Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: defensins in gastrointestinal diseases

Abstract

Defensins are endogenous antibiotics with microbicidal activity against Gram-negative and Gram-positive bacteria, fungi, viruses and protozoa. In the gastrointestinal tract, defensins help regulate the composition and number of colonizing microbes, and protect the host from food-borne and water-borne pathogens. In health, the normal host relationship with the commensal luminal microbiota is beneficial, but the same commensal bacteria could have a pathogenic role in inflammatory diseases. A disturbance in antimicrobial defense, as provided by Paneth cells of the small intestine, seems to be a critical factor in the pathogenesis of ileal Crohn's disease, an inflammatory disease of the intestinal tract. The disruption of the critical balance between antimicrobial peptides and luminal bacteria might also explain other gastrointestinal infections and diseases. Elucidating the underlying mechanisms involved in the regulation and biology of defensins could open up new therapeutic avenues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defensin peptide and messenger RNA expression at various sites of the intestinal tract.
Figure 2: The protective role of human Paneth cell α-defensin HD5 is demonstrated in a transgenic mouse model.
Figure 3: Proposed model for the role of intestinal bacteria and host defensins in the pathogenesis and disease progression of Crohn's disease.

Similar content being viewed by others

References

  1. Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13: 61–92

    Article  CAS  Google Scholar 

  2. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389–395

    Article  CAS  Google Scholar 

  3. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3: 710–720

    Article  CAS  Google Scholar 

  4. Dommett R et al. (2005) Innate immune defence in the human gastrointestinal tract. Mol Immunol 42: 903–912

    Article  CAS  Google Scholar 

  5. Wehkamp J et al. (2005) Defensin deficiency, intestinal microbes, and the clinical phenotypes of Crohn's disease. J Leukoc Biol 77: 460–465

    Article  CAS  Google Scholar 

  6. Lehrer RI et al. (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11: 105–128

    Article  CAS  Google Scholar 

  7. Lehrer RI et al. (2004) Defensins and other antimicrobial peptides. In Mucosal Immunology, 95–110 (Eds Mestecky J et al.) New York: Academic Press

    Google Scholar 

  8. Ouellette AJ et al. (1994) Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect Immun 62: 5040–5047

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Porter EM et al. (1997) Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infect Immun 65: 2396–2401

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghosh D et al. (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3: 583–590

    Article  CAS  Google Scholar 

  11. Ericksen B et al. (2005) Antibacterial activity and specificity of the six human α-defensins. Antimicrob Agents Chemother 49: 269–275

    Article  CAS  Google Scholar 

  12. Valore EV et al. (1998) Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest 101: 1633–1642

    Article  CAS  Google Scholar 

  13. Harder J et al. (1997) A peptide antibiotic from human skin. Nature 387: 861

    Article  CAS  Google Scholar 

  14. Harder J et al. (2000) Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 22: 714–721

    Article  CAS  Google Scholar 

  15. Harder J et al. (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276: 5707–5713

    Article  CAS  Google Scholar 

  16. Lin PW et al. (2004) Paneth cell cryptdins act in vitro as apical paracrine regulators of the innate inflammatory response. J Biol Chem 279: 19902–19907

    Article  CAS  Google Scholar 

  17. Merlin D et al. (2001) Cryptdin-3 induces novel apical conductance(s) in Cl- secretory, including cystic fibrosis, epithelia. Am J Physiol Cell Physiol 280: C296–C302

    Article  CAS  Google Scholar 

  18. Yang D et al. (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286: 525–528

    Article  CAS  Google Scholar 

  19. Yang D et al. (2001) The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol Life Sci 58: 978–989

    Article  CAS  Google Scholar 

  20. Simon GL and Gorbach SL (1995) Normal alimentary tract microflora. In Infections of the Gastrointestinal Tract, 53–69 (Eds Blaser MJ et al.) New York: Raven Press

    Google Scholar 

  21. McCracken VJ and Lorenz RG (2001) The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Cell Microbiol 3: 1–11

    Article  CAS  Google Scholar 

  22. Bevins CL (2004) The Paneth cell and the innate immune response. Curr Opin Gastroenterol 20: 572–580

    Article  Google Scholar 

  23. Ayabe T et al. (2000) Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 1: 113–118

    Article  CAS  Google Scholar 

  24. Wilson CL et al. (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286: 113–117

    Article  CAS  Google Scholar 

  25. Salzman NH et al. (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422: 522–526

    Article  CAS  Google Scholar 

  26. Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trends Microbiol 10: 179–186

    Article  CAS  Google Scholar 

  27. Salzman NH et al. (2003) Enteric salmonella infection inhibits Paneth cell antimicrobial peptide expression. Infect Immun 71: 1109–1115

    Article  CAS  Google Scholar 

  28. Islam DF et al. (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7: 180–185

    Article  CAS  Google Scholar 

  29. Zaalouk TK et al. (2004) Differential regulation of beta-defensin gene expression during Cryptosporidium parvum infection. Infect Immun 72: 2772–2779

    Article  CAS  Google Scholar 

  30. Hornef MW et al. (2002) Bacterial strategies for overcoming host innate and adaptive immune responses. Nat Immunol 3: 1033–1040

    Article  CAS  Google Scholar 

  31. O'Neil DA et al. (1999) Expression and regulation of the human b-defensins hBD-1 and hBD-2 in intestinal epithelium. J Immunol 163: 6718–6724

    CAS  PubMed  Google Scholar 

  32. Cunliffe RN et al. (2001) Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some villous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut 48: 176–185

    Article  CAS  Google Scholar 

  33. Salzman NH et al. (1998) Enteric defensin expression in necrotizing enterocolitis. Pediatr Res 44: 20–26

    Article  CAS  Google Scholar 

  34. Wehkamp J et al. (2003) Defensin pattern in chronic gastritis: HBD-2 is differentially expressed with respect to Helicobacter pylori status. J Clin Pathol 56: 352–357

    Article  CAS  Google Scholar 

  35. Shen B et al. (2005) Human defensin 5 expression in intestinal metaplasia of the upper gastrointestinal tract. J Clin Pathol 58: 687–694

    Article  CAS  Google Scholar 

  36. Kamal M et al. (2001) Mucosal responses to infection with Trichinella spiralis in mice. Parasite 8 (Suppl 2): S110–S113

    Article  CAS  Google Scholar 

  37. Marshall BJ et al. (1985) Pyloric Campylobacter infection and gastroduodenal disease. Med J Aust 142: 439–444

    CAS  PubMed  Google Scholar 

  38. Wada A et al. (1999) Induction of human beta-defensin-2 mRNA expression by Helicobacter pylori in human gastric cell line MKN45 cells on cag pathogenicity island. Biochem Biophys Res Commun 263: 770–774

    Article  CAS  Google Scholar 

  39. Hamanaka YF et al. (2001) Expression of human beta-defensin 2 (hBD-2) in Helicobacter pylori gastritis: antibacterial effect of hBD-2 against Helicobacter pylori. Gut 49: 481–487

    Article  CAS  Google Scholar 

  40. Bajaj-Elliott M et al. (2002) Modulation of host antimicrobial peptide (beta-defensins 1 and 2) expression during gastritis. Gut 51: 356–361

    Article  CAS  Google Scholar 

  41. Uehara N et al. (2003) Human beta-defensin-2 induction in Helicobacter pylori-infected gastric mucosal tissues: antimicrobial effect of overexpression. J Med Microbiol 52: 41–45

    Article  CAS  Google Scholar 

  42. Harada K et al. (2004) Peptide antibiotic human beta-defensin-1 and -2 contribute to antimicrobial defense of the intrahepatic biliary tree. Hepatology 40: 925–932

    CAS  PubMed  Google Scholar 

  43. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347: 417–429

    Article  CAS  Google Scholar 

  44. Inohara N et al. (2005) NOD-LRR Proteins: Role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74: 355–383

    Article  CAS  Google Scholar 

  45. Gasche C and Grundtner P (2005) Genotypes and phenotypes in Crohn's disease: do they help in clinical management? Gut 54: 162–167

    Article  CAS  Google Scholar 

  46. Ogura Y et al. (2003) Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut 52: 1591–1597

    Article  CAS  Google Scholar 

  47. Lala S et al. (2003) Crohn's disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125: 47–57

    Article  CAS  Google Scholar 

  48. Fellermann K et al. (2003) Crohn's disease: a defensin deficiency syndrome? Eur J Gastroenterol Hepatol 15: 627–634

    Article  CAS  Google Scholar 

  49. Wehkamp J et al. (2004) NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression. Gut 53: 1658–1664

    Article  CAS  Google Scholar 

  50. Kobayashi KS et al. (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307: 731–734

    Article  CAS  Google Scholar 

  51. Zhao C et al. (1996) Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 396: 319–322

    Article  CAS  Google Scholar 

  52. Wehkamp J et al. (2003) Inducible and constitutive beta-defensins are differentially expressed in Crohn's disease and ulcerative colitis. Inflamm Bowel Dis 9: 215–223

    Article  Google Scholar 

  53. Fahlgren A et al. (2003) Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis. Clin Exp Immunol 131: 90–101

    Article  CAS  Google Scholar 

  54. Furrie E et al. (2005) Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54: 242–249

    Article  CAS  Google Scholar 

  55. Wehkamp J et al. (2002) Human beta-defensin 2 but not beta-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease. Eur J Gastroenterol Hepatol 14: 745–752

    Article  CAS  Google Scholar 

  56. Fahlgren A et al. (2004) Beta-Defensin-3 and -4 in intestinal epithelial cells display increased mRNA expression in ulcerative colitis. Clin Exp Immunol 137: 379–385

    Article  CAS  Google Scholar 

  57. Weidenmaier C et al. (2003) Bacterial resistance to antimicrobial host defenses–an emerging target for novel antiinfective strategies? Curr Drug Targets 4: 643–649

    Article  CAS  Google Scholar 

  58. Otto HF and Weitz H (1972) Electron microscopy studies of Paneth cells in rats fed with zinc deficient diet. Beitr Pathol 145: 336–349

    CAS  PubMed  Google Scholar 

  59. Cousins RJ (1998) A role of zinc in the regulation of gene expression. Proc Nutr Soc 57: 307–311

    Article  CAS  Google Scholar 

  60. Sazawal S et al. (1995) Zinc supplementation in young children with acute diarrhea in India. N Engl J Med 333: 839–844

    Article  CAS  Google Scholar 

  61. Summers RW et al. (2005) Trichuris suis therapy in Crohn's disease. Gut 54: 87–90

    Article  CAS  Google Scholar 

  62. Wehkamp J et al. (2004) NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun 72: 5750–5758

    Article  CAS  Google Scholar 

  63. Zimmermann GR et al. (1995) Solution structure of bovine neutrophil beta-defensin-12: the peptide fold of the beta-defensins is identical to that of the classical defensins. Biochemistry 34: 13663–13671

    Article  CAS  Google Scholar 

  64. Papo N and Shai Y (2005) Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci 62: 784–790

    Article  CAS  Google Scholar 

  65. Wehkamp J et al. (2002) Innate immunity and colonic inflammation: enhanced expression of epithelial alpha-defensins. Dig Dis Sci 47: 1349–1355

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JW, KF, KRH and EFS are supported by the Robert Bosch Foundation, Stuttgart, Germany. JW and CLB are supported in part by the NIH (AI 32738 and AI 50843). The authors thank many scientists in the field for valuable discussion, and apologize to those colleagues who we were unable to reference owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Wehkamp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehkamp, J., Fellermann, K., Herrlinger, K. et al. Mechanisms of Disease: defensins in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2, 406–415 (2005). https://doi.org/10.1038/ncpgasthep0265

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpgasthep0265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing