Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical lessons from the calcium-sensing receptor

Abstract

The extracellular calcium ion (Ca2+e)-sensing receptor (CaR) enables key tissues that maintain Ca2+e homeostasis to sense changes in the Ca2+e concentration. These tissues respond to changes in Ca2+e with functional alterations that will help restore Ca2+e to normal. For instance, decreases in Ca2+e act via the CaR to stimulate secretion of parathyroid hormone—a Ca2+e-elevating hormone—and to increase renal tubular calcium reabsorption; each response helps promote normalization of Ca2+e levels. Further work is needed to determine whether the CaR regulates other parameters of renal function (e.g. 1,25-dihydroxyvitamin D3 synthesis, intestinal absorption of mineral ions, and/or bone turnover). Identification of the CaR has also elucidated the pathogenesis and pathophysiology of inherited disorders of mineral and electrolyte metabolism; moreover, acquired abnormalities of Ca2+e-sensing can result from autoimmunity to the CaR, and reduced CaR expression in the parathyroid may contribute to the abnormal parathyroid secretory control that is observed in primary and secondary hyperparathyroidism. Finally, calcimimetics—allosteric activators of the CaR—treat secondary hyperparathyroidism effectively in end-stage renal failure.

Key Points

  • Precise regulation of extracellular calcium is essential for life

  • The extracellular calcium-ion-sensing receptor (CaR) serves as a key sensor of the extracellular calcium concentration

  • The CaR promotes maintenance of extracellular calcium homeostasis by direct and/or indirect regulation of calcium transport in bone, kidney and intestine

  • Inherited and acquired disorders of calcium sensing can reset the serum calcium concentration either upward or downward

  • Pharmacologic activation of the CaR has provided an effective CaR-based small-molecule therapeutic for treating secondary hyperparathyroidism in patients with end-stage renal disease who are on dialysis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram to illustrate the principal elements of extracellular calcium homeostasis.
Figure 2: Schematic of the extracellular calcium-ion-sensing receptor, showing the locations of activating and inactivating mutations and polymorphisms.

Similar content being viewed by others

References

  1. Brown EM and MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81: 239–297

    Article  CAS  Google Scholar 

  2. Bringhurst FR et al. (1998) Hormones and disorders of mineral metabolism. In Williams Textbook of Endocrinology, edn 9, 1155–1209 (Eds Wilson JD et al.) Philadelphia: WB Saunders

    Google Scholar 

  3. Brown EM (2001) Physiology of calcium homeostasis. In The Parathyroids, edn 2, 167–181 (Eds Biliezikian JP et al.) San Diego: Academic Press

    Chapter  Google Scholar 

  4. Peacock M et al. (1969) Relation between serum and urinary calcium with particular reference to parathyroid activity. Lancet 1: 384–386

    Article  CAS  Google Scholar 

  5. DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80 (Suppl): 1689S–1696S

    Article  CAS  Google Scholar 

  6. Brown EM et al. (1993) Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366: 575–580

    Article  CAS  Google Scholar 

  7. Pi M et al. (2005) Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem 280: 40201–40209

    Article  CAS  Google Scholar 

  8. Pin JP et al. (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 98: 325–354

    Article  CAS  Google Scholar 

  9. Silve C et al. (2005) Delineating a Ca2+ binding pocket within the venus flytrap module of the human calcium-sensing receptor. J Biol Chem 280: 37917–37923

    Article  CAS  Google Scholar 

  10. Conigrave AD et al. (2002) L-amino acid sensing by the calcium-sensing receptor: a general mechanism for coupling protein and calcium metabolism? Eur J Clin Nutr 56: 1072–1080

    Article  CAS  Google Scholar 

  11. Pollak MR et al. (1994) Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Effects of mutant gene dosage on phenotype. J Clin Invest 93: 1108–1112

    Article  CAS  Google Scholar 

  12. Ho C et al. (1995) A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 11: 389–394

    Article  CAS  Google Scholar 

  13. Freichel M et al. (1996) Expression of a calcium-sensing receptor in a human medullary thyroid carcinoma cell line and its contribution to calcitonin secretion. Endocrinology 137: 3842–3848

    Article  CAS  Google Scholar 

  14. Fudge NJ and Kovacs CS (2004) Physiological studies in heterozygous calcium sensing receptor (CaSR) gene-ablated mice confirm that the CaSR regulates calcitonin release in vivo . BMC Physiol 4: 5

    Article  Google Scholar 

  15. Riccardi D et al. (1996) Localization of the extracellular Ca2+-sensing receptor and PTH/PTHrP receptor in rat kidney. Am J Physiol 271 (Pt 2): F951–F956

    CAS  PubMed  Google Scholar 

  16. Riccardi D et al. (1995) Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc Natl Acad Sci USA 92: 131–135

    Article  CAS  Google Scholar 

  17. Ba J et al. (2003) Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport. Am J Physiol Renal Physiol 285: F1233–F1243

    Article  CAS  Google Scholar 

  18. De Jesus Ferreira MC and Bailly C (1998) Extracellular Ca2+ decreases chloride reabsorption in rat CTAL by inhibiting cAMP pathway. Am J Physiol 275 (Pt 2): F198–F203

    CAS  PubMed  Google Scholar 

  19. Motoyama HI and Friedman PA (2002) Calcium-sensing receptor regulation of PTH-dependent calcium absorption by mouse cortical ascending limbs. Am J Physiol Renal Physiol 283: F399–F406

    Article  CAS  Google Scholar 

  20. Sands JM et al. (1997) Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest 99: 1399–1405

    Article  CAS  Google Scholar 

  21. Sands JM et al. (1998) Vasopressin-elicited water and urea permeabilities are altered in IMCD in hypercalcemic rats. Am J Physiol 274: F978–F985

    CAS  PubMed  Google Scholar 

  22. Hebert SC et al. (1997) Role of the Ca2+-sensing receptor in divalent mineral ion homeostasis. J Exp Biol 200: 295–302

    CAS  PubMed  Google Scholar 

  23. Gill JJ and Bartter F (1961) On the impairment of renal concentrating ability in prolonged hypercalcemia and hypercalciuria in man. J Clin Invest 40: 716–722

    Article  CAS  Google Scholar 

  24. Valenti G et al. (2002) Low-calcium diet in hypercalciuric enuretic children restores AQP2 excretion and improves clinical symptoms. Am J Physiol Renal Physiol 283: F895–F903

    Article  Google Scholar 

  25. Raisz LG (1965) Bone resorption in tissue culture. Factors influencing the response to parathyroid hormone. J Clin Invest 44: 103–116

    Article  CAS  Google Scholar 

  26. Quarles LD (1997) Cation-sensing receptors in bone: A novel paradigm for regulating bone remodeling? J Bone Miner Res 12: 1971–1974

    Article  CAS  Google Scholar 

  27. Yamaguchi T et al. (2001) Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line. Am J Physiol Cell Physiol 280: C382–C393

    Article  CAS  Google Scholar 

  28. Yamaguchi T et al. (1998) Extracellular calcium (Ca2+ o)-sensing receptor in a murine bone marrow-derived stromal cell line (ST2): potential mediator of the actions of Ca2+ o on the function of ST2 cells. Endocrinology 139: 3561–3568

    Article  CAS  Google Scholar 

  29. Yamaguchi T et al. (1998) Expression of extracellular calcium (Ca2+ o)-sensing receptor in human peripheral blood monocytes. Biochem Biophys Res Commun 246: 501–506

    Article  CAS  Google Scholar 

  30. Kameda T et al. (1998) Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem Biophys Res Commun 245: 419–422

    Article  CAS  Google Scholar 

  31. Pi M et al. (1999) Failure to detect the extracellular calcium-sensing receptor (CasR) in human osteoblast cell lines. J Bone Miner Res 14: 1310–1319

    Article  CAS  Google Scholar 

  32. Cheng I et al. (1999) Expression of an extracellular calcium-sensing receptor in rat stomach. Gastroenterology 116: 118–126

    Article  CAS  Google Scholar 

  33. Chattopadhyay N et al. (1998) Identification and localization of extracellular Ca2+-sensing receptor in rat intestine. Am J Physiol 274 (Pt 1): G122–G130

    Google Scholar 

  34. Dinbar A and Tulcinsky DB (1978) Effect of induced hypercalcemia on gastric acid secretion and serum gastrin levels in duodenal ulcer patients. Isr J Med Sci 14: 992–994

    CAS  PubMed  Google Scholar 

  35. Layer P et al. (1985) Effects of acute hypercalcemia on exocrine pancreatic secretion in the cat. Gastroenterology 88: 1168–1174

    Article  CAS  Google Scholar 

  36. Hoenderop JG et al. (2004) Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D3-1α-hydroxylase knockout mice. Kidney Int 65: 531–539

    Article  CAS  Google Scholar 

  37. Cheng SX et al. (2004) Extracellular polyamines regulate fluid secretion in rat colonic crypts via the extracellular calcium-sensing receptor. Gastroenterology 126: 148–158

    Article  CAS  Google Scholar 

  38. Van Houten J et al. (2004) The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Invest 113: 598–608

    Article  CAS  Google Scholar 

  39. Pollak MR et al. (1993) Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75: 1297–1303

    Article  CAS  Google Scholar 

  40. Bai M et al. (1996) Expression and characterization of inactivating and activating mutations in the human Ca2+ o-sensing receptor. J Biol Chem 271: 19537–19545

    Article  CAS  Google Scholar 

  41. Bai M et al. (1997) In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+-sensing receptor gene: normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia. J Clin Invest 99: 88–96

    Article  CAS  Google Scholar 

  42. Marx SJ et al. (1981) The hypocalciuric or benign variant of familial hypercalcemia: clinical and biochemical features in fifteen kindreds. Medicine (Baltimore) 60: 397–412

    Article  CAS  Google Scholar 

  43. Law Jr WM and Heath H III (1985) Familial benign hypercalcemia (hypocalciuric hypercalcemia). Clinical and pathogenetic studies in 21 families. Ann Intern Med 105: 511–519

    Article  Google Scholar 

  44. Marx S et al. (1978) Divalent cation metabolism. Familial hypocalciuric hypercalcemia versus typical primary hyperparathyroidism. Am J Med 65: 235–242

    Article  CAS  Google Scholar 

  45. Marx SJ et al. (1981) Maximal urine-concentrating ability: familial hypocalciuric hypercalcemia versus typical primary hyperparathyroidism. J Clin Endocrinol Metab 52: 736–740

    Article  CAS  Google Scholar 

  46. Carling T et al. (2000) Familial hypercalcemia and hypercalciuria caused by a novel mutation in the cytoplasmic tail of the calcium receptor. J Clin Endocrinol Metab 85: 2042–2047

    CAS  Google Scholar 

  47. Warner J et al. (2004) Genetic testing in familial isolated hyperparathyroidism: unexpected results and their implications. J Med Genet 41: 155–160

    Article  CAS  Google Scholar 

  48. Fukumoto S et al. (1998) Parathyroid lipohyperplasia is caused by mutations in calcium-sensing receptor (CaSR) [abstract #T346]. Bone 23: S283

    Article  Google Scholar 

  49. Hauache OM (2001) Extracellular calcium-sensing receptor: structural and functional features and association with diseases. Braz J Med Biol Res 34: 577–584

    Article  CAS  Google Scholar 

  50. Thakker RV (1998) Disorders of the calcium-sensing receptor. Biochim Biophys Acta 1448: 166–170

    Article  CAS  Google Scholar 

  51. Aida K et al. (1995) Familial hypocalciuric hypercalcemia associated with mutation in the human Ca2+-sensing receptor gene. J Clin Endocrinol Metab 80: 2594–2598

    CAS  PubMed  Google Scholar 

  52. Pearce SH et al. (1995) Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J Clin Invest 96: 2683–2692

    Article  CAS  Google Scholar 

  53. Pollak MR et al. (1994) Autosomal dominant hypocalcaemia caused by a Ca2-sensing receptor gene mutation. Nat Genet 8: 303–307

    Article  CAS  Google Scholar 

  54. Lienhardt A et al. (2000) A large homozygous or heterozygous in-frame deletion within the calcium-sensing receptor's carboxyl terminal cytoplasmic tail that causes autosomal dominant hypocalcemia. J Clin Endocrinol Metab 85: 1695–1702

    CAS  PubMed  Google Scholar 

  55. Pearce SH et al. (1996) A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med 335: 1115–1122

    Article  CAS  Google Scholar 

  56. Winer KK et al. (1998) A randomized, cross-over trial of once-daily versus twice-daily parathyroid hormone 1–34 in treatment of hypoparathyroidism. J Clin Endocrinol Metab 83: 3480–3486

    CAS  PubMed  Google Scholar 

  57. Watanabe S et al. (2002) Association between activating mutations of calcium-sensing receptor and Bartter's syndrome. Lancet 360: 692–694

    Article  CAS  Google Scholar 

  58. Kifor O et al. (2003) A syndrome of hypocalciuric hypercalcemia caused by autoantibodies directed at the calcium-sensing receptor. J Clin Endocrinol Metab 88: 60–72

    Article  CAS  Google Scholar 

  59. Pallais JC et al. (2004) Acquired hypocalciuric hypercalcemia due to autoantibodies against the calcium-sensing receptor. N Engl J Med 351: 362–369

    Article  CAS  Google Scholar 

  60. Kifor O et al. (2004) Activating antibodies to the calcium-sensing receptor in two patients with autoimmune hypoparathyroidism. J Clin Endocrinol Metab 89: 548–556

    Article  CAS  Google Scholar 

  61. Gogusev J et al. (1997) Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. Kidney Int 51: 328–336

    Article  CAS  Google Scholar 

  62. Corbetta S et al. (2000) Calcium-sensing receptor expression and signalling in human parathyroid adenomas and primary hyperplasia. Clin Endocrinol (Oxf) 52: 339–348

    Article  CAS  Google Scholar 

  63. Chikatsu N et al. (2000) Cloning and characterization of two promoters for the human calcium-sensing receptor (CaSR) and changes of CaSR expression in parathyroid adenomas. J Biol Chem 275: 7553–7557

    Article  CAS  Google Scholar 

  64. Kifor O et al. (2003) Decreased expression of caveolin-1 and altered regulation of mitogen-activated protein kinase in cultured bovine parathyroid cells and human parathyroid adenomas. J Clin Endocrinol Metab 88: 4455–4464

    Article  CAS  Google Scholar 

  65. Ritter CS et al. (2002) Reversal of secondary hyperparathyroidism by phosphate restriction restores parathyroid calcium-sensing receptor expression and function. J Bone Miner Res 17: 2206–2213

    Article  CAS  Google Scholar 

  66. Block GA et al. (2004) Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 350: 1516–1525

    Article  CAS  Google Scholar 

  67. Peacock M et al. (2005) Cinacalcet hydrochloride maintains long-term normocalcemia in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 90: 135–141

    Article  CAS  Google Scholar 

  68. Nemeth EF and Fox J (1999) Calcimimetic compounds: a direct approach to controlling plasma levels of parathyroid hormone in hyperparathyroidism. Trends Endocrinol Metab 10: 66–71

    Article  CAS  Google Scholar 

  69. Collins MT et al. (1998) Treatment of hypercalcemia secondary to parathyroid carcinoma with a novel calcimimetic agent. J Clin Endocrinol Metab 83: 1083–1088

    Article  CAS  Google Scholar 

  70. Goodman WG (2003) Medical management of secondary hyperparathyroidism in chronic renal failure. Nephrol Dial Transplant 18 (Suppl 3): iii2–iii8

    CAS  PubMed  Google Scholar 

  71. Goodman WG (2003) Calcimimetic agents and secondary hyperparathyroidism: rationale for use and results from clinical trials. Pediatr Nephrol 18: 1206–1210

    Article  Google Scholar 

  72. Kruse AE et al. (2005) The calcimimetic cinacalcet normalizes serum calcium in renal transplant patients with persistent hyperparathyroidism. Nephrol Dial Transplant 20: 1311–1314

    Article  CAS  Google Scholar 

  73. Mittendorf EA and McHenry CR (2005) Parathyroid carcinoma. J Surg Oncol 89: 136–142

    Article  CAS  Google Scholar 

  74. Amgen product information for Sensipar® (cinacalcet hydrochloride) [http://www.amgen.com/patients/products_sensipar.html] (accessed 13 November 2006)

  75. Christiansen P et al. (1999) Primary hyperparathyroidism: effect of parathyroidectomy on regional bone mineral density in Danish patients. A three-year follow-up study. Bone 25: 589–595

    Article  CAS  Google Scholar 

  76. Gowen M et al. (2000) Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats. J Clin Invest 105: 1595–1604

    Article  CAS  Google Scholar 

  77. Brown EM (1993) Mechanisms underlying the regulation of parathyroid hormone secretion in vivo and in vitro . Curr Opin Nephrol Hypertens 2: 541–551

    Article  CAS  Google Scholar 

  78. CASRdb (the Calcium Sensing Receptor Database). Topology and position of the mutations in the CaSR [http://www.casrdb.mcgill.ca/?Topic=CasrGraph2] (accessed 13 November 2006)

  79. Pidasheva S et al. (2004) CASRdb: a calcium-sensing receptor locus-specific database for mutations causing familial (benign) hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat 24: 107–111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author has declared an association with Amgen; he receives royalties related to the sale of Sensipar® (cinacalcet hydrochloride).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, E. Clinical lessons from the calcium-sensing receptor. Nat Rev Endocrinol 3, 122–133 (2007). https://doi.org/10.1038/ncpendmet0388

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet0388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing