 

  38. Löhr M et al. (2001) Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res 61: 550–555

    PubMed  Google Scholar 

  39. Kleeff J et al. (2007) Pancreatic cancer microenvironment. Int J Cancer 121: 699–705

    Article  CAS  PubMed  Google Scholar 

  40. Fukunaga A et al. (2004) CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 28: e26–e31

    Article  PubMed  Google Scholar 

  41. Albo D et al. (1999) Thrombospondin-1 and transforming growth factor beta-1 upregulate plasminogen activator inhibitor type 1 in pancreatic cancer. J Gastrointest Surg 3: 411–417

    Article  CAS  PubMed  Google Scholar 

  42. Fareed D et al. (2004) Blood levels of nitric oxide, C-reactive protein, and tumor necrosis factor-alpha are upregulated in patients with malignancy-associated hypercoagulable state: pathophysiologic implications. Clin Appl Thromb Hemost 10: 357–364

    Article  CAS  PubMed  Google Scholar 

  43. Scarpati EM and Sadler JE (1989) Regulation of endothelial cell coagulant properties. Modulation of tissue factor, plasminogen activator inhibitors, and thrombomodulin by phorbol 12-myristate 13-acetate and tumor necrosis factor. J Biol Chem 264: 20705–20713

    CAS  PubMed  Google Scholar 

  44. Esposito I et al. (2004) Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol 57: 630–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rudroff C et al. (2001) Thrombin enhances adhesion in pancreatic cancer in vitro through the activation of the thrombin receptor PAR 1. Eur J Surg Oncol 27: 472–476

    Article  CAS  PubMed  Google Scholar 

  46. Gunji Y and Gorelik E (1988) Role of fibrin coagulation in protection of murine tumor cells from destruction by cytotoxic cells. Cancer Res 48: 5216–5221

    CAS  PubMed  Google Scholar 

  47. Palumbo JS et al. (2000) Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 96: 3302–3309

    CAS  PubMed  Google Scholar 

  48. He Y et al. (2007) Interaction between cancer cells and stromal fibroblasts is required for activation of the uPAR-uPA-MMP-2 cascade in pancreatic cancer metastasis. Clin Cancer Res 13: 3115–3124

    Article  CAS  PubMed  Google Scholar 

  49. Qian X et al. (1997) Thrombospondin-1 modulates angiogenesis in vitro by up-regulation of matrix metalloproteinase-9 in endothelial cells. Exp Cell Res 235: 403–412

    Article  CAS  PubMed  Google Scholar 

  50. Qian X et al. (2001) Expression of thrombospondin-1 in human pancreatic adenocarcinomas: role in matrix metalloproteinase-9 production. Pathol Oncol Res 7: 251–259

    Article  CAS  PubMed  Google Scholar 

  51. Palumbo JS et al. (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105: 178–185

    Article  CAS  PubMed  Google Scholar 

  52. Monreal, M et al. (1991) Occult cancer in patients with deep venous thrombosis. A systematic approach. Cancer 67: 541–545

    Article  CAS  PubMed  Google Scholar 

  53. Prandoni P et al. (1992) Deep-vein thrombosis and the incidence of subsequent symptomatic cancer. N Engl J Med 327: 1128–1133

    Article  CAS  PubMed  Google Scholar 

  54. Monreal M et al. (1997) Occult cancer in patients with venous thromboembolism: which patients, which cancers. Thromb Haemost 78: 1316–1318

    Article  CAS  PubMed  Google Scholar 

  55. White RH et al. (2005) Incidence of venous thromboembolism in the year before the diagnosis of cancer in 528,693 adults. Arch Intern Med 165: 1782–1787

    Article  PubMed  Google Scholar 

  56. Sorensen HT et al. (2000) Prognosis of cancers associated with venous thromboembolism. N Engl J Med 343: 1846–1850

    Article  CAS  PubMed  Google Scholar 

  57. Iodice S et al. (2008) Venous thromboembolic events and organ-specific occult cancers: a review and meta-analysis. J Thromb Haemost 6: 781–788

    Article  CAS  PubMed  Google Scholar 

  58. Mandala M et al. (2007) Venous thromboembolism predicts poor prognosis in irresectable pancreatic cancer patients. Ann Oncol 18: 1660–1665

    Article  CAS  PubMed  Google Scholar 

  59. Khorana AA et al. (2006) Thromboembolism in hospitalized neutropenic cancer patients. J Clin Oncol 24: 484–490

    Article  PubMed  Google Scholar 

  60. Chew HK et al. (2006) Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med 166: 458–464

    Article  PubMed  Google Scholar 

  61. Hirsh J et al. (2003) American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. Circulation 107: 1692–1711

    Article  PubMed  Google Scholar 

  62. Hirsh J et al. (2001) Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest 119 (Suppl 1): S64–S94

    Article  Google Scholar 

  63. Norrby K (2006) Low-molecular-weight heparins and angiogenesis. Apmis 114: 79–102

    Article  CAS  PubMed  Google Scholar 

  64. Miller GJ et al. (2004) Increased incidence of neoplasia of the digestive tract in men with persistent activation of the coagulant pathway. J Thromb Haemost 2: 2107–2114

    Article  CAS  PubMed  Google Scholar 

  65. Folkman J et al. (1983) Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 221: 719–725

    Article  CAS  PubMed  Google Scholar 

  66. Pross M et al. (2004) Effect of low molecular weight heparin on intra-abdominal metastasis in a laparoscopic experimental study. Int J Colorectal Dis 19: 143–146

    Article  CAS  PubMed  Google Scholar 

  67. Schwalke MA et al. (1990) Effects of prostacyclin on hepatic metastases from human pancreatic cancer in the nude mouse. J Surg Res 49: 164–167

    Article  CAS  PubMed  Google Scholar 

  68. Schulman S and Lindmarker P (2000) Incidence of cancer after prophylaxis with warfarin against recurrent venous thromboembolism. Duration of Anticoagulation Trial. N Engl J Med 342: 1953–1958

    Article  CAS  PubMed  Google Scholar 

  69. Schulman S et al. (2006) Post-thrombotic syndrome, recurrence, and death 10 years after the first episode of venous thromboembolism treated with warfarin for 6 weeks or 6 months. J Thromb Haemost 4: 734–742

    Article  CAS  PubMed  Google Scholar 

  70. Taliani MR et al. (2003) Incidence of cancer after a first episode of idiopathic venous thromboembolism treated with 3 months or 1 year of oral anticoagulation. J Thromb Haemost 1: 1730–1733

    Article  CAS  PubMed  Google Scholar 

  71. Zacharski LR et al. (1984) Effect of warfarin anticoagulation on survival in carcinoma of the lung, colon, head and neck, and prostate. Final report of VA Cooperative Study #75. Cancer 53: 2046–2052

    Article  CAS  PubMed  Google Scholar 

  72. Zacharski LR and Henderson WG (2002) A rebuttal: vitamin K antagonists and cancer survival. Thromb Haemost 88: 173–175

    Article  CAS  PubMed  Google Scholar 

  73. Maurer LH et al. (1997) Randomized trial of chemotherapy and radiation therapy with or without warfarin for limited-stage small-cell lung cancer: a Cancer and Leukemia Group B study. J Clin Oncol 15: 3378–3387

    Article  CAS  PubMed  Google Scholar 

  74. Kuderer NM et al. (2007) A meta-analysis and systematic review of the efficacy and safety of anticoagulants as cancer treatment: impact on survival and bleeding complications. Cancer 110: 1149–1161

    Article  CAS  PubMed  Google Scholar 

  75. Nakchbandi W et al. (2006) Effects of low-dose warfarin and regional chemotherapy on survival in patients with pancreatic carcinoma. Scand J Gastroenterol 41: 1095–1104

    Article  CAS  PubMed  Google Scholar 

  76. Nakchbandi W et al. Prospective study on warfarin and regional chemotherapy in patients with pancreatic carcinoma. J Gastrointestin Liver Dis, in press

  77. Lee AY et al. (2003) Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med 349: 146–153

    Article  CAS  PubMed  Google Scholar 

  78. Ruf W (2007) Tissue factor and PAR signaling in tumor progression. Thromb Res 120 (Suppl 2): S7–S12

    Article  PubMed  Google Scholar 

  79. Jung SP (2001) Inhibition of human angiogenesis with heparin and hydrocortisone. Angiogenesis 4: 175–186

    Article  CAS  PubMed  Google Scholar 

  80. Kiricuta I et al. (1973) Prophylaxis of metastases formation by unspecific immunologic stimulation associated with heparintherapy. Cancer 31: 1392–1396

    Article  CAS  PubMed  Google Scholar 

  81. Owen CA Jr (1982) Anticoagulant treatment of rats with Walker 256 carcinosarcoma. J Cancer Res Clin Oncol 104: 191–193

    Article  CAS  PubMed  Google Scholar 

  82. Green D et al. (1992) Lower mortality in cancer patients treated with low-molecular-weight versus standard heparin. Lancet 339: 1476

    Article  CAS  PubMed  Google Scholar 

  83. Khorana AA et al. (2003) Heparin inhibition of endothelial cell proliferation and organization is dependent on molecular weight. Arterioscler Thromb Vasc Biol 23: 2110–2115

    Article  CAS  PubMed  Google Scholar 

  84. Lee AY et al. (2005) Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. J Clin Oncol 23: 2123–2129

    Article  CAS  PubMed  Google Scholar 

  85. Icli F et al. (2007) Low molecular weight heparin (LMWH) increases the efficacy of cisplatinum plus gemcitabine combination in advanced pancreatic cancer. J Surg Oncol 95: 507–512

    Article  CAS  PubMed  Google Scholar 

  86. von Delius S et al. (2007) Effect of low-molecular-weight heparin on survival in patients with advanced pancreatic adenocarcinoma. Thromb Haemost 98: 434–439

    Article  CAS  PubMed  Google Scholar 

  87. Pelzer U et al. (2006) A prospective randomized trial of simultaneous pancreatic cancer treatment with enoxaparin and chemotherapy (PROSPECT CONKO 004). 2006 ASCO Annual Meeting Proceedings. J Clin Oncol 24 (Suppl 18): S4110

    Google Scholar 

  88. Maraveyas A. Gemcitabine and dalteparin or gemcitabine alone for advanced pancreatic cancer (FRAGEM). [http://www.cancerhelp.org.uk/trials/trials/] (to find, search for pancreatic cancer trials; accessed 16 May 2008)

Download references

Acknowledgements

This work was supported in part by the Max-Planck Society (IAN), the German Cancer Research Center (JML), and a research fund from the Dr Hans & Lore Graf Stiftung (JML).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-Matthias Löhr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nakchbandi, I., Löhr, JM. Coagulation, anticoagulation and pancreatic carcinoma. Nat Rev Gastroenterol Hepatol 5, 445–455 (2008). https://doi.org/10.1038/ncpgasthep1184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpgasthep1184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing