Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: adrenocortical tumors—molecular advances and clinical perspectives

Abstract

Most adrenocortical tumors are benign, unilateral, adrenocortical adenomas that are often discovered incidentally. Adrenocortical cancer is rare. Exceptionally, adrenocortical tumors can be bilateral. Although most adrenocortical tumors occur sporadically, they may also feature in congenital and/or familial disease. The identification of germline genetic defects in familial diseases associated with adrenocortical tumors helped to define the somatic alterations in sporadic disease: for example, overexpression of insulin-like growth factor 2 and alterations at the 11p15 locus (observed in Beckwith–Wiedemann syndrome) are also found in most adrenocortical cancers. Similarly, inactivating mutations of the TP53 gene, located at 17p13 (observed in Li–Fraumeni syndrome), can also be found at the somatic level in sporadic adrenocortical cancers, as can 17p13 allelic losses. Components of the cyclic AMP signaling pathway—for example, adrenocorticotropic hormone receptors and other membrane receptors, Gs proteins and protein kinase A—can be altered to various degrees in adrenocortical tumors. More recently, gene profiling and genetic studies have shown that the Wnt–β-catenin signaling pathway is frequently activated in adrenocortical tumors. These research findings already have profound implications for clinical management of patients with adrenocortical tumors, for example in unraveling the genetic origin of the disease in some patients, and in the development of molecular markers for diagnosis and prognosis. The new findings should also help in the development of new therapeutic options.

Key Points

  • The 17p13 (for TP53, tumor-suppressor p53) and 11p15 (for IGF2, insulin-like growth factor 2) loci are chromosomal regions that are involved in some rare forms of familial adrenocortical tumors

  • 17p13 and 11p15 are frequently altered in sporadic adrenocortical cancers

  • Various components of the cyclic AMP signaling pathway (receptors, Gs proteins, protein kinase A) can be activated in benign, secreting, sporadic and/or familial adrenocortical tumors

  • The Wnt–β-catenin signaling pathway can be activated in benign and malignant adrenocortical tumors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CT scan images from various types of adrenocortical tumors
Figure 2: Alterations in the cAMP pathway in adrenocortical tumorigenesis
Figure 3: The Wnt–β-catenin signaling pathway from the cell surface to the nucleus

Similar content being viewed by others

References

  1. Grumbach MM et al. (2003) Management of the clinically inapparent adrenal mass (“incidentaloma”). Ann Intern Med 138: 424–429

    Article  Google Scholar 

  2. Luton JP et al. (1990) Clinical features of adrenocortical carcinoma, prognostic factors, and the effect of mitotane therapy. N Engl J Med 322: 1195–1201

    Article  CAS  Google Scholar 

  3. Coulter LC (2005) Fetal adrenal develoment: insight gained from adrenal tumors. Trends Endocrinol Metab 16: 235–242

    Article  CAS  Google Scholar 

  4. Else T and Hammer GD (2005) Genetics analysis of adrenal absence: agenesis and aplasia. Trends Endocrinol Metab 16: 458–468

    Article  CAS  Google Scholar 

  5. Gicquel C et al. (1994) Clonal analysis of human adrenocortical carcinomas and secreting adenomas. Clin Endocrinol (Oxf) 40: 465–477

    Article  CAS  Google Scholar 

  6. Beuschlein F et al. (1994) Clonal composition of human adrenocortical neoplasms. Cancer Res 54: 4927–4932

    CAS  PubMed  Google Scholar 

  7. Kjellman M et al. (1999) Genotyping of adrenocortical tumors: very frequent deletions of the MEN1 locus in 11q13 and of a 1-centimorgan region in 2p16. J Clin Endocrinol Metab 84: 730–735

    CAS  PubMed  Google Scholar 

  8. Sidhu S et al. (2002) Comparative genomic hybridization analysis of adrenocortical tumors. J Clin Endocrinol Metab 87: 3467–3474

    Article  CAS  Google Scholar 

  9. Bertherat J and Gimenez-Roqueplo AP (2005) New insights in the genetics of adrenocortical tumors, pheochromocytomas and paragangliomas. Horm Metab Res 37: 384–390

    Article  CAS  Google Scholar 

  10. Hisada M et al. (1998) Multiple primary cancers in families with Li–Fraumeni syndrome. J Natl Cancer Inst 90: 606–611

    Article  CAS  Google Scholar 

  11. Varley JM et al. (1999) Are there low-penetrance TP53 alleles? Evidence from childhood adrenocortical tumors. Am J Hum Genet 65: 995–1006

    Article  CAS  Google Scholar 

  12. Ribeiro RC et al. (2001) An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA 98: 9330–9335

    Article  CAS  Google Scholar 

  13. Latronico AC et al. (2001) An inherited mutation outside the highly conserved DNA-binding domain of the p53 tumor suppressor protein in children and adults with sporadic adrenocortical tumors. J Clin Endocrinol Metab 86: 4970–4973

    Article  CAS  Google Scholar 

  14. DiGiammarino EL et al. (2002) A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Biol 9: 12–16

    Article  CAS  Google Scholar 

  15. Libe R and Bertherat J (2005) Molecular genetics of adrenocortical tumours, from familial to sporadic diseases. Eur J Endocrinol 153: 477–487

    Article  CAS  Google Scholar 

  16. Gicquel C et al. (2001) Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. Cancer Res 61: 6762–6767

    CAS  PubMed  Google Scholar 

  17. Gaston V et al. (2001) Analysis of the methylation status of the KCNQ10T and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith–Wiedemann syndrome. Eur J Hum Genet 9: 409–418

    Article  CAS  Google Scholar 

  18. Giordano TJ et al. (2003) Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 162: 521–531

    Article  CAS  Google Scholar 

  19. de Fraipont F et al. (2005) Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic acid microarrays identifies several candidate genes as markers of malignancy. J Clin Endocrinol Metab 90: 1819–1829

    Article  CAS  Google Scholar 

  20. Thakker RV (1998) Multiple endocrine neoplasia—syndromes of the twentieth century. J Clin Endocrinol Metab 83: 2617–2620

    CAS  PubMed  Google Scholar 

  21. Schulte KM et al. (2000) Complete sequencing and messenger ribonucleic acid expression analysis of the MEN I gene in adrenal cancer. J Clin Endocrinol Metab 85: 441–448

    CAS  PubMed  Google Scholar 

  22. Carney JA et al. (1985) The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine (Baltimore) 64: 270–283

    Article  CAS  Google Scholar 

  23. Kirschner LS et al. (2000) Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients with the Carney complex. Hum Mol Genet 9: 3037–3046

    Article  CAS  Google Scholar 

  24. Kirschner LS et al. (2000) Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex. Nat Genet 26: 89–92

    Article  CAS  Google Scholar 

  25. Groussin L et al. (2002) Molecular analysis of the cyclic AMP-dependent protein kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene in patients with Carney complex and primary pigmented nodular adrenocortical disease (PPNAD) reveals novel mutations and clues for pathophysiology. Am J Hum Genet 71: 1432–1442

    Article  Google Scholar 

  26. Groussin L et al. (2002) Mutations of the PRKAR1A gene in Cushing's syndrome due to sporadic primary pigmented nodular adrenocortical disease. J Clin Endocrinol Metab 87: 4324–4329

    Article  CAS  Google Scholar 

  27. Bertherat J et al. (2003) Molecular and functional analysis of PRKAR1A and its locus (17q22–24) in sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein kinase A expression and activity. Cancer Res 63: 5308–5319

    CAS  PubMed  Google Scholar 

  28. Swords FM et al. (2002) Impaired desensitization of a mutant adrenocorticotropin receptor associated with apparent constitutive activity. Mol Endocrinol 16: 2746–2753

    Article  CAS  Google Scholar 

  29. Reincke M et al. (1997) Deletion of the adrenocorticotropin receptor gene in human adrenocortical tumors: implications for tumorigenesis. J Clin Endocrinol Metab 82: 3054–3058

    CAS  PubMed  Google Scholar 

  30. Weinstein LS et al. (1991) Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N Engl J Med 325: 1688–1695

    Article  CAS  Google Scholar 

  31. Lumbroso S et al. (2004) Activating Gsα mutations: analysis of 113 patients with signs of McCune–Albright syndrome—a European Collaborative Study. J Clin Endocrinol Metab 89: 2107–2113

    Article  CAS  Google Scholar 

  32. Yoshimoto K et al. (1993) Rare mutations of the Gsα subunit gene in human endocrine tumors. Mutation detection by polymerase chain reaction-primer-introduced restriction analysis. Cancer 72: 1386–1393

    Article  CAS  Google Scholar 

  33. Dall'Asta C et al. (2004) Assessing the presence of abnormal regulation of cortisol secretion by membrane hormone receptors: in vivo and in vitro studies in patients with functioning and non-functioning adrenal adenoma. Horm Metab Res 36: 578–583

    Article  CAS  Google Scholar 

  34. Fragoso MC et al. (2003) Cushing's syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene. J Clin Endocrinol Metab 88: 2147–2151

    Article  CAS  Google Scholar 

  35. Lacroix A et al. (1992) Gastric inhibitory polypeptide-dependent cortisol hypersecretion—a new cause of Cushing's syndrome. N Engl J Med 327: 974–980

    Article  CAS  Google Scholar 

  36. Reznik Y et al. (1992) Food-dependent Cushing's syndrome mediated by aberrant adrenal sensitivity to gastric inhibitory polypeptide. N Engl J Med 327: 981–986

    Article  CAS  Google Scholar 

  37. Mazzuco TL et al. (2006) Ectopic expression of the gastric inhibitory polypeptide receptor gene is a sufficient genetic event to induce benign adrenocortical tumor in a xenotransplantation model. Endocrinology 147: 782–790

    Article  CAS  Google Scholar 

  38. Lacroix A et al. (2001) Ectopic and abnormal hormone receptors in adrenal Cushing's syndrome. Endocr Rev 22: 75–110

    CAS  PubMed  Google Scholar 

  39. Horvath A et al. (2006) A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet 38: 794–800

    Article  CAS  Google Scholar 

  40. Horvath A et al. (2006) Serial analysis of gene expression in adrenocortical hyperplasia caused by a germline PRKAR1A mutation. J Clin Endocrinol Metab 91: 584–596

    Article  CAS  Google Scholar 

  41. Nadella KS and Kirschner LS (2005) Disruption of protein kinase A regulation causes immortalization and dysregulation of D-type cyclins. Cancer Res 65: 10307–10315

    Article  CAS  Google Scholar 

  42. Griffin KJ et al. (2004) A transgenic mouse bearing an antisense construct of regulatory subunit type 1A of protein kinase A develops endocrine and other tumors: comparison with Carney complex and other PRKAR1A induced lesions. J Med Genet 41: 923–931

    Article  CAS  Google Scholar 

  43. Robinson-White A et al. (2003) Protein kinase-A activity in PRKAR1A-mutant cells, and regulation of mitogen-activated protein kinases ERK1/2. Hum Mol Genet 12: 1475–1484

    Article  CAS  Google Scholar 

  44. Kikuchi A (2003) Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 94: 225–229

    Article  CAS  Google Scholar 

  45. Naylor EW and Gardner EJ (1981) Adrenal adenomas in a patient with Gardner's syndrome. Clin Genet 20: 67–73

    Article  CAS  Google Scholar 

  46. Blaker H et al. (2004) Analysis of somatic APC mutations in rare extracolonic tumors of patients with familial adenomatous polyposis coli. Genes Chromosomes Cancer 41: 93–98

    Article  Google Scholar 

  47. Bourdeau I et al. (2004) Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators. Oncogene 23: 1575–1585

    Article  CAS  Google Scholar 

  48. Tissier F et al. (2005) Mutations of β-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 65: 7622–7627

    Article  CAS  Google Scholar 

  49. Feige JJ et al. (1998) Fine tuning of adrenocortical functions by locally produced growth factors. J Endocrinol 158: 7–19

    Article  CAS  Google Scholar 

  50. Xing M et al. (2005) BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 90: 6373–6379

    Article  CAS  Google Scholar 

  51. Rosenberg D et al. (2002) Role of the PKA-regulated transcription factor CREB in development and tumorigenesis of endocrine tissues. Ann NY Acad Sci 968: 65–74

    Article  CAS  Google Scholar 

  52. Stratakis CA et al. (1999) Paradoxical response to dexamethasone in the diagnosis of primary pigmented nodular adrenocortical disease. Ann Intern Med 131: 585–591

    Article  CAS  Google Scholar 

  53. Bertherat J et al. (2005) In vivo and in vitro screening for illegitimate receptors in adrenocorticotropin-independent macronodular adrenal hyperplasia causing Cushing's syndrome: identification of two cases of gonadotropin/gastric inhibitory polypeptide-dependent hypercortisolism. J Clin Endocrinol Metab 90: 1302–1310

    Article  CAS  Google Scholar 

  54. Kirschner LS (2006) Emerging treatment strategies for adrenocortical carcinoma: a new hope. J Clin Endocrinol Metab 91: 14–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Plan Hospitalier de Recherche Clinique to the Adrenocortical and Medulla Endocrine Tumor (COMETE) network (AOM 02068), the Ligue National Contre le Cancer (Grant 04-7571), the Groupement d'Intérêt Scientifique–Institut National de la Santé et de la Recherche Médicale (GIS–INSERM) Institut des Maladies Rares for the Carney Complex network, and the European Network for the Study of Adrenal Tumors (ENSAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Bertherat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertherat, J., Groussin, L. & Bertagna, X. Mechanisms of Disease: adrenocortical tumors—molecular advances and clinical perspectives. Nat Rev Endocrinol 2, 632–641 (2006). https://doi.org/10.1038/ncpendmet0321

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpendmet0321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing