Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pulmonary arterial hypertension: current therapeutic strategies

Abstract

The treatment of pulmonary arterial hypertension—once a lethal condition—has evolved considerably over the past few years as the number of therapeutic options available to treat this disease has increased. In this Review we attempt to summarize the current knowledge of the pathogenesis of pulmonary hypertension, in relation to the therapies presently available and those that could become available in the near future. The use of prostacyclin and its analogs, calcium-channel blockers, endothelin-receptor antagonists and phosphodiesterase type 5 inhibitors is reviewed. Newer concepts, such as the use of combination therapy, and the potential for long-term disease amelioration and improvement of outcomes, are also discussed. The role of supportive care and medications not specific to pulmonary hypertension is also examined. In addition, we review the novel emerging therapies, such as imatinib, fasudil, simvastatin, ghrelin and vasoactive intestinal peptide, which hold therapeutic potential for disease modification as well as treatment of symptoms.

Key Points

  • Therapy for pulmonary hypertension has evolved significantly over the past few years with the availability of new prostanoids, endothelin-receptor antagonists and phosphodiesterase type 5 inhibitors

  • A response to vasodilator challenge should determine which patients might benefit from a period of calcium-channel blocker therapy

  • Continuous infusion therapy with intravenous epoprostenol should generally be reserved for those patients in whom oral therapies are failing, those with progression of disease, or those who present with evidence of significant right ventricular dysfunction

  • After appropriate work-up, the first-choice treatment for most patients at initial presentation is an oral agent, either an endothelin-receptor antagonist (such as bosentan) or a phosphodiesterase type 5 inhibitor (such as sildenafil)

  • Combination therapy is increasingly used and could be beneficial in some patients

  • Therapies that could become available in the foreseeable future will offer other therapeutic options for this patient group

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chin KM et al. (2005) The right ventricle in pulmonary hypertension. Coron Artery Dis 16: 13–18

    Article  PubMed  Google Scholar 

  2. Fishman AP (2004) Primary pulmonary arterial hypertension: a look back. J Am Coll Cardiol 43 (Suppl S): S2–S4

    Article  Google Scholar 

  3. Galie N et al.; Task Force (2004) Guidelines on diagnosis and treatment of pulmonary arterial hypertension: the task force on diagnosis and treatment of pulmonary arterial hypertension of the European Society of Cardiology. Eur Heart J 25: 2243–2278

    Article  PubMed  Google Scholar 

  4. D'Alonzo GE et al. (1991) Survival in patients with primary pulmonary hypertension: results from a national prospective registry. Ann Intern Med 115: 343–349

    Article  CAS  PubMed  Google Scholar 

  5. Simonneau G et al. (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43 (Suppl S): S5–S12

    Article  Google Scholar 

  6. Loyd JE et al. (1988) Heterogeneity of pathologic lesions in familial primary pulmonary hypertension. Am Rev Respir Dis 138: 952–957

    Article  CAS  PubMed  Google Scholar 

  7. Machado RD et al. (2001) BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am J Hum Genet 68: 92–102

    Article  CAS  PubMed  Google Scholar 

  8. Thomson J et al. (2001) Familial and sporadic primary pulmonary hypertension is caused by BMPR2 gene mutations resulting in haploinsufficiency of the bone morphogenetic protein type II receptor [Abstract]. J Heart Lung Transplant 20: a149

    Article  Google Scholar 

  9. Bobik A (2006) Transforming growth factor-betas and vascular disorders. Arterioscler Thromb Vasc Biol 26: 1712–1720

    Article  CAS  PubMed  Google Scholar 

  10. Machado RD et al. (2006) Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum Mutat 27: 121–132

    Article  CAS  PubMed  Google Scholar 

  11. Elliott CG et al. (2006) Relationship of BMPR2 mutations to vasoreactivity in pulmonary arterial hypertension. Circulation 113: 2509–2515

    Article  CAS  PubMed  Google Scholar 

  12. Christman BW et al. (1992) An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med 327: 70–75

    Article  CAS  PubMed  Google Scholar 

  13. Giaid A and Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333: 214–221

    Article  CAS  PubMed  Google Scholar 

  14. Giaid A et al. (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328: 1732–1739

    Article  CAS  PubMed  Google Scholar 

  15. Humbert M et al. (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43 (Suppl S): S13–S24

    Article  Google Scholar 

  16. Galie N et al. (2004) Comparative analysis of clinical trials and evidence-based treatment algorithm in pulmonary arterial hypertension. J Am Coll Cardiol 43 (Suppl S): S81–S88

    Article  Google Scholar 

  17. Olschewski H et al. (2002) Inhaled iloprost for severe pulmonary hypertension. N Engl J Med 347: 322–329

    Article  CAS  PubMed  Google Scholar 

  18. Seyfarth HJ et al. (online 11 May 2006) Long-term bosentan in chronic thromboembolic pulmonary hypertension [http://content.karger.com/ProdukteDB/produkte.asp?Aktion=ShowAbstract&ArtikelNr=93322&Ausgabe=0&ProduktNr=224278] (accessed 19 March 2007)

  19. Ahmadi-Simab K et al. (2006) Bosentan for severe pulmonary arterial hypertension related to systemic sclerosis with interstitial lung disease. Eur J Clin Invest 36 (Suppl 3): S44–S48

    Article  Google Scholar 

  20. Madden BP et al. (2006) A potential role for sildenafil in the management of pulmonary hypertension in patients with parenchymal lung disease. Vascul Pharmacol 44: 372–376

    Article  CAS  PubMed  Google Scholar 

  21. Barst RJ (1986) Pharmacologically induced pulmonary vasodilatation in children and young adults with primary pulmonary hypertension. Chest 89: 497–503

    Article  CAS  PubMed  Google Scholar 

  22. Pepke-Zaba J et al. (1991) Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet 338: 1173–1174

    Article  CAS  PubMed  Google Scholar 

  23. Rubin LJ et al. (1982) Prostacyclin-induced acute pulmonary vasodilation in primary pulmonary hypertension. Circulation 66: 334–338

    Article  CAS  PubMed  Google Scholar 

  24. Morgan JM et al. (1991) Adenosine as a vasodilator in primary pulmonary hypertension. Circulation 84: 1145–1149

    Article  CAS  PubMed  Google Scholar 

  25. Sitbon O et al. (2005) Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111: 3105–3111

    Article  CAS  PubMed  Google Scholar 

  26. Rich S et al. (1992) The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med 327: 76–81

    Article  CAS  PubMed  Google Scholar 

  27. Woodmansey PA et al. (1996) Acute pulmonary vasodilatory properties of amlodipine in humans with pulmonary hypertension. Heart 75: 171–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Franz IW et al. (2002) The effect of amlodipine on exercise-induced pulmonary hypertension and right heart function in patients with chronic obstructive pulmonary disease. Z Kardiol 91: 833–839

    Article  CAS  PubMed  Google Scholar 

  29. Fuster V et al. (1984) Primary pulmonary hypertension: natural history and the importance of thrombosis. Circulation 70: 580–587

    Article  CAS  PubMed  Google Scholar 

  30. Robbins IM et al. (2006) A study of aspirin and clopidogrel in idiopathic pulmonary arterial hypertension. Eur Respir J 27: 578–584

    Article  CAS  PubMed  Google Scholar 

  31. Veyssier-Belot C et al. (1999) Role of endothelial and smooth muscle cells in the physiopathology and treatment management of pulmonary hypertension. Cardiovasc Res 44: 274–282

    Article  CAS  PubMed  Google Scholar 

  32. Barst RJ et al. (1996) A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension: the Primary Pulmonary Hypertension Study Group. N Engl J Med 334: 296–302

    Article  CAS  PubMed  Google Scholar 

  33. McLaughlin VV et al. (2002) Survival in primary pulmonary hypertension: the impact of epoprostenol therapy. Circulation 106: 1477–1482

    Article  CAS  PubMed  Google Scholar 

  34. Sitbon O et al. (2002) Long-term intravenous epoprostenol infusion in primary pulmonary hypertension: prognostic factors and survival. J Am Coll Cardiol 40: 780–788

    Article  CAS  PubMed  Google Scholar 

  35. Simonneau G et al.; Treprostinil Study Group (2002) Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med 165: 800–804

    Article  PubMed  Google Scholar 

  36. McLaughlin VV et al.; Treprostinil Study Group (2003) Efficacy and safety of treprostinil: an epoprostenol analog for primary pulmonary hypertension. J Cardiovasc Pharmacol 41: 293–299

    Article  CAS  PubMed  Google Scholar 

  37. Gomberg-Maitland M et al. (2005) Transition from intravenous epoprostenol to intravenous treprostinil in pulmonary hypertension. Am J Respir Crit Care Med 172: 1586–1589

    Article  PubMed  Google Scholar 

  38. Tapson VF et al. (2006) Safety and efficacy of IV treprostinil for pulmonary arterial hypertension: a prospective, multicenter, open-label, 12-week trial. Chest 129: 683–688

    Article  CAS  PubMed  Google Scholar 

  39. Hoeper MM et al. (2000) A comparison of the acute hemodynamic effects of inhaled nitric oxide and aerosolized iloprost in primary pulmonary hypertension: German PPH study group. J Am Coll Cardiol 35: 176–182

    Article  CAS  PubMed  Google Scholar 

  40. Hoeper MM et al. (2000) Long-term treatment of primary pulmonary hypertension with aerosolized iloprost, a prostacyclin analogue. N Engl J Med 342: 1866–1870

    Article  CAS  PubMed  Google Scholar 

  41. Nagaya N et al. (1999) Effect of orally active prostacyclin analogue on survival of outpatients with primary pulmonary hypertension. J Am Coll Cardiol 34: 1188–1192

    Article  CAS  PubMed  Google Scholar 

  42. Galie N et al.; Arterial Pulmonary Hypertension and Beraprost European (ALPHABET) Study Group (2002) Effects of beraprost sodium, an oral prostacyclin analogue, in patients with pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol 39: 1496–1502

    Article  CAS  PubMed  Google Scholar 

  43. Barst RJ et al.; Beraprost Study Group (2003) Beraprost therapy for pulmonary arterial hypertension. J Am Coll Cardiol 41: 2119–2125

    Article  CAS  PubMed  Google Scholar 

  44. Cacoub P et al. (1993) Endothelin-1 in primary pulmonary hypertension and the Eisenmenger syndrome. Am J Cardiol 71: 448–450

    Article  CAS  PubMed  Google Scholar 

  45. Kedzierski RM et al. (2001) Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol 41: 851–876

    Article  CAS  PubMed  Google Scholar 

  46. Rubin LJ et al. (2002) Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 346: 896–903

    Article  CAS  PubMed  Google Scholar 

  47. Galie N et al. (2004) The endothelin system in pulmonary arterial hypertension. Cardiovasc Res 61: 227–237

    Article  CAS  PubMed  Google Scholar 

  48. Galie N et al. (2003) Effects of the oral endothelin-receptor antagonist bosentan on echocardiographic and doppler measures in patients with pulmonary arterial hypertension. J Am Coll Cardiol 41: 1380–1386

    Article  CAS  PubMed  Google Scholar 

  49. Channick R et al. (2001) Effects of the dual endothelin receptor antagonist bosentan in patients with pulmonary hypertension: a placebo-controlled study. J Heart Lung Transplant 20: 262–263

    Article  CAS  PubMed  Google Scholar 

  50. Barst RJ et al. (2004) Sitaxsentan therapy for pulmonary arterial hypertension. Am J Respir Crit Care Med 169: 441–447

    Article  PubMed  Google Scholar 

  51. Barst RJ et al. (2006) Treatment of pulmonary arterial hypertension with the selective endothelin-A receptor antagonist sitaxsentan. J Am Coll Cardiol 47: 2049–2056

    Article  CAS  PubMed  Google Scholar 

  52. Billman GE (2002) Ambrisentan (Myogen). Curr Opin Investig Drugs 3: 1483–1486

    CAS  PubMed  Google Scholar 

  53. Galie N et al. (2005) Ambrisentan therapy for pulmonary arterial hypertension. J Am Coll Cardiol 46: 529–535

    Article  CAS  PubMed  Google Scholar 

  54. Tantini B et al. (2005) Antiproliferative effect of sildenafil on human pulmonary artery smooth muscle cells. Basic Res Cardiol 100: 131–138

    Article  CAS  PubMed  Google Scholar 

  55. Prasad S et al. (2000) Sildenafil in primary pulmonary hypertension. N Engl J Med 343: 1342

    Article  CAS  PubMed  Google Scholar 

  56. Bhatia S et al. (2003) Immediate and long-term hemodynamic and clinical effects of sildenafil in patients with pulmonary arterial hypertension receiving vasodilator therapy. Mayo Clin Proc 78: 1207–1213

    Article  CAS  PubMed  Google Scholar 

  57. Michelakis ED et al. (2003) Long-term treatment with oral sildenafil is safe and improves functional capacity and hemodynamics in patients with pulmonary arterial hypertension. Circulation 108: 2066–2069

    Article  CAS  PubMed  Google Scholar 

  58. Sastry BK et al. (2004) Clinical efficacy of sildenafil in primary pulmonary hypertension: a randomized, placebo-controlled, double-blind, crossover study. J Am Coll Cardiol 43: 1149–1153

    Article  CAS  PubMed  Google Scholar 

  59. Galie N et al. (2005) Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353: 2148–2157

    Article  CAS  PubMed  Google Scholar 

  60. Affuso F et al. (2006) Tadalafil improves quality of life and exercise tolerance in idiopathic pulmonary arterial hypertension. Int J Cardiol 108: 429–431

    Article  PubMed  Google Scholar 

  61. Nagaoka T et al. (2006) Involvement of RhoA/Rho kinase signaling in pulmonary hypertension of the fawn-hooded rat. J Appl Physiol 100: 996–1002

    Article  CAS  PubMed  Google Scholar 

  62. Abe K et al. (2004) Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res 94: 385–393

    Article  CAS  PubMed  Google Scholar 

  63. Ishikura K et al. (2006) Beneficial acute effects of rho-kinase inhibitor in patients with pulmonary arterial hypertension. Circ J 70: 174–178

    Article  CAS  PubMed  Google Scholar 

  64. Guilluy C et al. (2005) Inhibition of RhoA/Rho kinase pathway is involved in the beneficial effect of sildenafil on pulmonary hypertension. Br J Pharmacol 146: 1010–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barst RJ (2005) PDGF signaling in pulmonary arterial hypertension. J Clin Invest 115: 2691–2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dingli D et al. (2001) Unexplained pulmonary hypertension in chronic myeloproliferative disorders. Chest 120: 801–808

    Article  CAS  PubMed  Google Scholar 

  67. Hoffman R et al. (2006) Is bone marrow fibrosis the real problem? Blood 107: 3421–3422

    Article  CAS  Google Scholar 

  68. Schermuly RT et al. (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115: 2811–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ghofrani HA et al. (2005) Imatinib for the treatment of pulmonary arterial hypertension. N Engl J Med 353: 1412–1413

    Article  CAS  PubMed  Google Scholar 

  70. Souza R et al. (2006) Long term imatinib treatment in pulmonary arterial hypertension. Thorax 61: 736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Patterson KC et al. (2006) Imatinib mesylate in the treatment of refractory idiopathic pulmonary arterial hypertension. Ann Intern Med 145: 152–153

    Article  PubMed  Google Scholar 

  72. Kerkela R et al. (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12: 908–916

    Article  PubMed  CAS  Google Scholar 

  73. Hu H et al. (2006) Simvastatin enhances bone morphogenetic protein receptor type II expression. Biochem Biophys Res Commun 339: 59–64

    Article  CAS  PubMed  Google Scholar 

  74. Taraseviciene-Stewart L et al. (2006) Simvastatin causes endothelial cell apoptosis and attenuates severe pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 291: L668–L676

    Article  CAS  PubMed  Google Scholar 

  75. Kao PN (2005) Simvastatin treatment of pulmonary hypertension: an observational case series. Chest 127: 1446–1452

    CAS  PubMed  Google Scholar 

  76. Henriques-Coelho T et al. (2006) Ghrelin reverses molecular, structural and hemodynamic alterations of the right ventricle in pulmonary hypertension. Rev Port Cardiol 25: 55–63

    PubMed  Google Scholar 

  77. Taraseviciene-Stewart L et al. (2005) Treatment of severe pulmonary hypertension: a bradykinin receptor 2 agonist B9972 causes reduction of pulmonary artery pressure and right ventricular hypertrophy. Peptides 26: 1292–300

    Article  CAS  PubMed  Google Scholar 

  78. Marcos E et al. (2004) Serotonin-induced smooth muscle hyperplasia in various forms of human pulmonary hypertension. Circ Res 94: 1263–1270

    Article  CAS  PubMed  Google Scholar 

  79. Cogolludo A et al. (2006) Serotonin inhibits voltage-gated K+ currents in pulmonary artery smooth muscle cells: role of 5-HT2A receptors, caveolin-1, and Kv1.5 channel internalization. Circ Res 98: 931–938

    Article  CAS  PubMed  Google Scholar 

  80. Guignabert C et al. (2005) Serotonin transporter inhibition prevents and reverses monocrotaline-induced pulmonary hypertension in rats. Circulation 111: 2812–2819

    Article  CAS  PubMed  Google Scholar 

  81. Petkov V et al. (2006) The vasoactive intestinal peptide receptor turnover in pulmonary arteries indicates an important role for VIP in the rat lung circulation. Ann NY Acad Sci 1070: 481–483

    Article  CAS  PubMed  Google Scholar 

  82. Petkov V et al. (2003) Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest 111: 1339–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Michelakis ED et al. (2003) The NO K+ channel axis in pulmonary arterial hypertension. Activation by experimental oral therapies. Adv Exp Med Biol 543: 293–322

    Article  CAS  PubMed  Google Scholar 

  84. Maurey C et al. (2006) Interaction of KATP channels and endothelin-1 in lambs with persistent pulmonary hypertension of the newborn. Pediatr Res 60: 252–257

    Article  CAS  PubMed  Google Scholar 

  85. Pozeg ZI et al. (2003) In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107: 2037–2044

    Article  CAS  PubMed  Google Scholar 

  86. McMurtry MS et al. (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95: 830–840

    Article  CAS  PubMed  Google Scholar 

  87. Wong PS et al. (2001) Primary pulmonary hypertension in pregnancy. JR Soc Med 94: 523–525

    Article  CAS  Google Scholar 

  88. Rich S et al. (1998) The short-term effects of digoxin in patients with right ventricular dysfunction from pulmonary hypertension. Chest 114: 787–792

    Article  CAS  PubMed  Google Scholar 

  89. Naeije R and Vachiery JL (2001) Medical therapy of pulmonary hypertension: conventional therapies. Clin Chest Med 22: 517–527

    Article  CAS  PubMed  Google Scholar 

  90. Radley-Smith R et al. (2006) Transplantation as a treatment for end-stage pulmonary hypertension in childhood. Paediatr Respir Rev 7: 117–122

    Article  CAS  PubMed  Google Scholar 

  91. Habashi JP et al. (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312: 117–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nakamoto T et al. (2005) Effects of olmesartan medoxomil as an angiotensin II-receptor blocker in chronic hypoxic rats. Eur J Pharmacol 528: 43–51

    Article  CAS  PubMed  Google Scholar 

  93. Humbert M et al. (2004) Combination of bosentan with epoprostenol in pulmonary arterial hypertension: BREATHE-2. Eur Respir J 24: 353–359

    Article  CAS  PubMed  Google Scholar 

  94. Hoeper MM et al. (2006) Combining inhaled iloprost with bosentan in patients with idiopathic pulmonary arterial hypertension. Eur Respir J 28: 691–694

    Article  CAS  PubMed  Google Scholar 

  95. Seyfarth HJ et al. (2005) Bosentan improves exercise tolerance and Tei index in patients with pulmonary hypertension and prostanoid therapy. Chest 128: 709–713

    Article  CAS  PubMed  Google Scholar 

  96. McLaughlin VV et al. (2006) Randomized study of adding inhaled iloprost to existing bosentan in pulmonary arterial hypertension. Am J Respir Crit Care Med 174: 1257–1263

    Article  CAS  PubMed  Google Scholar 

  97. Gomberg-Maitland M (2006) Learning to pair therapies and the expanding matrix for pulmonary arterial hypertension: is more better? Eur Respir J 28: 683–686

    Article  CAS  PubMed  Google Scholar 

  98. Wilkens H et al. (2001) Effect of inhaled iloprost plus oral sildenafil in patients with primary pulmonary hypertension. Circulation 104: 1218–1222

    Article  CAS  PubMed  Google Scholar 

  99. Gomberg-Maitland M et al. (2005) Efficacy and safety of sildenafil added to treprostinil in pulmonary hypertension. Am J Cardiol 96: 1334–1336

    Article  CAS  PubMed  Google Scholar 

  100. Clozel M et al. (2006) Bosentan, sildenafil, and their combination in the monocrotaline model of pulmonary hypertension in rats. Exp Biol Med (Maywood) 231: 967–973

    CAS  Google Scholar 

  101. Hoeper MM et al. (2004) Combination therapy with bosentan and sildenafil in idiopathic pulmonary arterial hypertension. Eur Respir J 24: 1007–1010

    Article  CAS  PubMed  Google Scholar 

  102. Morice AH et al. (2005) Combination therapy with bosentan and phosphodiesterase-5 inhibitor in pulmonary arterial hypertension. Eur Respir J 26: 180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Charles P Vega, University of California-Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir S Kushwaha.

Ethics declarations

Competing interests

A Puri declared he has no competing interests.

MD McGoon is a consultant for Medtronic, Actelion, CoTherix, Myogen and United Therapeutics. He has received research or grant support from Medtronic, CoTherix and Myogen.

SS Kushwaha was an investigator for Encysive for the Sitaxentan studies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puri, A., McGoon, M. & Kushwaha, S. Pulmonary arterial hypertension: current therapeutic strategies. Nat Rev Cardiol 4, 319–329 (2007). https://doi.org/10.1038/ncpcardio0890

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio0890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing