Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression

A Corrigendum to this article was published on 02 September 2008

Abstract

Hypertrophic cardiomyopathy (HCM), defined clinically by the presence of unexplained left ventricular hypertrophy, is the most common inherited cardiac disorder. This condition is the major cause of sudden death in the young (<30 years of age) and in athletes. The clinical phenotype is heterogeneous, and mutations in a number of sarcomeric contractile-protein genes are responsible for causing the disease in approximately 60% of individuals with HCM. Other inherited syndromes, as well as metabolic and mitochondrial disorders, can present as clinical phenocopies and can be distinguished by their associated cardiac and noncardiac features and on the basis of their unique molecular genetics. The mode of inheritance, natural history and treatment of phenocopies can differ from those of HCM caused by mutations in sarcomere genes. Detailed clinical evaluation and mutation analysis are, therefore, important in providing an accurate diagnosis in order to enable genetic counseling, prognostic evaluation and appropriate clinical management. This Review summarizes current knowledge on the genetics, disease mechanisms, and correlations between phenotype and genotype in patients with HCM, and discusses the implications of genetic testing in routine clinical practice.

Key Points

  • Hypertrophic cardiomyopathy (HCM) is a common inherited cardiac disorder that is defined clinically by the presence of unexplained left ventricular hypertrophy

  • HCM is a major cause of sudden cardiac death, especially in the young and in seemingly healthy athletes

  • Mutations in genes encoding sarcomeric proteins are detected in 60% of patients with HCM

  • Several diseases mimic the phenotypic expression of HCM (phenocopies); it is clinically important to recognize phenocopies as the genetics, clinical management and prognosis of these conditions differ to sarcomeric HCM

  • Used appropriately, genetic testing can be important in the prognosis, clinical management and genetic counseling of patients and their families

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the cardiac sarcomere.
Figure 2: Cine cardiac MRI of hypertrophic cardiomyopathy patients with troponin I mutations.
Figure 3: Proposed sequence of genetic testing for patients with hypertrophic cardiomyopathy.

Similar content being viewed by others

References

  1. Richardson P et al. (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 93: 841–842

    Article  CAS  Google Scholar 

  2. Maron BJ et al. (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults: echocardiographic analysis of 4,111 subjects in the CARDIA study (Coronary Artery Risk Development in [Young] Adults). Circulation 92: 785–789

    Article  CAS  Google Scholar 

  3. Goldstein JL (2001) Familial hypercholesterolemia. In: The Metabolic and Molecular Bases of Inherited Diseases, edn 8, 2863–2913 (Eds Scriver CS. et al.) New York, NY: McGraw-Hill Book Co

    Google Scholar 

  4. Soutar AK and Naoumova RP (2007) Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med 4: 214–225

    Article  CAS  Google Scholar 

  5. McKenna WJ et al. (1997) Experience from clinical genetics in hypertrophic cardiomyopathy: proposal for new diagnostic criteria in adult members of affected families. Heart 77: 130–132

    Article  CAS  Google Scholar 

  6. Maron BJ et al. (1996) Sudden death in young competitive athletes: clinical, demographic, and pathological profiles. JAMA 276: 199–204

    Article  CAS  Google Scholar 

  7. Elliott PM et al. (2000) Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol 36: 2212–2218

    Article  CAS  Google Scholar 

  8. Elliott PM et al. (2006) Historical trends in reported survival rates in patients with hypertrophic cardiomyopathy. Heart 92: 785–791

    Article  CAS  Google Scholar 

  9. Elliott P and McKenna WJ (2004) Hypertrophic cardiomyopathy. Lancet 363: 1881–1891

    Article  CAS  Google Scholar 

  10. McKenna WJ et al. (1988) Echocardiographic measurement of right ventricular wall thickness in hypertrophic cardiomyopathy: relation to clinical and prognostic features. J Am Coll Cardiol 11: 351–358

    Article  CAS  Google Scholar 

  11. Seidman JG and Seidman C (2001) The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104: 557–567

    Article  CAS  Google Scholar 

  12. Fatkin D and Graham RM (2002) Molecular mechanisms of inherited cardiomyopathies. Physiol Rev 82: 945–980

    Article  CAS  Google Scholar 

  13. Varnava AM et al. (2001) Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. Am J Cardiol 88: 275–279

    Article  CAS  Google Scholar 

  14. Richard P et al. (2003) Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107: 2227–2232

    Article  Google Scholar 

  15. Marian AJ and Roberts R (2001) The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol 33: 655–670

    Article  CAS  Google Scholar 

  16. Moolman JA et al. (2000) A newly created splice donor site in exon 25 of the MyBP-C gene is responsible for inherited hypertrophic cardiomyopathy with incomplete disease penetrance. Circulation 101: 1396–1402

    Article  CAS  Google Scholar 

  17. Charron P and Komajda M (2006) Molecular genetics in hypertrophic cardiomyopathy: towards individualized management of the disease. Expert Rev Mol Diagn 6: 65–78

    Article  CAS  Google Scholar 

  18. Ho CY and Seidman CE (2006) A contemporary approach to hypertrophic cardiomyopathy. Circulation 113: e858–e862

    PubMed  Google Scholar 

  19. Geisterfer-Lowrance AA et al. (1996) A mouse model of familial hypertrophic cardiomyopathy. Science 272: 731–734

    Article  CAS  Google Scholar 

  20. Nagueh SF et al. (2001) Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation 104: 128–130

    Article  CAS  Google Scholar 

  21. Semsarian C et al. (2002) The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J Clin Invest 109: 1013–1020

    Article  CAS  Google Scholar 

  22. Lim DS et al. (2001) Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation 103: 789–791

    Article  CAS  Google Scholar 

  23. Jarcho JA et al. (1989) Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl J Med 321: 1372–1378

    Article  CAS  Google Scholar 

  24. Geisterfer-Lowrance AA et al. (1990) A molecular basis for familial hypertrophic cardiomyopathy: a β-cardiac myosin heavy chain gene missense mutation. Cell 62: 999–1006

    Article  CAS  Google Scholar 

  25. Watkins H et al. (1992) Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med 326: 1108–1114

    Article  CAS  Google Scholar 

  26. Woo A et al. (2003) Mutations of the beta myosin heavy chain gene in hypertrophic cardiomyopathy: critical functional sites determine prognosis. Heart 89: 1179–1185

    Article  CAS  Google Scholar 

  27. Niimura H et al. (1998) Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med 338: 1248–1257

    Article  CAS  Google Scholar 

  28. Charron P et al. (1998) Genotype–phenotype correlations in familial hypertrophic cardiomyopathy: a comparison between mutations in the cardiac protein- C and the β-myosin heavy chain genes. Eur Heart J 19: 139–145

    Article  CAS  Google Scholar 

  29. Niimura H et al. (2002) Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation 105: 446–451

    Article  CAS  Google Scholar 

  30. Watkins H et al. (1995) Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 332: 1058–1064

    Article  CAS  Google Scholar 

  31. Moolman JC et al. (1997) Sudden death due to troponin T mutations. J Am Coll Cardiol 29: 549–555

    Article  CAS  Google Scholar 

  32. Varnava AM et al. (2001) Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation 104: 1380–1384

    Article  CAS  Google Scholar 

  33. Kimura A et al. (1997) Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet 16: 379–382

    Article  CAS  Google Scholar 

  34. Olson TM et al. (2000) Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J Mol Cell Cardiol 32: 1687–1694

    Article  CAS  Google Scholar 

  35. Satoh M et al. (1999) Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem Biophys Res Commun 262: 411–417

    Article  CAS  Google Scholar 

  36. Hoffmann B et al. (2001) First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum Mutat 17: 524

    Article  CAS  Google Scholar 

  37. Poetter K et al. (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 13: 63–69

    Article  CAS  Google Scholar 

  38. Carniel E et al. (2005) Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation 112: 54–59

    Article  CAS  Google Scholar 

  39. Van Driest SL et al. (2004) Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J Am Coll Cardiol 44: 1903–1910

    Article  CAS  Google Scholar 

  40. Davis JS et al. (2001) The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation. Cell 107: 631–641

    Article  CAS  Google Scholar 

  41. Geier C et al. (2003) Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 107: 1390–1395

    Article  CAS  Google Scholar 

  42. Theis JL et al. (2006) Echocardiographic-determined septal morphology in Z-disc hypertrophic cardiomyopathy. Biochem Biophys Res Commun 351: 896–902

    Article  CAS  Google Scholar 

  43. Hayashi T et al. (2004) Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 44: 2192–2201

    Article  CAS  Google Scholar 

  44. Vasile VC et al. (2006) A missense mutation in a ubiquitously expressed protein, vinculin, confers susceptibility to hypertrophic cardiomyopathy. Biochem Biophys Res Commun 345: 998–1003

    Article  CAS  Google Scholar 

  45. Vasile VC et al. (2006) Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol Genet Metab 87: 169–174

    Article  CAS  Google Scholar 

  46. Haghighi K et al. (2006) A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci USA 103: 1388–1393

    Article  CAS  Google Scholar 

  47. Osio A et al. (2007) Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ Res 100: 766–768

    Article  CAS  Google Scholar 

  48. Landstrom AP (2007) Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J Mol Cell Cardiol 42: 1026–1035

    Article  CAS  Google Scholar 

  49. Amato AA (2000) Acid maltase deficiency and related myopathies. Neurol Clin 18: 151–165

    Article  CAS  Google Scholar 

  50. Sachdev B et al. (2002) Prevalence of Anderson–Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 105: 1407–1411

    Article  CAS  Google Scholar 

  51. DiMauro S and Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348: 2656–2668

    Article  CAS  Google Scholar 

  52. Tartaglia M et al. (2002) PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype–phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 70: 1555–1563

    Article  CAS  Google Scholar 

  53. Sarkozy A et al. (2003) Correlation between PTPN11 gene mutations and congenital heart defects in Noonan and LEOPARD syndromes. J Med Genet 40: 704–708

    Article  CAS  Google Scholar 

  54. Palau F et al (2001) Friedreich's ataxia and frataxin: molecular genetics, evolution and pathogenesis. Int J Mol Med 7: 581–589

    CAS  PubMed  Google Scholar 

  55. Blair E et al. (2001) Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 10: 1215–1220

    Article  CAS  Google Scholar 

  56. Arad M et al. (2002) Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 109: 357–362

    Article  CAS  Google Scholar 

  57. Anan R et al. (1994) Prognostic implications of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest 93: 280–285

    Article  CAS  Google Scholar 

  58. Fananapazir L and Epstein ND (1994) Genotype–phenotype correlations in hypertrophic cardiomyopathy: insights provided by comparisons of kindreds with distinct and identical β-myosin heavy chain gene mutations. Circulation 89: 22–32

    Article  CAS  Google Scholar 

  59. Fananapazir L et al. (1993) Missense mutations in the β-myosin heavy chain gene cause central core disease in hypertrophic cardiomyopathy. Proc Natl Acad Sci USA 90: 3993–3997

    Article  CAS  Google Scholar 

  60. Varnava A et al. (1999) A new mutation of the cardiac troponin T gene causing familial hypertrophic cardiomyopathy without left ventricular hypertrophy. Heart 82: 621–624

    Article  CAS  Google Scholar 

  61. Moolman-Smook JC et al. (1999) The origins of hypertrophic cardiomyopathy-causing mutations in two South African subpopulations: a unique profile of both independent and founder events. Am J Hum Genet 65: 1308–1320

    Article  CAS  Google Scholar 

  62. Tan HL et al. (2005). Sudden unexplained death—heritability and diagnostic yield of cardiological and genetic examination in surviving relatives. Circulation 112: 207–213

    Article  Google Scholar 

  63. Mogensen J et al. (2004) Frequency and clinical expression of cardiac troponin I mutations in 748 consecutive families with hypertrophic cardiomyopathy. J Am Coll Cardiol 44: 2315–2325

    Article  CAS  Google Scholar 

  64. Ho CY et al. (2000) Homozygous mutation in cardiac troponin T: implications for hypertrophic cardiomyopathy. Circulation 102: 1950–1955

    Article  CAS  Google Scholar 

  65. Ingles J et al. (2005) Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet 42: e59

    Article  CAS  Google Scholar 

  66. Camisago M et al. (2000) Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med 343: 1688–1696

    Article  Google Scholar 

  67. Olsson MC et al. (2001) Gender and aging in a transgenic mouse model of hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 280: H1136–H1144

    Article  CAS  Google Scholar 

  68. Olivotto I et al. (2005) Gender-related differences in the clinical presentation and outcome of hypertrophic cardiomyopathy. J Am Coll Cardiol 46: 480–487

    Article  Google Scholar 

  69. Lechin M et al. (1995) Angiotensin-I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation 92: 1808–1812

    Article  CAS  Google Scholar 

  70. Tesson F et al. (1997) The influence of the angiotensin I converting enzyme genotype in familial hypertrophic cardiomyopathy varies with the disease gene mutation. J Mol Cell Cardiol 29: 831–838

    Article  CAS  Google Scholar 

  71. Ortlepp JR et al. (2002) Genetic polymorphisms in the renin–angiotensin–aldosterone system associated with expression of left ventricular hypertrophy in hypertrophic cardiomyopathy: a study of five polymorphic genes in a family with a disease causing mutation in the myosin binding protein C gene. Heart 87: 270–275

    Article  CAS  Google Scholar 

  72. Perkins MJ et al. (2005) Gene-specific modifying effects of pro-LVH polymorphisms involving the renin–angiotensin–aldosterone system among 389 unrelated patients with hypertrophic cardiomyopathy. Eur Heart J 26: 2457–2462

    Article  CAS  Google Scholar 

  73. Spirito P et al. (1987) Occurrence and significance of progressive left ventricular wall thinning and relative cavity dilatation in hypertrophic cardiomyopathy. Am J Cardiol 60: 123–129

    Article  CAS  Google Scholar 

  74. Biagini E et al. (2005) Dilated-hypokinetic evolution of hypertrophic cardiomyopathy: prevalence, incidence, risk factors, and prognostic implications in pediatric and adult patients. J Am Coll Cardiol 46: 1543–1550

    Article  Google Scholar 

  75. Harris KM et al. (2006) Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation 114: 216–225

    Article  Google Scholar 

  76. Regitz-Zagrosek V et al. (2000) Novel mutation in the alpha-tropomyosin gene and transition from hypertrophic to hypocontractile dilated cardiomyopathy. Circulation 102: E112–E116

    Article  CAS  Google Scholar 

  77. Arad M et al. (2002) Phenotypic diversity in hypertrophic cardiomyopathy. Hum Mol Genet 11: 2499–2506

    Article  CAS  Google Scholar 

  78. Binder J et al. (2006) Echocardiography-guided genetic testing in hypertrophic cardiomyopathy: septal morphological features predict the presence of myofilament mutations. Mayo Clin Proc 81: 459–467

    Article  Google Scholar 

  79. Priori SG and Napolitano C (2006) Role of genetic analyses in cardiology: part I: mendelian diseases: cardiac channelopathies. Circulation 113: 1130–1135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J McKenna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keren, A., Syrris, P. & McKenna, W. Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression. Nat Rev Cardiol 5, 158–168 (2008). https://doi.org/10.1038/ncpcardio1110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio1110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing