Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: β-adrenergic receptors—alterations in signal transduction and pharmacogenomics in heart failure

Abstract

β-adrenergic signaling is an important regulator of myocardial function. During the progression of heart failure (HF), a reproducible series of biochemical events occurs that affects β-adrenergic receptor (β-AR) signaling and cardiac function. Furthermore, there are pathophysiologic alterations in the expression and regulation of proteins that are regulated by β-ARs during HF. Analyses of these complex signaling pathways have led to a better understanding of HF mechanisms and the use of β-adrenergic antagonists, which have notably altered HF-related morbidity and mortality. Despite therapeutic advances that have affected β-AR signaling, HF remains a leading cause of hospitalization and a principal cause of death in industrialized nations. In this review, we summarize current insights into β-adrenergic signal-transduction pathways, the best-described β-AR polymorphisms, and therapies that target the β-AR pathway in HF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of β-adrenergic and calcium intracellular trafficking in myocytes, showing ion channels, contractile pathways and β-adrenergic signal transduction.
Figure 2: Schematic of the desensitization and intracellular trafficking of β-adrenergic receptors.

Similar content being viewed by others

References

  1. American Heart Association Heart Disease and Stroke Statistics 2005 Update [http://www.americanheart.org/presenter.jhtml?identifier=1928] (accessed 23 March 2005)

  2. Lefkowitz RJ et al. (2000) Catecholamines, cardiac β-adrenergic receptors, and heart failure. Circulation 101: 1634–1637

    Article  CAS  Google Scholar 

  3. Port JD and Bristow MR (2001) Altered β-adrenergic receptor gene regulation and signaling in chronic heart failure. J Mol Cell Cardiol 33: 887–905

    Article  CAS  Google Scholar 

  4. Kaye DM et al. (2004) Interaction between cardiac sympathetic drive and heart rate in heart failure: modulation by adrenergic receptor genotype. J Am Coll Cardiol 44: 2008–2015

    Article  CAS  Google Scholar 

  5. Bristow MR (2000) β-adrenergic receptor blockade in chronic heart failure. Circulation 101: 558–569

    Article  CAS  Google Scholar 

  6. Domanski MJ et al. (2003) A comparative analysis of the results from 4 trials of β-blocker therapy for heart failure: BEST, CIBIS-II, MERIT-HF, and COPERNICUS. J Card Fail 9: 354–363

    Article  CAS  Google Scholar 

  7. Skeberdis VA (2004) Structure and function of β3-adrenergic receptors. Medicina (Kaunas) 40: 407–413

    Google Scholar 

  8. Brodde OE and Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51: 651–690

    CAS  PubMed  Google Scholar 

  9. Kohout TA et al. (2001) Augmentation of cardiac contractility mediated by the human β3-adrenergic receptor overexpressed in the hearts of transgenic mice. Circulation 104: 2485–2491

    Article  CAS  Google Scholar 

  10. Konkar AA et al. (2000) β1-adrenergic receptors mediate β3-adrenergic-independent effects of CGP 12177 in brown adipose tissue. Mol Pharmacol 57: 252–258

    CAS  PubMed  Google Scholar 

  11. Heubach JF et al. (2002) Physiological antagonism between ventricular β1-adrenoceptors and α1-adrenoceptors but no evidence for β2- and β3-adrenoceptor function in murine heart. Br J Pharmacol 136: 217–229

    Article  CAS  Google Scholar 

  12. Feldman DS et al. (2002) Selective inhibition of heterotrimeric Gs signaling. Targeting the receptor-G protein interface using a peptide minigene encoding the Gαs carboxyl terminus. J Biol Chem 277: 28631–28640

    Article  CAS  Google Scholar 

  13. Lohse MJ et al. (2003) What is the role of β-adrenergic signaling in heart failure? Circ Res 93: 896–906

    Article  CAS  Google Scholar 

  14. Koch WJ et al. (1995) Cardiac function in mice overexpressing the β-adrenergic receptor kinase or a β ARK inhibitor. Science 268: 1350–1353

    Article  CAS  Google Scholar 

  15. Marx SO et al. (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101: 365–376

    Article  CAS  Google Scholar 

  16. Biel M et al. (2002) Cardiac HCN channels: structure, function, and modulation. Trends Cardiovasc Med 12: 206–212

    Article  CAS  Google Scholar 

  17. Colucci WS (1998) The effects of norepinephrine on myocardial biology: implications for the therapy of heart failure. Clin Cardiol 21 (Suppl 1): I20–I24

    Article  CAS  Google Scholar 

  18. Ungerer M et al. (1994) Expression of β-arrestins and β-adrenergic receptor kinases in the failing human heart. Circ Res 74: 206–213

    Article  CAS  Google Scholar 

  19. Brodde OE et al. (1992) Receptor systems affecting force of contraction in the human heart and their alterations in chronic heart failure. J Heart Lung Transplant 11 (Pt 2): S164–S174

    CAS  PubMed  Google Scholar 

  20. Lorenz K et al. (2003) Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature 426: 574–579

    Article  CAS  Google Scholar 

  21. Theilade J et al. (2001) G protein-coupled receptor kinase 2—a feedback regulator of Gq pathway signalling. Curr Drug Targets Immune Endocr Metabol Disord 1: 139–151

    Article  CAS  Google Scholar 

  22. Hata JA et al. (2004) Genetic manipulation of myocardial β-adrenergic receptor activation and desensitization. J Mol Cell Cardiol 37: 11–21

    Article  CAS  Google Scholar 

  23. Engelhardt S et al. (1999) Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A 96: 7059–7064

    Article  CAS  Google Scholar 

  24. Milano CA et al. (1994) Enhanced myocardial function in transgenic mice overexpressing the β 2-adrenergic receptor. Science 264: 582–586

    Article  CAS  Google Scholar 

  25. Xiao RP et al. (1999) Recent advances in cardiac β2-adrenergic signal transduction. Circ Res 85: 1092–1100

    Article  CAS  Google Scholar 

  26. Luttrell LM (2003) 'Location, location, location': activation and targeting of MAP kinases by G protein-coupled receptors. J Mol Endocrinol 30: 117–126

    Article  CAS  Google Scholar 

  27. Lohse MJ et al. (1996) Mechanisms of β-adrenergic receptor desensitization: from molecular biology to heart failure. Basic Res Cardiol 91 (Suppl 2): 29–34

    Article  CAS  Google Scholar 

  28. Walker JK et al. (2004) G protein-coupled receptor kinase 5 regulates airway responses induced by muscarinic receptor activation. Am J Physiol Lung Cell Mol Physiol 286: L312–L319

    Article  CAS  Google Scholar 

  29. McDonald PH et al. (2000) β-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290: 1574–1577

    Article  CAS  Google Scholar 

  30. Singh K et al. (2001) Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol 189: 257–265

    Article  CAS  Google Scholar 

  31. Zhu WZ et al. (2003) Linkage of β1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest 111: 617–625

    Article  CAS  Google Scholar 

  32. Pearson G et al. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22: 153–183

    CAS  PubMed  Google Scholar 

  33. Mann DL et al. (1992) Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 85: 790–804

    Article  CAS  Google Scholar 

  34. Communal C et al. (1999) Opposing effects of β1- and β2-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation 100: 2210–2212

    Article  CAS  Google Scholar 

  35. Communal C et al. (2003) β1 integrins expression in adult rat ventricular myocytes and its role in the regulation of β-adrenergic receptor-stimulated apoptosis. J Cell Biochem 89: 381–388

    Article  CAS  Google Scholar 

  36. Adams JW and Brown JH (2001) G-proteins in growth and apoptosis: lessons from the heart. Oncogene 20: 1626–1634

    Article  CAS  Google Scholar 

  37. Abraham WT et al. (2002) Coordinate changes in myosin heavy chain isoform gene expression are selectively associated with alterations in dilated cardiomyopathy phenotype. Mol Med 8: 750–760

    Article  CAS  Google Scholar 

  38. Lowes BD et al. (2002) Myocardial gene expression in dilated cardiomyopathy treated with β-blocking agents. N Engl J Med 346: 1357–1365

    Article  CAS  Google Scholar 

  39. Schmidt AG et al. (2001) Phospholamban: a promising therapeutic target in heart failure? Cardiovasc Drugs Ther 15: 387–396

    Article  CAS  Google Scholar 

  40. Dorn GW and Molkentin JD (2004) Manipulating cardiac contractility in heart failure: data from mice and men. Circulation 109: 150–158

    Article  Google Scholar 

  41. Frey N et al. (2000) Decoding calcium signals involved in cardiac growth and function. Nat Med 6: 1221–1227

    Article  CAS  Google Scholar 

  42. El Armouche A et al. (2003) Evidence for protein phosphatase inhibitor-1 playing an amplifier role in β-adrenergic signaling in cardiac myocytes. FASEB J 17: 437–439

    Article  CAS  Google Scholar 

  43. Diaz-Infante E et al. (2005) Predictors of lack of response to resynchronization therapy. Am J Cardiol 95: 1436–1440

    Article  Google Scholar 

  44. Adamson PB and Abraham WT (2003) Cardiac resynchronization therapy for advanced heart failure. Curr Treat Options Cardiovasc Med 5: 301–309

    Article  Google Scholar 

  45. Rau T et al. (2002) Effect of the CYP2D6 genotype on metoprolol metabolism persists during long-term treatment. Pharmacogenetics 12: 465–472

    Article  CAS  Google Scholar 

  46. Wuttke H et al. (2002) Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects. Clin Pharmacol Ther 72: 429–437

    Article  CAS  Google Scholar 

  47. Cascorbi I et al. (2004) Pharmacogenomics of heart failure—focus on drug disposition and action. Cardiovasc Res 64: 32–39

    Article  CAS  Google Scholar 

  48. Terra SG et al. (2005) β-adrenergic receptor polymorphisms and responses during titration of metoprolol controlled release/extended release in heart failure. Clin Pharmacol Ther 77: 123–126

    Article  Google Scholar 

  49. Drysdale CM et al. (2000) Complex promoter and coding region β2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci U S A 97: 10483–10488

    Article  CAS  Google Scholar 

  50. Hein L (2001) Physiological significance of β-adrenergic receptor polymorphisms: in-vivo or in-vitro veritas? Pharmacogenetics 11: 187–189

    Article  CAS  Google Scholar 

  51. Mason DA et al. (1999) A gain-of-function polymorphism in a G-protein coupling domain of the human β1-adrenergic receptor. J Biol Chem 274: 12670–12674

    Article  CAS  Google Scholar 

  52. Small KM et al. (2002) Synergistic polymorphisms of β1- and α2c-adrenergic receptors and the risk of congestive heart failure. N Engl J Med 347: 1135–1142

    Article  CAS  Google Scholar 

  53. Small KM et al. (2003) Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu Rev Pharmacol Toxicol 43: 381–411

    Article  CAS  Google Scholar 

  54. Borjesson M et al. (2000) A novel polymorphism in the gene coding for the β1-adrenergic receptor associated with survival in patients with heart failure. Eur Heart J 21: 1853–1858

    Article  CAS  Google Scholar 

  55. Turki J et al. (1996) Myocardial signaling defects and impaired cardiac function of a human β2-adrenergic receptor polymorphism expressed in transgenic mice. Proc Natl Acad Sci U S A 93: 10483–10488

    Article  CAS  Google Scholar 

  56. Liggett SB et al. (1998) The Ile164 β2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 102: 1534–1539

    Article  CAS  Google Scholar 

  57. Bristow MR et al. (2003) Selective versus nonselective β-blockade for heart failure therapy: are there lessons to be learned from the COMET trial? J Card Fail 9: 444–453

    Article  CAS  Google Scholar 

  58. Bristow MR et al. (2004) Effect of baseline or changes in adrenergic activity on clinical outcomes in the β-blocker evaluation of survival trial. Circulation 110: 1437–1442

    Article  CAS  Google Scholar 

  59. Maack C et al. (2000) Different intrinsic activities of bucindolol, carvedilol and metoprolol in human failing myocardium. Br J Pharmacol 130: 1131–1139

    Article  CAS  Google Scholar 

  60. Liggett SB (2004) Polymorphisms of β-adrenergic receptors in heart failure. Am J Med 117: 525–527

    Article  Google Scholar 

  61. Mialet Perez J et al. (2003) β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med 9: 1300–1305

    Article  Google Scholar 

  62. Terra SG et al. (2005) β1-adrenergic receptor polymorphisms and left ventricular remodeling changes in response to β-blocker therapy. Pharmacogenet Genomics 15: 227–234

    Article  CAS  Google Scholar 

  63. de Groote PA et al. (2005) Association between β-1 and β-2 adrenergic receptor gene polymorphisms and the response to β-blockade in patients with stable congestive heart failure. Pharmacogenet Genomics 15: 137–142

    Article  CAS  Google Scholar 

  64. White HL et al. (2003) An evaluation of the β-1 adrenergic receptor Arg389Gly polymorphism in individuals with heart failure: a MERIT-HF sub-study. Eur J Heart Failure 5: 463–468

    Article  CAS  Google Scholar 

  65. Bristow MR et al. (2001) Inotropes and β-blockers: is there a need for new guidelines? J Card Fail 7 (2 Suppl 1): 8–12

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S Feldman.

Ethics declarations

Competing interests

David Feldman has worked as a consultant for GlaxoSmithKline, Medtronic, SCIOS and Abbott. Michael Bristow has acted as a consultant for Astra Zeneca, Guidant, Mylan, Paracor, CVRx, Inspiration Medical, Cardiac Dimensions and Novartis; as an equity officer or director for Myogen and ARCA Discovery; and has received research support from Astra Zeneca, Guidant, Myogen, ARCA and Mylan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, D., Carnes, C., Abraham, W. et al. Mechanisms of Disease: β-adrenergic receptors—alterations in signal transduction and pharmacogenomics in heart failure. Nat Rev Cardiol 2, 475–483 (2005). https://doi.org/10.1038/ncpcardio0309

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio0309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing