Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: update on the molecular etiology and fundamentals of parenteral nutrition associated cholestasis

Abstract

Since its introduction into clinical practice, parenteral nutrition has revolutionized the care of premature neonates. Serum transaminase and bilirubin levels are commonly elevated in infants on parenteral nutrition, but their normalization is typical in the setting of short-term administration of parenteral nutrition uncomplicated by sepsis. Premature infants who require long-term parenteral nutrition are, however, at severe risk for developing life-threatening hepatic complications. These complications include cirrhosis, liver failure, and the concomitant risks of sepsis, coagulopathy and death. Premature infants and those with short-bowel syndrome are most susceptible to these morbid outcomes. Although it has been more than a quarter of a century since parenteral nutrition was first introduced and its association with hepatic complications described, the precise etiology of parenteral nutrition associated cholestasis (PNAC) remains a mystery; however, our understanding of the molecular components that contribute to PNAC has improved substantially. In this Review, we summarize the fundamentals of PNAC, describe animal models of the disease, review the hepatic bile acid transporters that are crucial for bile acid homeostasis, and define the roles that endotoxin, genetics, and the components of parenteral nutrition are likely to have in the molecular pathogenesis of this life-threatening condition.

Key Points

  • Parenteral nutrition provides valuable life-sustaining nutrients to patients unable to tolerate enteral nutrition, but prolonged administration is associated with severe, life-threatening liver disease, especially in premature neonates

  • The precise etiology of parenteral nutrition associated cholestasis (PNAC) is probably multifactorial, with risk factors including prematurity, history of bowel resection and/or lack of enteral feeds, catheter infections and/or sepsis, and a lack of or presence of specific components in the parenteral nutrition itself

  • Older children and adults are less prone to severe cases of PNAC than are neonates, and animal models suggest that there is a developmental component to bile acid transporter gene expression; these factors indicate that the expression of critical hepatic protective genes might be involved in susceptibility to PNAC

  • Animal models of parenteral nutrition administration suggest that parenteral nutrition itself and/or particular components of parenteral nutrition might affect key hepatic bile acid transporters, apoptotic signaling, and other detoxification mechanisms at the gene level, thereby promoting cholestasis and hepatocellular injury

  • Few therapeutic options are available for PNAC, with severe cases necessitating liver or combined liver–bowel transplantation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors that contribute to the development of parenteral nutrition associated cholestasis
Figure 2: Pathological features of parenteral nutrition associated liver injury
Figure 3: Hepatocyte transporters and nuclear receptors involved in bile acid homeostasis

Similar content being viewed by others

References

  1. Rhoads JE (2001) The development of TPN: an interview with pioneer surgical nutritionist Jonathan E Rhoads, MD [Interview by Carolyn T Spencer and Charlene Compher]. J Am Diet Assoc 101: 747–750

    Article  CAS  PubMed  Google Scholar 

  2. Guenter P et al. (2004) The impact of nursing practice on the history and effectiveness of total parenteral nutrition. JPEN J Parenter Enteral Nutr 28: 54–59

    Article  PubMed  Google Scholar 

  3. [No authors listed] (1981) Nutrition classics. Surgery, Volume 64, 1968. Long-term total parenteral nutrition with growth, development, and positive nitrogen balance: Stanley J. Dudrick, Douglas W. Wilmore, Harry M. Vars, Jonathan E. Rhoads. Nutr Rev 39: 278–281

  4. Rager R and Finegold MJ (1975) Cholestasis in immature newborn infants: is parenteral alimentation responsible. J Pediatr 86: 264–269

    Article  CAS  PubMed  Google Scholar 

  5. Finegold MJ (1982) Total parenteral alimentation and cholestasis. Am J Clin Pathol 77: 378–379

    Article  CAS  PubMed  Google Scholar 

  6. Drongowski RA and Coran AG (1989) An analysis of factors contributing to the development of total parenteral nutrition-induced cholestasis. JPEN J Parenter Enteral Nutr 13: 586–589

    Article  CAS  PubMed  Google Scholar 

  7. Sokol RJ (1997) Total parenteral nutrition-related liver disease. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 38: 418–428

    CAS  PubMed  Google Scholar 

  8. Kelly DA (1998) Liver complications of pediatric parenteral nutrition—epidemiology. Nutrition 14: 153–157

    Article  CAS  PubMed  Google Scholar 

  9. Teitelbaum DH (1997) Parenteral nutrition-associated cholestasis. Curr Opin Pediatr 9: 270–275

    Article  CAS  PubMed  Google Scholar 

  10. Kelly DA (2006) Intestinal failure-associated liver disease: what do we know today. Gastroenterology 130 (Suppl 1): S70–S77

    Article  CAS  PubMed  Google Scholar 

  11. Beale EF et al. (1979) Intrahepatic cholestasis associated with parenteral nutrition in premature infants. Pediatrics 64: 342–347

    CAS  PubMed  Google Scholar 

  12. Btaiche IF and Khalidi N (2002) Parenteral nutrition-associated liver complications in children. Pharmacotherapy 22: 188–211

    Article  PubMed  Google Scholar 

  13. Beath SV et al. (1996) Parenteral nutrition-related cholestasis in postsurgical neonates: multivariate analysis of risk factors. J Pediatr Surg 31: 604–606

    Article  CAS  PubMed  Google Scholar 

  14. Zambrano E et al. (2004) Total parenteral nutrition induced liver pathology: an autopsy series of 24 newborn cases. Pediatr Dev Pathol 7: 425–432

    Article  PubMed  Google Scholar 

  15. Mullick FG et al. (1994) Total parenteral nutrition: a histopathologic analysis of the liver changes in 20 children. Mod Pathol 7: 190–194

    CAS  PubMed  Google Scholar 

  16. Cohen C and Olsen MM (1981) Pediatric total parenteral nutrition: liver histopathology. Arch Pathol Lab Med 105: 152–156

    CAS  PubMed  Google Scholar 

  17. Colomb V et al. (1992) Long-term parenteral nutrition in children: liver and gallbladder disease. Transplant Proc 24: 1054–1055

    CAS  PubMed  Google Scholar 

  18. Shulman RJ (2000) New developments in total parenteral nutrition for children. Curr Gastroenterol Rep 2: 253–258

    Article  CAS  PubMed  Google Scholar 

  19. Bell RL et al. (1986) Total parenteral nutrition-related cholestasis in infants. JPEN J Parenter Enteral Nutr 10: 356–359

    Article  CAS  PubMed  Google Scholar 

  20. Balistreri WF et al. (1983) Immaturity of the enterohepatic circulation in early life: factors predisposing to “physiologic” maldigestion and cholestasis. J Pediatr Gastroenterol Nutr 2: 346–354

    Article  CAS  PubMed  Google Scholar 

  21. Lester R et al. (1983) Diversity of bile acids in the fetus and newborn infant. J Pediatr Gastroenterol Nutr 2: 355–364

    Article  CAS  PubMed  Google Scholar 

  22. de Belle RC et al. (1979) Intestinal absorption of bile salts: immature development in the neonate. J Pediatr 94: 472–476

    Article  CAS  PubMed  Google Scholar 

  23. Denehy CM and Ryan JR (1986) Development of gallbladder contractility in the guinea pig. Pediatr Res 20: 214–217

    Article  CAS  PubMed  Google Scholar 

  24. Suchy FJ et al. (1986) Taurocholate transport and Na+-K+-ATPase activity in fetal and neonatal rat liver plasma membrane vesicles. Am J Physiol 251: 665–673

    Google Scholar 

  25. Karpen SJ (2002) Nuclear receptor regulation of hepatic function. J Hepatol 36: 832–850

    Article  CAS  PubMed  Google Scholar 

  26. Zollner G et al. (2006) Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm 3: 231–251

    Article  CAS  PubMed  Google Scholar 

  27. Gao B et al. (2004) Differential expression of bile salt and organic anion transporters in developing rat liver. J Hepatol 41: 201–208

    Article  CAS  PubMed  Google Scholar 

  28. Chen HL et al. (2004) Developmental expression of canalicular transporter genes in human liver [abstract]. J Pediatr Gastroenterol Nutr. 39 (Suppl): aS68

    Article  Google Scholar 

  29. Chen HL et al. (2005) Developmental expression of canalicular transporter genes in human liver. J Hepatol 43: 472–477

    Article  CAS  PubMed  Google Scholar 

  30. Touloukian RJ and Seashore JH (1975) Hepatic secretory obstruction with total parenteral nutrition in the infant. J Pediatr Surg 10: 353–360

    Article  CAS  PubMed  Google Scholar 

  31. Aynsley-Green A (1983) Plasma hormone concentrations during enteral and parenteral nutrition in the human newborn. J Pediatr Gastroenterol Nutr 2 (Suppl 1): S108–S112

    Article  PubMed  Google Scholar 

  32. Aynsley-Green A (1989) The endocrinology of feeding in the newborn. Baillieres Clin Endocrinol Metab 3: 837–868

    Article  CAS  PubMed  Google Scholar 

  33. Lucas A et al. (1983) Metabolic and endocrine consequences of depriving preterm infants of enteral nutrition. Acta Paediatr Scand 72: 245–249

    Article  CAS  PubMed  Google Scholar 

  34. Fedorowski T et al. (1979) Transformation of chenodeoxycholic acid and ursodeoxycholic acid by human intestinal bacteria. Gastroenterology 77: 1068–1073

    CAS  PubMed  Google Scholar 

  35. Lichtman SN et al. (1990) Hepatic inflammation in rats with experimental small intestinal bacterial overgrowth. Gastroenterology 98: 414–423

    Article  CAS  PubMed  Google Scholar 

  36. Lichtman SN et al. (1991) Biliary tract disease in rats with experimental small bowel bacterial overgrowth. Hepatology 13: 766–772

    Article  CAS  PubMed  Google Scholar 

  37. Lichtman SN et al. (1991) Hepatic injury associated with small bowel bacterial overgrowth in rats is prevented by metronidazole and tetracycline. Gastroenterology 100: 513–519

    Article  CAS  PubMed  Google Scholar 

  38. Freund HR et al. (1985) A possible beneficial effect of metronidazole in reducing TPN-associated liver function derangements. J Surg Res 38: 356–363

    Article  CAS  PubMed  Google Scholar 

  39. Nanji AA and Anderson FH (1984) Cholestasis associated with parenteral nutrition develops more commonly with hematologic malignancy than with inflammatory bowel disease. JPEN J Parenter Enteral Nutr 8: 325

    Article  CAS  PubMed  Google Scholar 

  40. Fouin-Fortunet H et al. (1982) Hepatic alterations during total parenteral nutrition in patients with inflammatory bowel disease: a possible consequence of lithocholate toxicity. Gastroenterology 82: 932–937

    CAS  PubMed  Google Scholar 

  41. Cruccetti A et al. (2003) Surgical infants on total parenteral nutrition have impaired cytokine responses to microbial challenge. J Pediatr Surg 38: 138–142

    Article  CAS  PubMed  Google Scholar 

  42. Zheng YJ et al. (2004) Endotoxin and cytokine released during parenteral nutrition. JPEN J Parenter Enteral Nutr 28: 163–168

    Article  CAS  PubMed  Google Scholar 

  43. Forrest EH et al. (2002) Improvement in cholestasis associated with total parenteral nutrition after treatment with an antibody against tumour necrosis factor alpha. Liver 22: 317–320

    Article  PubMed  Google Scholar 

  44. Trauner M et al. (1999) Inflammation-induced cholestasis. J Gastroenterol Hepatol 14: 946–959

    Article  CAS  PubMed  Google Scholar 

  45. Crawford JM and Boyer JL (1998) Clinicopathology conferences: inflammation-induced cholestasis. Hepatology 28: 253–260

    Article  CAS  PubMed  Google Scholar 

  46. Trauner M et al. (1998) Endotoxin downregulates rat hepatic ntcp gene expression via decreased activity of critical transcription factors. J Clin Invest 101: 2092–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghose R et al. (2004) Endotoxin leads to rapid subcellular re-localization of hepatic RXRα: a novel mechanism for reduced hepatic gene expression in inflammation. Nucl Recept 2: 4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li D et al. (2002) Interleukin-1 beta-mediated suppression of RXR:RAR transactivation of the Ntcp promoter is JNK-dependent. J Biol Chem 277: 31416–31422

    Article  CAS  PubMed  Google Scholar 

  49. Green RM (1996) Regulation of hepatocyte bile salt transporters by endotoxin and inflammatory cytokines in rodents. Gastroenterology 111: 193–198

    Article  CAS  PubMed  Google Scholar 

  50. Denson LA et al. (2000) Interleukin-1beta suppresses retinoid transactivation of two hepatic transporter genes involved in bile formation. J Biol Chem 275: 8835–8843

    Article  CAS  PubMed  Google Scholar 

  51. Lavoie JC et al. (2005) Reduced bile flow associated with parenteral nutrition is independent of oxidant load and parenteral multivitamins. J Pediatr Gastroenterol Nutr 41: 108–114

    Article  PubMed  Google Scholar 

  52. Zlotkin SH and Anderson GH (1982) The development of cystathionase activity during the first year of life. Pediatr Res 16: 65–68

    Article  CAS  PubMed  Google Scholar 

  53. Cooke RJ et al. (1984) Effect of taurine supplementation on hepatic function during short-term parenteral nutrition in the premature infant. J Pediatr Gastroenterol Nutr 3: 234–238

    Article  CAS  PubMed  Google Scholar 

  54. Guertin F et al. (1991) Effect of taurine on total parenteral nutrition-associated cholestasis. JPEN J Parenter Enteral Nutr 15: 247–251

    Article  CAS  PubMed  Google Scholar 

  55. Spencer AU et al. (2005) Pediatric short bowel syndrome: redefining predictors of success. Ann Surg 242: 403–409

    PubMed  PubMed Central  Google Scholar 

  56. Moreno A et al. (1994) Aluminum in the neonate related to parenteral nutrition. Acta Paediatr 83: 25–29

    Article  CAS  PubMed  Google Scholar 

  57. Rabinow BE et al. (1989) Aluminum in parenteral products: analysis, reduction, and implications for pediatric TPN. J Parenter Sci Technol 43: 132–139

    CAS  PubMed  Google Scholar 

  58. Moukarzel AA et al. (1992) Excessive chromium intake in children receiving total parenteral nutrition. Lancet 339: 385–388

    Article  CAS  PubMed  Google Scholar 

  59. Bougle D et al. (1993) Chromium and parenteral nutrition in children. J Pediatr Gastroenterol Nutr 17: 72–74

    Article  CAS  PubMed  Google Scholar 

  60. Kafritsa Y et al. (1998) Long-term outcome of brain manganese deposition in patients on home parenteral nutrition. Arch Dis Child 79: 263–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sheldon GF et al. (1978) Hepatic dysfunction during hyperalimentation. Arch Surg 113: 504–508

    Article  CAS  PubMed  Google Scholar 

  62. Mashima Y (1979) Effect of calorie overload on puppy livers during parenteral nutrition. JPEN J Parenter Enteral Nutr 3: 139–145

    Article  CAS  PubMed  Google Scholar 

  63. Vileisis RA et al. (1980) Prospective controlled study of parenteral nutrition-associated cholestatic jaundice: effect of protein intake. J Pediatr 96: 893–897

    Article  CAS  PubMed  Google Scholar 

  64. Graham MF (1984) Inhibition of bile flow in the isolated perfused rat liver by a synthetic parenteral amino acid mixture: associated net amino acid fluxes. Hepatology 4: 69–73

    Article  CAS  PubMed  Google Scholar 

  65. Shenai JP and Borum PR (1984) Tissue carnitine reserves of newborn infants. Pediatr Res 18: 679–682

    Article  CAS  PubMed  Google Scholar 

  66. Bowyer BA et al. (1988) L-carnitine therapy in home parenteral nutrition patients with abnormal liver tests and low plasma carnitine concentrations. Gastroenterology 94: 434–438

    Article  CAS  PubMed  Google Scholar 

  67. Buchman AL et al. (2001) Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: proof of a human choline requirement: a placebo-controlled trial. JPEN J Parenter Enteral Nutr 25: 260–268

    Article  CAS  PubMed  Google Scholar 

  68. Cavicchi M et al. (2000) Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann Intern Med 132: 525–532

    Article  CAS  PubMed  Google Scholar 

  69. Colomb V et al. (2000) Role of lipid emulsions in cholestasis associated with long-term parenteral nutrition in children. JPEN J Parenter Enteral Nutr 24: 345–350

    Article  CAS  PubMed  Google Scholar 

  70. Carter BA et al. (2006) Soy lipid-derived stigmasterol (Stig) antagonizes bile acid (BA)-activation of the FXR dependent BA sinusoidal efflux pump genes, OSTα/β, in primary mouse hepatocytes and HepG2cells [abstract #69]. J Pediatr Gastroenterol Nutr 43: E35

    Article  Google Scholar 

  71. Carter BA et al. (2005) Soy-lipid derived stigmasterol suppresses FXR target genes BSEP and FGF-19, in human hepatoblastoma cells—potential role in total parenteral nutrition-associated cholestasis (TPNAC) [abstract #190]. J Pediatr Gastroenterol Nutr 41: 552

    Article  Google Scholar 

  72. Clayton PT et al. (1993) Phytosterolemia in children with parenteral nutrition-associated cholestatic liver disease. Gastroenterology 105: 1806–1813

    Article  CAS  PubMed  Google Scholar 

  73. Gura KM et al. (2006) Reversal of parenteral nutrition-associated liver disease in two infants with short bowel syndrome using parenteral fish oil: implications for future management. Pediatrics 118: e197–e201

    Article  PubMed  Google Scholar 

  74. Tazuke Y et al. (2004) Hepatic P-glycoprotein changes with total parenteral nutrition administration. JPEN J Parenter Enteral Nutr 28: 1–6

    Article  CAS  PubMed  Google Scholar 

  75. Tazuke Y (2004) Effects of lipid administration on liver apoptotic signals in a mouse model of total parenteral nutrition (TPN). Pediatr Surg Int 20: 224–228

    Article  PubMed  Google Scholar 

  76. Javid PJ et al. (2005) The route of lipid administration affects parenteral nutrition-induced hepatic steatosis in a mouse model. J Pediatr Surg 40: 1446–1453

    Article  PubMed  Google Scholar 

  77. Beuers U (2006) Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastroenterol Hepatol 3: 318–328

    Article  CAS  PubMed  Google Scholar 

  78. Gunsar C et al. (2002) The biochemical and histopathological effects of ursodeoxycholic acid and metronidazole on total parenteral nutrition-associated hepatic dysfunction: an experimental study. Hepatogastroenterology 49: 497–500

    CAS  PubMed  Google Scholar 

  79. De Marco G et al. (2006) Early treatment with ursodeoxycholic acid for cholestasis in children on parenteral nutrition because of primary intestinal failure. Aliment Pharmacol Ther 24: 387–394

    Article  CAS  PubMed  Google Scholar 

  80. Beau P et al. (1994) Is ursodeoxycholic acid an effective therapy for total parenteral nutrition-related liver disease. J Hepatol 20: 240–244

    Article  CAS  PubMed  Google Scholar 

  81. Lindor KD and Burnes J (1991) Ursodeoxycholic acid for the treatment of home parenteral nutrition-associated cholestasis: a case report. Gastroenterology 101: 250–253

    Article  CAS  PubMed  Google Scholar 

  82. Spagnuolo MI et al. (1996) Ursodeoxycholic acid for treatment of cholestasis in children on long-term total parenteral nutrition: a pilot study. Gastroenterology 111: 716–719

    Article  CAS  PubMed  Google Scholar 

  83. Tsai S et al. (2005) Failure of cholecystokinin-octapeptide to prevent TPN-associated gallstone disease. J Pediatr Surg 40: 263–267

    Article  PubMed  Google Scholar 

  84. Teitelbaum DH et al. (2005) Use of cholecystokinin-octapeptide for the prevention of parenteral nutrition-associated cholestasis. Pediatrics 115: 1332–1340

    Article  PubMed  Google Scholar 

  85. Heubi JE et al. (2002) Tauroursodeoxycholic acid (TUDCA) in the prevention of total parenteral nutrition-associated liver disease. J Pediatr 141: 237–242

    Article  CAS  PubMed  Google Scholar 

  86. Barshes NR (2006) Isolated orthotopic liver transplantation for parenteral nutrition-associated liver injury. JPEN J Parenter Enteral Nutr 30: 526–529

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Saul J Karpen, MD, PhD, and members of the Texas Children's Liver Center Laboratory for intellectual contributions to the experimental data present in this manuscript. The authors would also like to thank Milton J Finegold, MD, Chief of Pediatric Pathology at Texas Children's Hospital, Baylor College of Medicine, for allowing us to include in this manuscript slides of gross and histopathological PNAC from his personal collection. Work in BA Carter's laboratory has been supported by the American Gastroenterological Association/Roche, Child Health Research Center K12 HD41648-04, and the Children's Digestive Health and Nutrition Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth A Carter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, B., Shulman, R. Mechanisms of Disease: update on the molecular etiology and fundamentals of parenteral nutrition associated cholestasis. Nat Rev Gastroenterol Hepatol 4, 277–287 (2007). https://doi.org/10.1038/ncpgasthep0796

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpgasthep0796

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing