Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the diagnosis and management of hyperinsulinemic hypoglycemia

An Erratum to this article was published on 01 March 2009

Abstract

Hyperinsulinemic hypoglycemia (HH) is a consequence of unregulated insulin secretion by pancreatic β-cells and is a major cause of hypoglycemic brain injury and mental retardation. Congenital HH is caused by mutations in genes involved in regulation of insulin secretion, seven of which have been identified (ABCC8, KCNJ11, GLUD1, CGK, HADH, SLC16A1 and HNF4A). Severe forms of congenital HH are caused by mutations in ABCC8 and KCNJ11, which encode the two components of the pancreatic β-cell ATP-sensitive potassium channel. Mutations in HNF4A, GLUD1, CGK, and HADH lead to transient or persistent HH, whereas mutations in SLC16A1 cause exercise-induced HH. Rapid genetic analysis combined with an understanding of the histological features (focal or diffuse disease) of congenital HH and the introduction of 18F-L-3,4-dihydroxyphenylalanine PET-CT to guide laparoscopic surgery have totally transformed the clinical approach to this complex disease. Adult-onset HH is mostly caused by an insulinoma; however, it has also been reported to present as postprandial HH in patients with noninsulinoma pancreatogenous hypoglycemia syndrome, in those who have undergone gastric-bypass surgery for morbid obesity, and in those with mutations in the insulin-receptor gene.

Key Points

  • Hyperinsulinemic hypoglycemia is a consequence of unregulated insulin secretion by pancreatic β-cells and is a major cause of brain injury and mental retardation in children

  • Congenital hyperinsulinemic hypoglycemia is caused by mutations in key genes that are involved in the regulation of insulin secretion, seven of which have been so far identified: ABCC8, KCNJ11, GLUD1, CGK, HADH, SLC16A1 and HNF4A

  • Rapid genetic screening for mutations in ABCC8 and KCNJ11 combined with recent advances in 18F-L-DOPA-PET–CT imaging and laparoscopic surgery have transformed the management of children with focal congenital hyperinsulinemic hypoglycemia

  • 18F-L-DOPA-PET–CT scans enable accurate preoperative localization of pancreatic focal lesions focus and hence offer the prospect of cure by partial pancreatectomy

  • An insulinoma accounts for the majority of the cases of adult-onset hyperinsulinemic hypoglycemia and, in 99% of cases, is detectable by a prolonged fast

  • Postprandial hyperinsulinemic hypoglycemia in adults can be cause by noninsulinoma pancreatogenous hypoglycemia syndrome, gastric bypass surgery for morbid obesity, or mutations in the insulin receptor gene

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of the molecular mechanisms that regulate insulin secretion in pancreatic β-cells.
Figure 2: Summary of the molecular mechanisms that lead to congenital hyperinsulinemic hypoglycemia.
Figure 3: Outline of a diagnostic and management algorithm for patients with congenital hyperinsulinemic hypoglycemia.
Figure 4: An 18F-L-DOPA-PET scan of a focal lesion in the tail of the pancreas.

Similar content being viewed by others

References

  1. Hussain K et al. (2007) Hyperinsulinaemic hypoglycaemia: biochemical basis and the importance of maintaining normoglycaemia during management. Arch Dis Child 92: 568–570

    PubMed  PubMed Central  Google Scholar 

  2. Aynsley-Green A et al. (2000) Practical management of hyperinsulinism in infancy. Arch Dis Child Fetal Neonatal Ed 82: F98–F107

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Menni F et al. (2001) Neurologic outcomes of 90 neonates and infants with persistent hyperinsulinemic hypoglycemia. Pediatrics 107: 476–479

    CAS  PubMed  Google Scholar 

  4. Kloppel G et al. (1975) The ultrastructure of focal islet cell adenomatosis in the newborn with hypoglycemia and hyperinsulinism. Virchows Arch A Pathol Anat Histol 366: 223–236

    CAS  PubMed  Google Scholar 

  5. Goossens A et al. (1989) Diffuse and focal nesidioblastosis: a clinicopathological study of 24 patients with persistent neonatal hyperinsulinemic hypoglycemia. Am J Surg Pathol 13: 766–775

    CAS  PubMed  Google Scholar 

  6. Rahier J et al. (2000) Persistent hyperinsulinaemic hypoglycaemia of infancy: a heterogeneous syndrome unrelated to nesidioblastosis. Arch Dis Child Fetal Neonatal Ed 82: F108–F112

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Otonkoski T et al. (2006) Noninvasive diagnosis of focal hyperinsulinism of infancy with 18F-DOPA positron emission tomography. Diabetes 55: 13–18

    CAS  PubMed  Google Scholar 

  8. de Vroede M et al. (2004) Laparoscopic diagnosis and cure of hyperinsulinism in two cases of focal adenomatous hyperplasia in infancy. Pediatrics 114: 520–522

    Google Scholar 

  9. Service FJ (1999) Noninsulinoma pancreatogenous hypoglycemia: a novel syndrome of hyperinsulinemic hypoglycemia in adults independent of mutations in Kir6.2 and SUR1 genes. J Clin Endocrinol Metab 84: 1582–1589

    CAS  PubMed  Google Scholar 

  10. Service GJ (2005) Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med 353: 249–254

    CAS  PubMed  Google Scholar 

  11. Højlund K et al. (2004) A novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia linked to a mutation in the human insulin receptor gene. Diabetes 53: 1592–1598

    PubMed  Google Scholar 

  12. de Lonlay P (2002) Heterogeneity of persistent hyperinsulinaemic hypoglycaemia. A series of 175 cases. Eur J Pediatr 161: 37–48

    CAS  PubMed  Google Scholar 

  13. Glaser B et al. (2000) Genetics of neonatal hyperinsulinism. Arch Dis Child Fetal Neonatal Ed 82: F79–F86

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ashcroft FM et al. (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312: 446–448

    CAS  PubMed  Google Scholar 

  15. Aguilar-Bryan L et al. (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 20: 101–135

    CAS  PubMed  Google Scholar 

  16. Thomas PM et al. (1995) Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268: 426–429

    CAS  PubMed  Google Scholar 

  17. Thomas PM et al. (1996) Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet 5: 1809–1812

    CAS  PubMed  Google Scholar 

  18. Nestorowicz A et al. (1996) Mutations in the sulfonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum Mol Genet 5: 1813–1822

    CAS  PubMed  Google Scholar 

  19. Dunne MJ et al. (1997) Familial persistent hyperinsulinemic hypoglycemia of infancy and mutations in the sulfonylurea receptor. N Engl J Med 336: 703–706

    CAS  PubMed  Google Scholar 

  20. Kane C et al. (1996) Loss of functional KATP channels in pancreatic beta-cells causes persistent hyperinsulinaemic hypoglycemia of infancy. Nat Med 2: 1344–1347

    CAS  PubMed  Google Scholar 

  21. Cartier EA et al. (2001) Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc Natl Acad Sci USA 98: 2882–2887

    CAS  PubMed  Google Scholar 

  22. Matsuo M et al. (2000) Functional analysis of a mutant sulfonylurea receptor, SUR1-R1420C, that is responsible for persistent hyperinsulinemic hypoglycemia of infancy. J Biol Chem 275: 41184–41191

    CAS  PubMed  Google Scholar 

  23. Huopio H et al. (2000) Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest 106: 897–906

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pinney SE et al. (2008) Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations. J Clin Invest 118: 2877–2886

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tanizawa Y et al. (2000) Genetic analysis of Japanese patients with persistent hyperinsulinaemic hypoglycaemia of infancy: nucleotide-binding fold-2 mutation impairs cooperative binding of adenine nucleotides to sulfonylurea receptor 1. Diabetes 49: 114–120

    CAS  PubMed  Google Scholar 

  26. de Lonlay P et al. (1997) Somatic deletion of the imprinted 11p15 region in sporadic persistent hyperinsulinemic hypoglycemia of infancy is specific of focal adenomatous hyperplasia and endorses partial pancreatectomy. J Clin Invest 100: 802–807

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Verkarre V et al. (1998) Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J Clin Invest 102: 1286–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Giurgea I et al. (2006) The Knudson's two-hit model and timing of somatic mutation may account for the phenotypic diversity of focal congenital hyperinsulinism. J Clin Endocrinol Metab 91: 4118–4123

    CAS  PubMed  Google Scholar 

  29. Sempoux C et al. (2003) The focal form of persistent hyperinsulinemic hypoglycemia of infancy: morphological and molecular studies show structural and functional differences with insulinoma. Diabetes 52: 784–794

    CAS  PubMed  Google Scholar 

  30. Suchi M et al. (2003) Histopathology of congenital hyperinsulinism: retrospective study with genotype correlations. Pediatr Dev Pathol 6: 322–333

    PubMed  Google Scholar 

  31. Jack MM et al. (2000) Histologic findings in persistent hyperinsulinemic hypoglycemia of infancy: Australian experience. Pediatr Dev Pathol 3: 532–547

    CAS  PubMed  Google Scholar 

  32. Hussain K et al. (2008) An ABCC8 gene mutation and mosaic uniparental isodisomy resulting in atypical diffuse congenital hyperinsulinism. Diabetes 57: 259–263

    CAS  PubMed  Google Scholar 

  33. Stanley CA (2004) Hyperinsulinism/hyperammonemia syndrome: insights into the regulatory role of glutamate dehydrogenase in ammonia metabolism. Mol Genet Metab 81 (Suppl 1): S45–S51

    CAS  PubMed  Google Scholar 

  34. Christesen HB et al. (2008) Activating glucokinase (GCK) mutations as a cause of medically responsive congenital hyperinsulinism: prevalence in children and characterisation of a novel GCK mutation. Eur J Endocrinol 159: 27–34

    CAS  PubMed  Google Scholar 

  35. Pearson ER et al. (2007) Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med 4: e118

    PubMed  PubMed Central  Google Scholar 

  36. Kapoor R et al. (2008) Persistent hyperinsulinaemic hypoglycaemia and maturity-onset diabetes of the young (MODY) due to heterozygous HNF4A mutations. Diabetes 57: 1659–1663

    CAS  PubMed  Google Scholar 

  37. Boj SF et al. (2001) A transcription factor regulatory circuit in differentiated pancreatic cells. Proc Natl Acad Sci USA 98: 14481–14486

    CAS  PubMed  Google Scholar 

  38. Yamagata K et al. (1996) Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 384: 458–460

    CAS  PubMed  Google Scholar 

  39. Gupta RK et al. (2005) The MODY1 gene HNF-4alpha regulates selected genes involved in insulin secretion. J Clin Invest 115: 1006–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Miura A et al. (2006) Hepatocyte nuclear factor-4alpha is essential for glucose-stimulated insulin secretion by pancreatic beta-cells. J Biol Chem 281: 5246–5257

    CAS  PubMed  Google Scholar 

  41. Clayton PT et al. (2001) Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest 108: 457–465

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hussain K et al. (2005) Hyperinsulinism of infancy associated with a novel splice site mutation in the SCHAD gene. J Pediatr 146: 706–708

    CAS  PubMed  Google Scholar 

  43. Molven A et al. (2004) Familial hyperinsulinaemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes 53: 221–227

    CAS  PubMed  Google Scholar 

  44. Martens GA et al. (2007) Specificity in beta cell expression of L-3-hydroxyacyl-CoA dehydrogenase, short chain, and potential role in down-regulating insulin release. J Biol Chem 282: 21134–21144

    CAS  PubMed  Google Scholar 

  45. Hardy OT et al. (2007) Functional genomics of the beta-cell: short-chain 3-hydroxyacyl-coenzyme A dehydrogenase regulates insulin secretion independent of K+ currents. Mol Endocrinol 21: 765–773

    CAS  PubMed  Google Scholar 

  46. Lantz KA et al. (2004) Foxa2 regulates multiple pathways of insulin secretion. J Clin Invest 114: 512–520

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sund NJ et al. (2001) Tissue-specific deletion of Foxa2 in pancreatic beta cells results in hyperinsulinemic hypoglycemia. Genes Dev 15: 1706–1715

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Meissner T et al. (2005) Massive insulin secretion in response to anaerobic exercise in exercise-induced hyperinsulinism. Horm Metab Res 37: 690–694

    CAS  PubMed  Google Scholar 

  49. Otonkoski T et al. (2003) Physical exercise-induced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes 52: 199–204

    CAS  PubMed  Google Scholar 

  50. Otonkoski T et al. (2007) Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta cells. Am J Hum Genet 81: 467–474

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ishihara H et al. (1999) Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells. J Clin Invest 104: 1621–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bufler P et al. (2001) Dumping syndrome: a common problem following Nissen fundoplication in young children. Pediatr Surg Int 17: 351–355

    CAS  PubMed  Google Scholar 

  53. Hirata Y (1973) Insulin autoimmune syndrome. Nippon Rinsho 31: 2227–2231

    CAS  PubMed  Google Scholar 

  54. Won JG et al. (2006) Clinical features and morphological characterization of 10 patients with noninsulinoma pancreatogenous hypoglycaemia syndrome (NIPHS). Clin Endocrinol (Oxf) 65: 566–578

    Google Scholar 

  55. Sahloul R et al. (2007) Noninsulinoma pancreatogenous hypoglycemia syndrome: quantitative and immunohistochemical analyses of islet cells for insulin, glucagon, somatostatin, and pancreatic and duodenal homeobox protein. Endocr Pract 13: 187–193

    PubMed  Google Scholar 

  56. Steinbrook R (2004) Surgery for severe obesity. N Engl J Med 350: 1075–1079

    CAS  PubMed  Google Scholar 

  57. Patti ME et al. (2005) Severe hypoglycaemia post-gastric bypass requiring partial pancreatectomy: evidence for inappropriate insulin secretion and pancreatic islet hyperplasia. Diabetologia 48: 2236–2240

    CAS  PubMed  Google Scholar 

  58. Meier JJ et al. (2006) Hyperinsulinemic hypoglycemia after gastric bypass surgery is not accompanied by islet hyperplasia or increased beta-cell turnover. Diabetes Care 29: 1554–1559

    PubMed  Google Scholar 

  59. Cummings DE (2005) Gastric bypass and nesidioblastosis: too much of a good thing for islets? N Engl J Med 353: 300–302

    CAS  PubMed  Google Scholar 

  60. Højlund K et al. (2004) A novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia linked to a mutation in the human insulin receptor gene. Diabetes 53: 1592–1598

    PubMed  Google Scholar 

  61. Kapoor R et al. Hyperinsulinism in developmental syndromes. Endocr Dev, in press

  62. Hoe FM et al. (2006) Clinical features and insulin regulation in infants with a syndrome of prolonged neonatal hyperinsulinism. J Pediatr 148: 207–212

    CAS  PubMed  Google Scholar 

  63. Cryer PE (1999) Symptoms of hypoglycemia, thresholds for their occurrence, and hypoglycemia unawareness. Endocrinol Metab Clin North Am 28: 495–500

    CAS  PubMed  Google Scholar 

  64. DeRosa MA and Cryer PE (2004) Hypoglycemia and the sympathoadrenal system: neurogenic symptoms are largely the result of sympathetic neural, rather than adrenomedullary, activation. Am J Physiol Endocrinol Metab 287: E32–E41

    CAS  PubMed  Google Scholar 

  65. Jani N et al. (2007) Pancreatic endocrine tumors. Gastroenterol Clin North Am 36: 431–443

    PubMed  Google Scholar 

  66. Oberg K and Eriksson B (2005) Endocrine tumours of the pancreas. Best Pract Res Clin Gastroenterol 19: 753–781

    PubMed  Google Scholar 

  67. Connor H and Scarpello JH (1979) An insulinoma presenting with reactive hypoglycaemia. Postgrad Med J 55: 735–738

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hsu BY et al. (2001) Protein-sensitive and fasting hypoglycemia in children with the hyperinsulinism/hyperammonemia syndrome. J Pediatr 138: 383–389

    CAS  PubMed  Google Scholar 

  69. Hussain K et al. (2005) Serum glucagon counterregulatory hormonal response to hypoglycemia is blunted in congenital hyperinsulinism. Diabetes 54: 2946–2951

    CAS  PubMed  Google Scholar 

  70. Finegold DN et al. (1980) Glycemic response to glucagon during fasting hypoglycemia: an aid in the diagnosis of hyperinsulinism. J Pediatr 96: 257–259

    CAS  PubMed  Google Scholar 

  71. Levitt Katz LE et al. (1997) Insulin-like growth factor binding protein-1 levels in the diagnosis of hypoglycemia caused by hyperinsulinism. J Pediatr 131: 193–199

    CAS  PubMed  Google Scholar 

  72. Service FJ and Natt N (2000) The prolonged fast. J Clin Endocrinol Metab 85: 3973–3974

    CAS  PubMed  Google Scholar 

  73. Basu A et al. (2005) Insulin autoimmunity and hypoglycemia in seven white patients. Endocr Pract 11: 97–103

    PubMed  Google Scholar 

  74. Thompson GB et al. (2000) Noninsulinoma pancreatogenous hypoglycemia syndrome: an update in 10 surgically treated patients. Surgery 128: 937–944

    CAS  PubMed  Google Scholar 

  75. Tsujino M et al. (2005) Noninsulinoma pancreatogenous hypoglycemia syndrome: a rare case of adult-onset nesidioblastosis. Intern Med 44: 843–847

    PubMed  Google Scholar 

  76. Cuesta-Munoz et al. (2004) Severe persistent hyperinsulinemic hypoglycemia due to a de novo glucokinase mutation. Diabetes 53: 2164–2168

    CAS  PubMed  Google Scholar 

  77. Bas F et al. (1999) Successful therapy with calcium channel blocker (nifedipine) in persistent neonatal hyperinsulinemic hypoglycemia of infancy. J Pediatr Endocrinol Metab 12: 873–878

    CAS  PubMed  Google Scholar 

  78. Glaser B et al. (1993) Persistent hyperinsulinemic hypoglycemia of infancy: long-term octreotide treatment without pancreatectomy. J Pediatr 123: 644–650

    CAS  PubMed  Google Scholar 

  79. Ribeiro MJ et al. (2005) Characterization of hyperinsulinism in infancy assessed with PET and 18F-fluoro-L-DOPA. J Nucl Med 46: 560–566

    PubMed  Google Scholar 

  80. Mohnike K et al. (2006) Proposal for a standardized protocol for 18F-DOPA-PET (PET/CT) in congenital hyperinsulinism. Horm Res 66: 40–42

    CAS  PubMed  Google Scholar 

  81. Mohnike K et al. (2008) [18F]-DOPA positron emission tomography for preoperative localization in congenital hyperinsulinism. Horm Res 70: 65–72

    CAS  PubMed  Google Scholar 

  82. de Lonlay P et al. (2006) CHH: pancreatic [18F]fluoro-L-dihydroxyphenylalanine (DOPA) positron emission tomography and immunohistochemistry study of DOPA decarboxylase and insulin secretion. J Clin Endocrinol Metab 91: 933–940

    CAS  PubMed  Google Scholar 

  83. Rubi B et al. (2005) Dopamine D2-like receptors are expressed in pancreatic beta-cells and mediate inhibition of insulin secretion. J Biol Chem 280: 36824–36832

    CAS  PubMed  Google Scholar 

  84. Fischer BM et al. (2006) How few cancer cells can be detected by positron emission tomography? A frequent question addressed by an in vitro study. Eur J Nucl Med Mol Imaging 33: 697–702

    PubMed  Google Scholar 

  85. Hardy OT et al. (2007) Accuracy of [18F]-fluorodopa positron emission tomography for diagnosing and localizing focal congenital hyperinsulinism. J Clin Endocrinol Metab 92: 4706–4711

    CAS  PubMed  Google Scholar 

  86. Hussain K et al. (2006) The diagnosis of ectopic focal hyperinsulinism of infancy with [18F]-dopa positron emission tomography. J Clin Endocrinol Metab 91: 2839–2842

    CAS  PubMed  Google Scholar 

  87. Peranteau WH et al. (2007) Multiple ectopic lesions of focal islet adenomatosis identified by positron emission tomography scan in an infant with congenital hyperinsulinism. J Pediatr Surg 42: 188–192

    PubMed  Google Scholar 

  88. Christesen HB et al. (2006) Rapid genetic analysis in congenital hyperinsulinism. Horm Res 67: 184–188

    PubMed  Google Scholar 

  89. Fékété CN et al. (2004) The surgical management of congenital hyperinsulinemic hypoglycemia in infancy. J Pediatr Surg 39: 267–269

    PubMed  Google Scholar 

  90. McAndrew HF et al. (2003) Surgical complications of pancreatectomy for persistent hyperinsulinaemic hypoglycaemia of infancy. J Pediatr Surg 38: 13–16

    PubMed  Google Scholar 

  91. Bax KN et al. (2007) The laparoscopic approach towards hyperinsulinism in Children. Semin Pediatr Surg 16: 245–251

    PubMed  Google Scholar 

  92. Bax NM et al. (2003) Laparoscopic identification and removal of focal lesions in persistent hyperinsulinemic hypoglycemia of infancy. Surg Endosc 17: 833

    CAS  PubMed  Google Scholar 

  93. Blakely ML et al. (2001) Laparoscopic pancreatectomy for persistent hyperinsulinemic hypoglycemia of infancy. Surg Endosc 15: 897–898

    CAS  PubMed  Google Scholar 

  94. King CM et al. (1994) Imaging islet cell tumours. Clin Radiol 49: 295–303

    PubMed  Google Scholar 

  95. Gunther RW et al. (1985) Localization of small islet-cell tumors. Preoperative and intra-operative ultrasound, computed tomography, arteriography, digital subtraction angiography, and pancreatic venous sampling. Gastrointest Radiol 10: 145–152

    CAS  PubMed  Google Scholar 

  96. Owen NJ et al. (2001) MRI of pancreatic neuroendocrine tumours. Br J Radiol 74: 968–973

    CAS  PubMed  Google Scholar 

  97. Hamoud AK et al. (2004) Mangan-enhanced MR imaging for the detection and localisation of small pancreatic insulinoma. Eur Radiol 14: 923–925

    PubMed  Google Scholar 

  98. McLean A (2004) Endoscopic ultrasound in the detection of pancreatic islet cell tumours. Cancer Imaging 4: 84–91

    PubMed  PubMed Central  Google Scholar 

  99. Wild D et al. (2008) Glucagon-like Peptide 1–Receptor scans to localize occult insulinomas. N Engl J Med 359: 766–768

    CAS  PubMed  Google Scholar 

  100. Körner M et al. (2007) GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med 48: 736–743

    PubMed  Google Scholar 

  101. Raffel A et al. (2007) Diffuse nesidioblastosis as a cause of hyperinsulinemic hypoglycemia in adults: a diagnostic and therapeutic challenge. Surgery 141: 179–184

    PubMed  Google Scholar 

  102. Kellogg TA et al. (2008) Postgastric bypass hyperinsulinemic hypoglycemia syndrome: characterization and response to a modified diet. Surg Obes Relat Dis 4: 492–499

    PubMed  Google Scholar 

  103. Moreira RO et al. (2008) Post-prandial hypoglycemia after bariatric surgery: pharmacological treatment with verapamil and acarbose. Obes Surg 18: 1618–1621

    PubMed  Google Scholar 

  104. Z'graggen K et al. (2008) Severe recurrent hypoglycemia after gastric bypass surgery. Obes Surg 18: 981–988

    PubMed  Google Scholar 

  105. Clancy TE et al. (2006) Post-gastric bypass hyperinsulinism with nesidioblastosis: subtotal or total pancreatectomy may be needed to prevent recurrent hypoglycemia. J Gastrointest Surg 10: 1116–1119

    PubMed  Google Scholar 

  106. Böhles H et al. (2001) Hyperinsulinaemic hypoglycaemia—leading symptom in a patient with congenital disorder of glycosylation Ia (phosphomannomutase deficiency). J Inherit Metab Dis 24: 858–862

    PubMed  Google Scholar 

  107. Sun L et al. (2005) Congenital disorder of glycosylation id presenting with hyperinsulinemic hypoglycemia and islet cell hyperplasia. J Clin Endocrinol Metab 90: 4371–4375

    CAS  PubMed  Google Scholar 

  108. de Lonlay P et al. (1999) Hyperinsulinemic hypoglycemia as a presenting sign in phosphomannose isomerase deficiency: a new manifestation of carbohydrate-deficient glycoprotein syndrome treatable with mannose. J Pediatr 135: 379–383

    CAS  PubMed  Google Scholar 

  109. Baumann U et al. (2005) Hyperinsulinism in tyrosinaemia type I. J Inherit Metab Dis 28: 131–135

    CAS  PubMed  Google Scholar 

  110. Walfish PG et al. (1987) Factitious hyperinsulinemic hypoglycemia: confirmation of the diagnosis by a species-specific insulin radioimmunoassay. J Endocrinol Invest 10: 601–604

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Hussain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapoor, R., James, C. & Hussain, K. Advances in the diagnosis and management of hyperinsulinemic hypoglycemia. Nat Rev Endocrinol 5, 101–112 (2009). https://doi.org/10.1038/ncpendmet1046

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet1046

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing