Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanisms of Disease: the hygiene hypothesis revisited

Abstract

In industrialized countries the incidence of diseases caused by immune dysregulation has risen. Epidemiologic studies initially suggested this was connected to a reduction in the incidence of infectious diseases; however, an association with defects in immunoregulation is now being recognized. Effector TH1 and TH2 cells are controlled by specialized subsets of regulatory T cells. Some pathogens can induce regulatory cells to evade immune elimination, but regulatory pathways are homeostatic and mainly triggered by harmless microorganisms. Helminths, saprophytic mycobacteria, bifidobacteria and lactobacilli, which induce immunoregulatory mechanisms in the host, ameliorate aberrant immune responses in the setting of allergy and inflammatory bowel disease. These organisms cause little, if any, harm, and have been part of human microecology for millennia; however, they are now less frequent or even absent in the human environment of westernized societies. Deficient exposure to these 'old friends' might explain the increase in immunodysregulatory disorders. The use of probiotics, prebiotics, helminths or microbe-derived immunoregulatory vaccines might, therefore, become a valuable approach to disease prevention.

Key Points

  • The recent identification of regulatory T cells has prompted a paradigm shift in our understanding of immune regulation

  • Deficient activity of regulatory T cells has been demonstrated in individuals with immune-mediated diseases

  • Induction and regulation of mucosal immunity occurs primarily in gut-associated lymphoid tissues and the gut-draining mesenteric lymph nodes

  • Helminths, saprophytic mycobacteria and lactobacilli have all been shown to stimulate regulatory-T-cell responses

  • Reduced exposure to relatively harmless microorganisms in modern society could be associated with defects in the development of immunoregulatory pathways

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic representation of two major adaptive immune mechanisms in the gut.
Figure 2: Decision-making in the adaptive immune system is modulated by innate costimulatory signals.
Figure 3: The 'old friends' hypothesis.

References

  1. 1

    Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347: 911–920

    PubMed  Article  Google Scholar 

  2. 2

    Strachan DP et al. (1996) Family structure, neonatal infection, and hay fever in adolescence. Arch Dis Child 74: 422–426

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Stene LC and Nafstad P (2001) Relation between occurrence of type 1 diabetes and asthma. Lancet 357: 607–608

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Beasley R et al. (2000) Prevalence and etiology of asthma. J Allergy Clin Immunol 105: S466–S472

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Gale EAM (2002) The rise of childhood type I diabetes in the 20th century. Diabetes 51: 3353–3361

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Poser S et al. (1989) Increasing incidence of multiple sclerosis in South Lower Saxony, Germany. Neuroepidemiology 8: 207–213

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Loftus EV (2004) Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126: 1504–1517

    Article  PubMed  Google Scholar 

  8. 8

    Sawczenko A et al. (2001) Prospective survey of childhood inflammatory bowel disease in the British Isles. Lancet 357: 1093–1094

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Gent AE et al. (1994) Inflammatory bowel disease and domestic hygiene in infancy. Lancet 343: 766–767

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Marshall AL et al. (2004) Type 1 diabetes mellitus in childhood: a matched case control study in Lancashire and Cumbria, UK. Diabet Med 21: 1035–1040

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Ponsonby AL et al. (2005) Exposure to infant siblings during early life and risk of multiple sclerosis. JAMA 293: 463–469

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Uhlig T and Kvien TK (2005) Is rheumatoid arthritis disappearing? Ann Rheum Dis 64: 7–10

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Nielsen HE et al. (1999) Epidemiology of juvenile chronic arthritis: risk dependent on sibship, parental income, and housing. J Rheumatol 26: 1600–1605

    CAS  PubMed  Google Scholar 

  14. 14

    Stanwell-Smith R and Bloomfield S (2004) The hygiene hypothesis and its implications for home hygiene. A report issued by the International Scientific Forum on Home Hygiene (IFH). Milan: NextHealth

    Google Scholar 

  15. 15

    Benn CS et al. (2004) Cohort study of sibling effect, infectious diseases, and risk of atopic dermatitis during first 18 months of life. BMJ 328: 1223

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Arshad SH et al. (2005) Early life risk factors for current wheeze, asthma, and bronchial hyperresponsiveness at 10 years of age. Chest 127: 502–508

    PubMed  Article  Google Scholar 

  17. 17

    Brandtzaeg P and Prydz H (1984) Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311: 71–73

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Johansen F-E and Brandtzaeg P (2004) Transcriptional regulation of the mucosal IgA system. Trends Immunol 25: 150–157

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Brandtzaeg P and Johansen F-E (2005) Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev 206: 32–63

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Crabbé PA et al. (1970) Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice. Lab Invest 22: 448–457

    PubMed  Google Scholar 

  21. 21

    Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3: 331–341

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Helgeland L and Brandtzaeg P (2000) Development and function of intestinal B and T cells. Microbiol Ecol Health Dis 12 (Suppl 2): S110–S127

    Google Scholar 

  23. 23

    Korenblat PE et al. (1968) Immune responses of human adults after oral and parenteral exposure to bovine serum albumin. J Allergy 41: 226–235

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Kraus TA et al. (2004) Failure to induce oral tolerance to a soluble protein in patients with inflammatory bowel disease. Gastroenterology 126: 1771–1778

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Qiao L et al. (1996) Differential regulation of human T cell responsiveness by mucosal versus blood monocytes. Eur J Immunol 26: 922–927

    CAS  PubMed  Article  Google Scholar 

  26. 26

    van der Kleij D et al. (2002) A novel host–parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates Toll-like receptor 2 and affects immune polarization. J Biol Chem 277: 48122–48129

    CAS  PubMed  Article  Google Scholar 

  27. 27

    van Eden W et al. (2005) Heat-shock proteins in T-cell regulation of chronic inflammation. Nature Rev Immunol 5: 318–330

    CAS  Article  Google Scholar 

  28. 28

    McGuirk P et al. (1998) Compartmentalization of T cell responses following respiratory infection with Bordetella pertussis: hyporesponsiveness of lung T cells is associated with modulated expression of the co-stimulatory molecule CD28. Eur J Immunol 28: 153–163

    CAS  PubMed  Article  Google Scholar 

  29. 29

    McGuirk P et al. (2002) Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 195: 221–231

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Higgins SC et al. (2003) Toll-like receptor 4-mediated innate IL-10 activates antigen-specific regulatory T cells and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology. J Immunol 171: 3119–3127

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Viglietta V et al. (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199: 971–979

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Arif S et al. (2004) Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 113: 451–463

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Karlsson MR et al. (2004) Allergen-responsive CD+CD25+ regulatory T cells in children who have outgrown cow's milk allergy. J Exp Med 199: 1679–1688

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Haddeland U et al. (2005) Putative regulatory T cells are impaired in cord blood from neonates with hereditary allergy risk. Pediatr Allergy Immunol 16: 104–112

    PubMed  Article  Google Scholar 

  35. 35

    van Amelsfort JM et al. (2004) CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum 50: 2775–2785

    PubMed  Article  Google Scholar 

  36. 36

    de Kleer IM et al. (2004) CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J Immunol 172: 6435–6443

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Zuany-Amorim C et al. (2002) Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med 8: 625–629

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Elliott DE et al. (2004) Heligmosomoides polygyrus inhibits established colitis in IL-10-deficient mice. Eur J Immunol 34: 2690–2698

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Braat H et al. (2004) Immuno-modulating effect of filamentous hemagglutinine A of Bordetella pertussis in experimental colitis [abstract]. Gastroenterology 126 (Suppl 2): a284–a285

    Google Scholar 

  40. 40

    Guarner F and Malagelada JR (2003) Gut flora in health and disease. Lancet 361: 512–519

    PubMed  Article  Google Scholar 

  41. 41

    Sonnenburg JL et al. (2004) Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat Immunol 5: 569–573

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Suau A et al. (1999) Direct rDNA community analysis reveals a myriad of novel bacterial lineages within the human gut. Appl Environ Microbiol 65: 4799–4807

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Derrien M et al. (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54: 1469–1476

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Bäckhed F et al. (2005) Host–bacterial mutualism in the human intestine. Science 307: 1915–1920

    PubMed  Article  CAS  Google Scholar 

  45. 45

    Zoetendal E et al. (2001) The host genotype affects the bacterial community in the human gastrointestinal tract. Microbial Ecol Health Dis 13: 129–134

    Article  Google Scholar 

  46. 46

    GenBank [http://www.ncbi.nlm.nih.gov/Genbank/index.html]

  47. 47

    Bartosch S et al. (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70: 3575–3581

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Schwiertz A et al. (2003) Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr Res 54: 393–399

    PubMed  Article  Google Scholar 

  49. 49

    Yamanaka T et al. (2003) Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer's patches. J Immunol 170: 816–822

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Marteau P et al. (2004) Review article: gut flora and inflammatory bowel disease. Aliment Pharmacol Ther 20 (Suppl 4): 18–23

    PubMed  Article  Google Scholar 

  51. 51

    Seksik P et al. (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52: 237–242

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Swidsinski A et al. (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122: 44–54

    PubMed  Article  Google Scholar 

  53. 53

    Kleessen B et al. (2002) Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol 37: 1034–1041

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Björkstén B et al. (1999) The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin Exp Allergy 29: 342–346

    PubMed  Article  Google Scholar 

  55. 55

    Björkstén B et al. (2001) Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 108: 516–520

    PubMed  Article  Google Scholar 

  56. 56

    Kalliomäki M et al. (2001) Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 107: 129–134

    PubMed  Article  Google Scholar 

  57. 57

    Summers RW et al. (2005) Trichuris suis therapy in Crohn's disease. Gut 54: 87–90

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Kalliomäki M et al. (2001) Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357: 1076–1079

    Article  PubMed  Google Scholar 

  59. 59

    Kato K et al. (2004) Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther 20: 1133–1141

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Bron PA et al. (2004) Identification of lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. J Bacteriol 186: 5721–5729

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Telford G et al. (1998) The pseudomonas aeruginosa quorum-sensing signal molecule n-(3-oxododecanoyl)-l-homoserine lactone has immunomodulatory activity. Infect Immun 66: 36–42

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Neish AS et al. (2000) Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 289: 1560–1563

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Kelly D et al. (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5: 104–112

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Christensen HR et al. (2002) Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 168: 171–178

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Borruel N et al. (2002) Increased mucosal tumour necrosis factor alpha production in Crohn's disease can be downregulated ex vivo by probiotic bacteria. Gut 51: 659–664

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Menard S et al. (2004) Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut 53: 821–828

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Chapat L et al. (2004) Lactobacillus casei reduces CD8+ T cell-mediated skin inflammation. Eur J Immunol 34: 2520–2528

    CAS  PubMed  Article  Google Scholar 

  68. 68

    von der Weid T et al. (2001) Induction by a lactic acid bacterium of a population of CD4+ T cells with low proliferative capacity that produce transforming growth factor beta and interleukin-10. Clin Diagn Lab Immunol 8: 695–701

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Di Giacinto C et al. (2005) Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-{beta}-bearing regulatory cells. J Immunol 174: 3237–3246

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Maizels RM and Yazdanbakhsh M (2003) Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol 3: 733–744

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Salas SD et al. (1990) Intestinal parasites in Central American immigrants in the United States. Arch Intern Med 150: 1514–1516

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Cooper PJ et al. (2003) Reduced risk of atopy among school-age children infected with geohelminth parasites in a rural area of the tropics. J Allergy Clin Immunol 111: 995–1000

    PubMed  Article  Google Scholar 

  73. 73

    Scrivener S et al. (2001) Independent effects of intestinal parasite infection and domestic allergen exposure on risk of wheeze in Ethiopia: a nested case–control study. Lancet 358: 1493–1499

    CAS  PubMed  Article  Google Scholar 

  74. 74

    van den Biggelaar AHJ et al. (2004) Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren. J Infect Dis 189: 892–900

    PubMed  Article  Google Scholar 

  75. 75

    Wilson MS et al. (2005) Suppression of allergic airway inflammation by helminth-induced regulatory T cells. J Exp Med 202: 1199–1212

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    La Flamme AC et al. (2003) Schistosomiasis decreases central nervous system inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infect Immun 71: 4996–5004

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Zaccone P et al. (2003) Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol 33: 1439–1449

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Moreels TG et al. (2004) Concurrent infection with Schistosoma mansoni attenuates inflammation induced changes in colonic morphology, cytokine levels, and smooth muscle contractility of trinitrobenzene sulphonic acid induced colitis in rats. Gut 53: 99–107

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Elliott DE et al. (2003) Exposure to schistosome eggs protects mice from TNBS-induced colitis. Am J Physiol 284: G385–G391

    CAS  Google Scholar 

  80. 80

    Summers RW et al. (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128: 825–832

    PubMed  Article  Google Scholar 

  81. 81

    McKee AS and Pearce EJ (2004) CD25+CD4+ cells contribute to Th2 polarization during helminth infection by suppressing Th1 response development. J Immunol 173: 1224–1231

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Adams VC et al. (2004) Mycobacterium vaccae induces a population of pulmonary antigen presenting cells that have regulatory potential in allergic mice. Eur J Immunol 34: 631–638

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Rook GA et al. (2004) Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Springer Semin Immunopathol 25: 237–255

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francisco Guarner.

Ethics declarations

Competing interests

Raphaëlle Bourdet-Sicard is employed by Danone Vitapole (Palaiseau, France), a company that produces probiotic products.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guarner, F., Bourdet-Sicard, R., Brandtzaeg, P. et al. Mechanisms of Disease: the hygiene hypothesis revisited. Nat Rev Gastroenterol Hepatol 3, 275–284 (2006). https://doi.org/10.1038/ncpgasthep0471

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing