Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology Insight: targeting of biological molecules for evaluation of high-risk atherosclerotic plaques with magnetic resonance imaging

Abstract

Identification of high-risk atherosclerotic lesions prone to rupture and thrombosis may greatly decrease the morbidity and mortality associated with atherosclerosis. The development of magnetic resonance imaging contrast agents that specifically target components of the atherosclerotic plaque might enable non-invasive detection of high-risk lesions. This review discusses a variety of molecules present in atherosclerotic plaque that could serve as targets for specific contrast agents. Ultimately, such agents may allow the identification of high-risk atherosclerotic lesions in patients and enable treatment of these patients before lesion progression and complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential biological targets in a high-risk atherosclerotic lesion that has ruptured at the shoulder
Figure 2: En-face preparations of Sudan-stained aortas
Figure 3: In vivo MR images and corresponding histopathological sections of atherosclerotic rabbit abdominal aorta
Figure 4: Blood flow in uninjured right and thrombosis-injured left common carotid artery of a guinea pig

Similar content being viewed by others

References

  1. American Heart Association (2004) Heart Disease and Stroke Statistics—2004 Update. [http://www.americanheart.org/downloadable/heart /1079736729696HDSStats2004UpdateREV3-19-04.pdf] (accessed 11 Aug 04)

  2. Malek AM et al. (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282: 2035–2042

    Article  CAS  Google Scholar 

  3. Vanhoutte PM (2003) Endothelial dysfunction and atherosclerosis. Eur Heart J 18: E19–29

    Article  Google Scholar 

  4. Cushing S et al. (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. PNAS 87: 5134–5138

    Article  CAS  Google Scholar 

  5. Goldstein JL et al. (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 76: 333–337

    Article  CAS  Google Scholar 

  6. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362: 801–809.

    Article  CAS  Google Scholar 

  7. Richardson PD et al. (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2: 941–944

    Article  CAS  Google Scholar 

  8. Falk E (1983) Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis: characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 50: 127–134

    Article  CAS  Google Scholar 

  9. Jones CB et al. (2003) Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res 59: 812–823

    Article  CAS  Google Scholar 

  10. Nunn AD et al. (1997) Can receptors be imaged with MRI agents? Q J Nucl Med 41: 155–162

    CAS  PubMed  Google Scholar 

  11. Aime S et al. (2002) Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging 16: 394–406

    Article  Google Scholar 

  12. Suzuki H et al. (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386: 292–296

    Article  CAS  Google Scholar 

  13. Gough PJ et al. (1999) Analysis of macrophage scavenger receptor (SR-A) expression in human aortic atherosclerotic lesions. Arterioscler Thromb Vasc Biol 19: 461–471

    Article  CAS  Google Scholar 

  14. Nakata A et al. (1999) CD36, a novel receptor for oxidized low-density lipoproteins, is highly expressed on lipid-laden macrophages in human atherosclerotic aorta. Arterioscler Thromb Vasc Biol 19: 1333–1339

    Article  CAS  Google Scholar 

  15. Weissleder R et al. (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175: 489–493

    Article  CAS  Google Scholar 

  16. Saini S et al. (1987) Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. Radiology 162: 211–216

    Article  CAS  Google Scholar 

  17. Weissleder R et al. (1990) Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175: 494–498

    Article  CAS  Google Scholar 

  18. Litovsky S et al. (2003) Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-α, interleukin-1β, and interferon-γ. Circulation 107: 1545–1549

    Article  Google Scholar 

  19. Kanno S et al. (2001) Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 104: 934–938

    Article  CAS  Google Scholar 

  20. Ruehm SG et al. (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103: 415–422

    Article  CAS  Google Scholar 

  21. Kooi ME et al. (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107: 2453–2458

    Article  CAS  Google Scholar 

  22. Tsimikas S (2002) Noninvasive imaging of oxidized low-density lipoprotein in atherosclerotic plaques with tagged oxidation-specific antibodies. Am J Cardiol 90: 22L–27L

    Article  CAS  Google Scholar 

  23. Ehara S et al. (2001) Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation 103: 1955–1960

    Article  CAS  Google Scholar 

  24. Tsimikas S et al. (1999) Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol 6: 41–53

    Article  CAS  Google Scholar 

  25. Tsimikas S et al. (2000) In vivo uptake of radiolabeled MDA2, an oxidation-specific monoclonal antibody, provides an accurate measure of atherosclerotic lesions rich in oxidized LDL and is highly sensitive to their regression. Arterioscler Thromb Vasc Biol 20: 689–697

    Article  CAS  Google Scholar 

  26. Brooks PC et al. (1994) Requirement of vascular Radiology 221: 237–243

    Google Scholar 

  27. O'Brien ER et al. (1994) Angiogenesis in human coronary atherosclerotic plaques. Am J Pathol 145: 883–894

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Winter PM et al. (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with αvβ3-integrin-targeted nanoparticles. Circulation 108: 2270–2274

    Article  CAS  Google Scholar 

  29. Winter PM et al. (2003) Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel αvβ3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 63: 5838–5843

    CAS  PubMed  Google Scholar 

  30. Anderson SA et al. (2000) Magnetic resonance contrast enhancement of neovasculature with αvβ3-targeted nanoparticles. Magn Reson Med 44: 433–439

    Article  CAS  Google Scholar 

  31. Volker W et al. (1989) Cytochemical changes in a human arterial proteoglycan related to atherosclerosis. Atherosclerosis 77: 117–130

    Article  CAS  Google Scholar 

  32. Kolodgie FD et al. (2002) Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol 22: 1642–1648

    Article  CAS  Google Scholar 

  33. Wallner K et al. (1999) Tenascin-C is expressed in macrophage-rich human coronary atherosclerotic plaque. Circulation 99: 1284–1289

    Article  CAS  Google Scholar 

  34. Aguinaldo JGS et al. (2002) Atheroslcerotic plaque imaging using a novel contrast agent gadofluorine M [Abstract]. Mol Imaging 2: s282

    Google Scholar 

  35. Barkhausen J et al. (2003) Detection of atherosclerotic plaque with gadofluorine-enhanced magnetic resonance imaging. Circulation 108: 605–609

    Article  CAS  Google Scholar 

  36. Sirol M et al. (2004) Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 109: 2890–2896

    Article  CAS  Google Scholar 

  37. Brown DL et al. (1995) Identification of 92-kD gelatinase in human coronary atherosclerotic lesions: association of active enzyme synthesis with unstable angina. Circulation 91: 2125–2131

    Article  CAS  Google Scholar 

  38. Cipollone F et al. (2001) Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of prostaglandin E(2)-dependent plaque instability. Circulation 104: 921–927

    Article  CAS  Google Scholar 

  39. Diamant M et al. (2004) Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest 34: 392–401

    Article  CAS  Google Scholar 

  40. Jonasson L et al. (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6: 131–138

    Article  CAS  Google Scholar 

  41. Mallat Z et al. (1999) Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 99: 348–353

    Article  CAS  Google Scholar 

  42. Himber J et al. (2003) Inhibition of tissue factor limits the growth of venous thrombus in the rabbit. J Thromb Haemost 1: 889–895

    Article  CAS  Google Scholar 

  43. Morawski AM et al. (2004) Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 51: 480–486

    Article  CAS  Google Scholar 

  44. Flacke S et al. (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104: 1280–1285

    Article  CAS  Google Scholar 

  45. Winter PM et al. (2003) Improved molecular imaging contrast agent for detection of human thrombus. Magn Reson Med 50: 411–416

    Article  CAS  Google Scholar 

  46. Yu X et al. (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44: 867–872

    Article  CAS  Google Scholar 

  47. Schmitz SA et al. (2001) USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits. Radiology 221: 237–243

    Article  CAS  Google Scholar 

  48. Johansson LO et al. (2001) A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J Magn Reson Imaging 13: 615–618

    Article  CAS  Google Scholar 

  49. Jaffer FA and Weissleder R (2004) Seeing within: molecular imaging of the cardiovascular system. Circ Res 94: 433–445

    Article  CAS  Google Scholar 

  50. Fayad ZA et al. (2002) Detection of arterial thrombi in vivo by MRI using a fibrin-targeted contrast agent [Abstract II–435]. Circulation 106

Download references

Acknowledgements

Marc Sirol helped with this paper and MR images. MJL received funding from Stanley J Sarnoff Endowment, and ZAF from NIH/NHLBI R01 HL71021 and HL078667.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahi A Fayad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipinski, M., Fuster, V., Fisher, E. et al. Technology Insight: targeting of biological molecules for evaluation of high-risk atherosclerotic plaques with magnetic resonance imaging. Nat Rev Cardiol 1, 48–55 (2004). https://doi.org/10.1038/ncpcardio0013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio0013

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing