
ARTICLE

Received 27 Feb 2015 | Accepted 12 Oct 2015 | Published 23 Nov 2015

AF4 uses the SL1 components of RNAP1 machinery
to initiate MLL fusion- and AEP-dependent
transcription
Hiroshi Okuda1, Akinori Kanai2, Shinji Ito3, Hirotaka Matsui2,w & Akihiko Yokoyama1

Gene rearrangements generate MLL fusion genes, which can lead to aggressive leukemia. In

most cases, MLL fuses with a gene encoding a component of the AEP (AF4 family/ENL

family/P-TEFb) coactivator complex. MLL–AEP fusion proteins constitutively activate their

target genes to immortalize haematopoietic progenitors. Here we show that AEP and

MLL–AEP fusion proteins activate transcription through selectivity factor 1 (SL1), a core

component of the pre-initiation complex (PIC) of RNA polymerase I (RNAP1). The pSER

domain of AF4 family proteins associates with SL1 on chromatin and loads TATA-binding

protein (TBP) onto the promoter to initiate RNA polymerase II (RNAP2)-dependent tran-

scription. These results reveal a previously unknown transcription initiation mechanism

involving AEP and a role for SL1 as a TBP-loading factor in RNAP2-dependent gene activation.
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C
hromosomal translocations generate a variety of MLL
(also known as KMT2A, MLL1, HRX and ALL-1) fusion
genes, which cause acute leukemia in myeloid and

lymphoid lineages1. Although 470 different fusion partners
have been identified2, the majority of leukemia cases are caused
by the chimeric genes formed by MLL and a gene encoding a
component of the AEP (AF4 family/ENL family/P-TEFb)
coactivator complex3. The AEP complex comprises AF4 family
proteins (for example, AF4 and AF5Q31), ENL family proteins
(for example, ENL and AF9) and the P-TEFb elongation factor.
Similar, if not identical, complexes have been identified and
shown to play important roles in various biological processes (for
example, heat shock response and transcription of the HIV viral
genome)4–7. AEP associates with RNA polymerase II (RNAP2)-
specific factors, including the polymerase II-associated factor 1
complex5 and the mediator complex8, and thus appears to be
closely linked to RNAP2-dependent transcription. MLL–AEP
fusion proteins constitutively activate their target genes by
recruiting AEP components to the target chromatin, whereas
wild-type MLL recruits AEP in a context-dependent manner3. In
the haematopoietic lineage, MLL fusion proteins aberrantly
activate a subset of genes implicated in the haematopoietic stem
cell programme, such as HOXA9 and MEIS1 (ref. 9). Constitutive
expression of these genes in haematopoietic progenitors has been
shown to induce leukemia in a mouse model10, suggesting that a
gain-of-function mechanism underlies the development of MLL
leukemia. MLL fusion proteins form a complex with MENIN and
LEDGF, and the MLL fusion protein complex directly binds to
target chromatin through the PWWP domain of LEDGF and the
CXXC domain of MLL11–13. The PWWP domain recognizes
di-/trimethylated histone H3 lysine 36, which normally associates
with transcriptionally active regions14,15. The CXXC domain
specifically binds to non-methylated CpGs, which are enriched in
active promoters16. Consequently, MLL–AEP fusion proteins
target previously active CpG-rich promoters, where they recruit
AEP components to activate transcription. As AEP contains the
P-TEFb elongation factor, it has been suggested that MLL–AEP
fusion proteins mainly activate transcription by releasing RNAP2
from promoter-proximal pausing17. However, it remains largely
unknown how MLL–AEP fusion proteins activate their target
genes.

Here we report that a serine-rich domain in AF4 family
proteins, termed pSER, is an essential functional component of
MLL–AEP fusion-dependent gene activation and leukemic
transformation. Through biochemical purification, we identified
selectivity factor 1 (SL1) as a novel factor associated with the
pSER domain. SL1, comprising TATA-binding protein (TBP) and
four TATA box-binding protein-associated factors (TAFIs;
TAF1A/TAFI48, TAF1B/TAFI63, TAF1C/TAFI110 and TAF1D/
TAFI41), is a core component of the pre-initiation complex (PIC)
of RNA polymerase I (RNAP1; refs 18–21). In the presence of
upstream binding factor (UBF), SL1 forms a PIC on the
promoters of ribosomal RNA genes to drive RNAP1-dependent
transcription22. However, it is unknown whether SL1 plays a role
in RNAP2-dependent transcription. Our results indicate that the
AEP coactivator complex facilitates the initiation of RNAP2-
dependent transcription via SL1 activity by loading TBP onto the
TATA element. MLL–AEP fusion proteins use this TBP-loading
function to activate transcription in leukemic transformation,
whereas the wild-type AEP complex activates gene expression in
the same manner under physiological conditions.

Results
The pSER domain drives myeloid transformation. In ex vivo
conditions, MLL fusion proteins transform myeloid progenitors

by constitutively activating haematopoietic stem cell programme
genes such as Hoxa9 (ref. 23). As transformation leads to the
immortalization of myeloid progenitors, it is a critical event in
leukemogenesis induced by MLL fusion proteins24. Their
transforming properties are evidenced by sustained expression
of Hoxa9 in the first round colonies and vigorous colony-forming
activities in the third and fourth rounds of replating in myeloid
progenitor transformation assays (Fig. 1a,b). The minimal
functional domains of the fusion partner portions of MLL–ENL
and MLL–AF5Q31 required for transformation are the ANC1
homology domain (AHD) of ENL (also known as MLLT1)11,25

and the carboxy-terminal homology domain (CHD) of
AF5Q31 (also known as AFF4), respectively3 (Fig. 1b).
Immunoprecipitation (IP) followed by western blotting (WB)
showed that both of the fusion partner portions serve as a
binding platform for AF4 (also known as AFF1). The ENL
portion also associated with DOT1L, another ENL-associated
factor7 implicated in MLL fusion-dependent leukemogenesis26–30.
On the other hand, MLL–AF5Q31-4 did not pull down DOT1L,
indicating that direct recruitment of DOT1L is not critical for
transformation (Fig. 1c). Removal of the AF4-binding platform
resulted in loss of transforming activity3 (Fig. 1b). Thus,
recruitment of AF4 appears to be essential for MLL–AEP fusion-
dependent gene activation and transformation. With that in mind,
we inferred that one or more functional domains in AF4, besides
the CHD, are responsible for MLL–AEP fusion-dependent gene
activation and transformation. Recently, we identified the minimum
targeting module of MLL–AEP fusion proteins that is sufficient for
the recognition of target chromatin. The module comprises the
PWWP domain and the CXXC domain11 (Fig. 1b). An artificial
gene in which the minimum targeting module was fused to the
AHD of ENL or to the CHD of AF5Q31 activated Hoxa9 and
immortalized myeloid progenitors (Fig. 1b). To investigate the role
of the functional domains of AF4 in MLL fusion-dependent
transformation, we constructed a series of mutants in which the
minimum targeting module was tethered to the subdivided
domains of AF4, termed AF4-1, AF4-2N, AF4-2C and AF4-3
(Fig. 1b,d), and examined their transforming ability. Of the four
AF4 domains, only the AF4-2C domain, which encompasses the
evolutionarily conserved pSER domain, exhibited transforming
abilities (Fig. 1b). These results suggest that the pSER domain of
AF4 mediates the transformation of myeloid progenitors induced
by MLL–AEP fusion proteins.

The pSER domain associates with SL1 on chromatin. Next, we
characterized the transcriptional properties of each AF4 domain.
To this end, we generated a series of constructs in which a GAL4
DNA-binding domain was fused to each subdivided domain of
AF4. Transactivation assays using a GAL4-responsive reporter
showed that the FLAG-tagged GAL4–AF4-2C fusion protein
(fG–AF4-2C) had substantial transactivation activity (Fig. 2a),
consistent with previous reports3,31,32. As transcription takes
place on chromatin in vivo, we inferred that the pSER domain
associated with cofactors on chromatin to activate transcription.
To purify the chromatin protein complex, we used the
fractionation-assisted native chromatin IP (fanChIP) method,
which we previously established11. In this method, chromatin-
unbound materials are removed by cytoskeleton buffer extraction,
and chromatin and chromatin-bound materials are solubilized by
micrococcal nuclease (MNase) digestion followed by exposure to
detergent (Supplementary Fig. 1a). The factors that associated
specifically with fG–AF4-2C on chromatin were copurified from
the chromatin fraction by affinity purification using an anti-
FLAG antibody (Supplementary Fig. 1b). Mass spectrometry
analysis of the purified materials showed that all components of
SL1 bound to the pSER domain (Fig. 2b). FanChIP analysis
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followed by WB (fanChIP–WB) confirmed that the pSER domain
associated specifically with endogenous TAF1C and TBP, but not
with TFIIB, TAF1 (TAFIIp250), RRN3 or RNAP1 (POLR1A;
Supplementary Fig. 1c), whereas the other domains exhibited
their own cofactor binding properties (for example, AF4-1-bound
CDK9 (a component of P-TEFb) and AF4-2N-bound Eleven-
nineteen lysine-rich leukemia protein (ELL); Fig. 2c). The pSER
domain pulled down all the components of SL1 that were

exogenously expressed, either individually (Supplementary
Fig. 1d) or simultaneously (Fig. 2d). This interaction occurred
only on chromatin (Fig. 2e) but was not dependent on DNA
(Fig. 2f). Wild-type AF4 also pulled down TAF1C, along with
ENL and CDK9 (Fig. 2g). Moreover, MLL–ENL and MLL–
AF5Q31-4 pulled down TAF1C when co-expressed with MENIN
and AF4 (Fig. 2h). Hence, both AEP and the MLL–AEP fusion
proteins specifically associate with SL1 on chromatin.
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Figure 1 | MLL–AEP transforms myeloid progenitors through the pSER domain. (a) Schema of the myeloid progenitor transformation assay. Various

constructs for MLL fusion genes cloned into the pMSCV-neo vector were used for gene transduction. (b) Transforming ability of various MLL–AEP fusion

proteins. AF4 and AF5Q31 were subdivided into five regions designated 1, 2N, 2C, 3 and 4. P0, the minimum structure of the PWWP domain of LEDGF; C0 þ ,

the minimum structure of the CXXC domain of MLL and its C-terminal region; ENL0, the minimum structure of the AHD; f, the FLAG epitope (black flag); h,

the haemagglutinin (HA) epitope (red flag). Hoxa9 expression normalized to Gapdh is shown as the relative value of P0C0 þ h-ENL0 (arbitrarily set at 100%)

with error bars (s.d. of PCR triplicates). The number of colony-forming units (CFUs) at the third and fourth rounds of replating is shown with error bars (s.d.

from 43 independent experiments). AHD, ANC homology domain; ALF, AF4/LAF4/FMR2 homology domain; A9ID, AF9 interaction domain; CHD,

C-terminal homology domain; CXXC, CXXC domain; hMBM, high affinity MENIN-binding motif; HMT, histon methyltransferase catalytic domain; IBD,

integrase-binding domain; LBD, LEDGF-binding domain; MISD, minimum interaction site of DOT1L; NHD, N-terminal homology domain; pSER, homology

domain containing a high number of serines (poly-serine); PWWP, PWWP domain; SET, SET domain. (c) AF4 binds MLL–ENL and MLL–AF5Q31-4. AF4

tagged with an Xpress epitope (denoted by x) was co-expressed with FLAG-tagged MLL–AEP fusion proteins in 293T cells and subjected to IP–WB.

The MLL fusion genes and the AF4 gene were cloned into pCMV5 vector and the pcDNA4 HisMax vector, respectively, and used for transient expression.

The sample shown in the input lane is indicated by an asterisk. (d) Protein expression of the various MLL mutants. The expression of various P0C0 þ
mutants in the virus packaging cells was visualized using an anti-HA antibody.
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MLL–ENL co-localizes with TAF1C at the target promoters. To
examine whether MLL–AEP fusion proteins co-localize with SL1
at target promoters, we performed a fanChIP assay followed by
deep sequencing (fanChIP-seq) with HB1119 cells, which har-
bour a t(11;19) translocation and therefore express the MLL–ENL
protein. From the enriched ChIP signals obtained using an anti-
MLL antibody (Fig. 3a and Supplementary Fig. 2a), we identified
a representative set of MLL target genes (112 genes), which
included many previously identified direct MLL target genes such
as HOXA9, MEIS1, RUNX2, CDKN1B and CDKN2C3,33

(Supplementary Table 1). The average distribution of the MLL
proteins at the MLL target promoters suggested that MLL–ENL
associated with chromatin near the transcription start sites

(Fig. 3b). ChIP signals for AF4 and TAF1C were also observed at
the MLL target promoters (Fig. 3a,b and Supplementary Fig. 2a).
The signal intensity of TAF1C was highly correlated with those of
MLL and AF4 at the promoter proximal regions of the MLL
target loci (Supplementary Fig. 2b). This was confirmed by the
results of a fanChIP assay followed by quantitative PCR (qPCR)
analysis (fanChIP–qPCR), performed for several MLL target loci
(Fig. 3c). FanChIP–qPCR analysis using anti-MENIN, anti-CDK9
and anti-TBP antibodies demonstrated that the MLL–ENL/AF4/
SL1 complex formed at the MLL target promoters. RNAP2 and its
cofactors, such as NELF, also localized at the MLL target
promoters (Fig. 3c). Expression of these genes was sensitive to
a-amanitin treatment (Supplementary Fig. 2c), suggesting that
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RNAP2-dependent transcription occurs at MLL–ENL target
genes. These results indicate that SL1 facilitates, rather than
inhibits, RNAP2-dependent transcription at MLL target genes
(Fig. 3d).

TAF1C is required for AEP-dependent gene activation. To
examine whether SL1 is required for MLL–ENL-dependent gene
activation, we knocked down Taf1c in MLL–ENL-transformed
cells by using two different short hairpin RNAs (shRNAs).

Knockdown of Taf1c decreased the expression of MLL–ENL
target genes (Hoxa9, Hoxa10 and Runx2; Fig. 4a). These results
suggest that TAF1C is an essential cofactor for MLL–AEP
fusion-dependent gene activation.

Next, we tested whether SL1 is required for AEP-dependent
transcription in a non-oncogenic context. Taf1c was knocked
down in immortalized mouse embryonic fibroblasts (iMEFs). As
wild-type MLL collaborates with AEP at many target genes3, the
expressions of Hoxc8, Hoxc9, Cdkn1b and Cdkn2c are dependent
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indicates the ChIP-seq tag count (p.p.m.) in 100-bp increments. (c) Localization of MLL, MENIN, AF4, CDK9, TAF1C, TBP, RNAP2 and NELF-A at various

loci in HB1119 cells. The genomic localization of each protein was determined with fanChIP–qPCR. The precipitated DNA was analysed using specific probes

for the pre-TSS (� 1.0 to �0.5 kb from the TSS), TSS (0 to þ0.5 kb from the TSS) and post-TSS (þ 1.0 to þ 1.5 kb from the TSS) regions of the indicated

genes. The ChIP signals were expressed as the per cent input with error bars (s.d. of PCR triplicates). (d) A model for the cooperative transactivation of

MLL target genes by SL1 and the RNAP2 transcriptional machinery. PIC, pre-initiation complex.
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on both ENL and MLL in iMEFs (Supplementary Fig. 3a,b).
shRNAs against Taf1c decreased the expression of the MLL/AEP
target genes (Fig. 4b). Moreover, messenger RNA sequencing
analysis showed that knockdown of Taf1c globally downregulated
ENL and MLL target genes in iMEFs (Fig. 4c and Supplementary
Fig. 3c–g). These results indicate that SL1 is required for gene
activation mediated by the MLL/AEP axis.

Unique mode of transcription initiation by the pSER domain.
To examine whether the initiation of RNAP2-dependent tran-
scription by the pSER domain is responsible for MLL–AEP
fusion-dependent transformation, we generated artificial genes in
which the minimum targeting module of MLL was fused to
various transactivation domains (ADs) that have been shown to
initiate RNAP2-dependent transcription. We tested their
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Figure 4 | TAF1C is required for gene activation by MLL–ENL and AEP. (a) The expression of MLL–ENL target genes (Hoxa9, Hoxa10 and Runx2) after

knockdown of Taf1c with two different shRNAs in MLL–ENL-transformed cells. The expression level normalized to Tbp is shown relative to the value of the

vector control (arbitrarily set at 100%) with error bars (s.d. of PCR triplicates). Puro, puromycin. (b) Effect of Taf1c knockdown on AEP-dependent gene

activation. Taf1c was knocked down with two different shRNAs in iMEFs. The expression of AEP target genes (Hoxc8, Hoxc9, Cdkn1b and Cdkn2c) was

analysed with reverse transcriptase (RT)–qPCR as described in a. (c) Gene set enrichment analysis (GSEA) of the expression profiles of iMEFs after

knockdown of Taf1c (#1 and #2), Enl and Mll. Genes that exhibited a greater than threefold decrease on knockdown in RNA sequencing (RNA-seq) were
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with shRNA#2. Expression levels of the target genes were also shown by scatter plots. Target genes of ENL, MLL and TAF1C are highlighted in blue. FDR,
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transforming ability in myeloid progenitor transforming assays
(Fig. 5a,b). The AD of VP16 recruits mediators, the basic tran-
scriptional machinery and CBP/p300 coactivators to initiate
RNAP2-dependent transcription34–37. The AD of MLL also
recruits CBP/p300 coactivators (Supplementary Fig. 4) to activate
transcription in transactivation assays38,39. Both ADs were able to
functionally substitute for the pSER domain of AF4 in the
myeloid progenitor transformation assay (Fig. 5a,b). Hence, the
ability to initiate RNAP2-dependent transcription appears to be
an essential function of the pSER domain in MLL–AEP fusion-
dependent transformation. Next, we generated constructs in
which a GAL4 DNA-binding domain was fused to the same ADs
(Fig. 5c). FanChIP–WB analysis of the GAL4 fusion proteins

showed that only the pSER domain formed a complex with SL1
(Fig. 5d). To analyse transcription activation in a chromatin
context, we established a 293T cell line in which the GAL4-
responsive reporter cassette was inserted into the genome.
Transactivation assays using this cell line showed that the pSER
domain retained its transactivation activity in a chromatin
context, which was the weakest of the three ADs (Fig. 5c) and
was susceptible to a-amanitin treatment (Supplementary Fig. 4b).
FanChIP–qPCR analysis showed that both TAF1C and TBP were
efficiently recruited to the promoter through the pSER domain,
whereas the ADs of MLL and VP16 recruited TBP, but not
TAF1C, to the promoter (Fig. 5e). TAF1, a component of the
TFIID complex40, was recruited to the promoter by the ADs of
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MLL and VP16 but not by the pSER domain (Fig. 5e). These
results suggest that the pSER domain uses SL1 exclusively as the
primary TBP recruiting factor to activate transcription initiation,
whereas the ADs of MLL and VP16 use TFIID for TBP
recruitment (Fig. 5f).

The pSER domain loads TBP onto the TATA element via SL1.
To evaluate the importance of the TATA element in pSER-
dependent transactivation, we generated a reporter plasmid
lacking the TATA element (Fig. 6a). The TATA-deleted reporter
(dTATA) or the TATA-containing reporter (control) was stably
inserted into the genome of 293T cells and the transactivation
activities of fG–AF4-2C were measured. The pSER-dependent
transactivation activity on the dTATA reporter was drastically
impaired, compared with that on the control reporter (Fig. 6b).
Similar results were obtained when reporter plasmids with or
without the TATA element were transfected into 293T cells

(Supplementary Fig. 5), arguing against the possibility that the
observed decrease in transcription from the dTATA reporter was
due to the different genomic positions of the reporter cassettes.
The ADs of MLL and VP16 behaved in a similar manner (Fig. 6b
and Supplementary Fig. 5), suggesting that all three transactiva-
tion modules require the presence of the TATA element for
efficient transcription in this promoter context. The localization
of the GAL4 fusion proteins to the GAL4-responesive elements
was not affected by the absence of a TATA element (Fig. 6c).
Regardless of the presence of a TATA element, the pSER domain
recruited TAF1C and TBP to the promoter. On the other hand,
TBP recruitment was severely impaired in MLL–AD- or VP16–
AD-dependent transactivation on the dTATA reporter, suggest-
ing that TBP was not stably tethered to the dTATA promoter as
part of the TFIID complex. These results indicate that the pSER
domain tethers SL1 on chromatin in a TATA element-indepen-
dent manner and loads TBP onto the TATA element to initiate
transcription in this promoter context.

Functional cooperation of multiple pSER subdomains. To
dissect the molecular mechanism underlying transactivation by
the pSER domain, we generated a series of AF4-2C mutants in
which the minimum targeting module was tethered to further
subdivided portions of the pSER domain (designated as a, b and c;
Fig. 7a,b). The pSER domain contains two evolutionally con-
served motifs, the SDE motif and the NKW motif in the b and c
portions, respectively. A myeloid progenitor transformation assay
showed that both the b and c portions of AF4 and AF5Q31 were
required for transformation, whereas deletion of the SDE motif or
the NKW motif abolished transforming ability (Fig. 7b,c). Hence,
the evolutionary conserved functions of the SDE and NKW
motifs are critical for MLL–AEP fusion-dependent transactiva-
tion and transformation. Consistent with these observations,
a transactivation assay with the corresponding GAL4 fusion
proteins showed that both the SDE and NKW motifs were
necessary for transactivation (Fig. 7d). FanChIP–WB analysis
showed that the SDE motif, but not the NKW motif, was suffi-
cient for binding to SL1 (Fig. 7e). FanChIP–qPCR analysis
showed that a mutant lacking the NKW motif recruited TAF1C
and TBP to the promoter (Fig. 7f), suggesting that the mutant is
competent in SL1 recruitment but defective in transcription
initiation. Taken together, these results indicate that AF4 family
proteins first recruit SL1 onto chromatin through the SDE motif
and subsequently initiate RNAP2-dependent transcription
through the NKW motif (Fig. 8).

Discussion
In this study, we identified an additional important layer of
complexity in the effects of MLL fusion proteins on target genes.
Our results indicate that the recruitment of AF4 family proteins is
a critical first step in MLL–AEP fusion-dependent leukemic
transformation. The pSER domain of AF4 associated with SL1 on
chromatin to activate RNAP2-dependent transcription by loading
TBP onto the promoter. The results show that SL1 is a
TBP-loading factor involved in gene activation induced by
MLL–AEP fusion proteins and wild-type AEP.

AEP contains the P-TEFb elongation factor and associates with
ELL family proteins, both of which exhibit transcription
elongation activity41,42. Therefore, the AEP complex is also
referred to as the super elongation complex4. These discoveries
led to the suggestion that transcription elongation activity plays
an essential role in MLL–AEP fusion-dependent leukemic
transformation. However, our detailed structure/function
analyses showed that neither of the binding platforms for
P-TEFb or ELL conferred transforming abilities (Fig. 1b and
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Figure 6 | The TATA element potentiates pSER-dependent

transcriptional activation. (a) Schematic structures of the GAL4-

responsive reporter with or without the TATA element. The FR–LUC

reporter is termed ‘Control’ and the TATA-deficient version lacking the

TATATA sequence of the TATA element is termed ‘dTATA’.

(b) Requirement for the TATA element for transactivation by various ADs.

293T–RL–LUC cells carrying the TK–RL reporter and the FR–LUC reporter,

with (control) or without (dTATA) the TATA element, were transiently

transfected with the pCMV5 expression vectors for various GAL4 fusion

proteins. Promoter activity was assessed with the dual luciferase reporter

assay. Transcription activation activities, normalized to the RL activity, are

shown relative to the value of each control (arbitrarily set as 100).

(c) Localization of FLAG-tagged GAL4–AD fusion proteins, TAF1C and TBP

on the chromatinized luciferase promoter with or without the TATA

element. Each FLAG-tagged GAL4–AD fusion protein was expressed in

293T–RL–LUC (control or dTATA) cells and subjected to fanChIP–qPCR

using the indicated antibodies. Precipitated DNA was analysed with qPCR,

using a probe specific to the pre-transcription start site (TSS) region, as

shown in a.
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Fig. 2c), indicating that transcription elongation activity is not
sufficient for MLL–AEP fusion-dependent gene activation.
Instead, the pSER domain, which harbours transcription
initiation activities, conferred transforming abilities to
MLL–AEP fusion proteins. Hence, the AEP complex is more
than an elongation complex: it serves as a multi-functional
transcriptional coactivator that facilitates many steps of the
transcription cycle.

DOT1L has been shown to play important roles in MLL
fusion-dependent leukemic transformation43. DOT1L
recruitment through direct interaction enhances transforming
potentials44. Consistent with these reports, the clonogenicities of
the AF5Q31 CHD fusion proteins, which is deficient for DOT1L
recruitment, were weaker than those of the ENL AHD fusion

proteins (Fig. 1b,c). These results suggest a supporting role of
DOT1L for AEP-dependent gene activation, which is probably
mediated by its histone methyltransferease activity that
establishes the chromatin environment repellent to SIRT1-
dependent gene silencing45.

SL1, which comprises TBP and four TAFI proteins, confers
promoter selectivity to RNAP1 (ref. 22). On the other hand, the
TFIID complex, which comprises a number of TAFII proteins,
plays a major role in RNAP2-depednent transcription40. As TBP
associates with TAF1s and TAFIIs in a mutually exclusive
manner19, it has long been thought that the functions of SL1
were restricted to RNAP1-dependent transcription. However,
our biochemical analyses identified SL1 as a specific binding
partner of the AEP coactivator complex that activates
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Figure 7 | The SDE and NKW motifs collaborate to initiate transcription. (a) Alignment of the amino acid sequences of the SDE and NKW motifs of

human AF4 family proteins. Multiple alignments were performed using the Clustal W software. ‘*’, 100% amino acid identity; ‘.’,75% amino acid similarity.

The SDE and NKWmotifs are shown in open red boxes. (b) Transforming ability of P0C0 þ mutants fused with various pSER subdomains. Hoxa9 expression

in the first round colonies and the colony-forming units (CFUs) at the third and fourth rounds of replating are shown as described in Fig. 5a. (c) Protein

expression of the P0C0 þ mutants fused with various AF4-2C subdomains in the packaging cells. (d) Transactivation by various pSER subdomains. The

ability to recruit SL1 is indicated. A transactivation assay was performed as described in Fig. 5c. (e) Association of SL1 components with various pSER

subdomains. FLAG-tagged GAL4-pSER subdomains fusion proteins were expressed in 293T–LUC cells and subjected to fanChIP–WB. The sample shown in

the input lane is indicated by an asterisk. (f) Localization of FLAG-tagged GAL4-pSER subdomain fusion proteins, TAF1C and TBP on the chromatinized

luciferase promoter. Each FLAG-tagged GAL4-pSER subdomain fusion protein was expressed in 293T–LUC cells and subjected to fanChIP–qPCR as

described in Fig. 5e.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9869 ARTICLE

NATURE COMMUNICATIONS | 6:8869 | DOI: 10.1038/ncomms9869 | www.nature.com/naturecommunications 9

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


RNAP2-dependent transcription (Fig. 2). The MLL/AEP axis
maintains the expression of cellular memory genes, such as Hox
genes (Fig. 4b,c)3,46,47. It is unclear how AEP/SL1-dependent
transcriptional activation is advantageous in the maintenance of
cellular memory genes. SL1 may have other properties in addition
to promoting transcription initiation such as preventing
transcriptional repression by Polycomb complexes that promote
steady expression.

Our results suggest that two evolutionarily conserved motifs in
the AF4 family proteins are required for the SL1-dependent
activation of RNAP2-dependent transcription. One is the SDE
motif, the primary binding platform for SL1. The amino acid
sequence of this motif is similar to that of the SL1-binding motif
in UBF48. Therefore, AF4–SL1 binding probably occurs through a
mechanism similar to that underlying UBF–SL1 binding. The
other critical motif is the NKW motif. Despite our extensive
efforts to identify proteins that specifically bind this motif, none
has yet been identified. Although we do not rule out the
possibilities that other transcriptional regulators are recruited to
the NKWmotif, we infer that the NKWmotif binds to the surface
of SL1 itself to induce conformational changes. TAF1B is
structurally similar to TFIIB49,50 and is predicted to position
itself in the RNAP1–PIC, similar to TFIIB in the RNAP2–PIC51.
Therefore, for RNAP2-dependent transcription to proceed
following the binding of SL1 to the promoter, TFIIB must
replace TAF1B as the binding partner of TBP. Given these
observations and assumptions, we infer that (1) AF4 family

proteins recruit SL1 to the target chromatin primarily through the
SDE motif, (2) further association through the NKW motif
changes the conformation of chromatin-bound SL1, releasing
TAF1B, (3) and TAF1B-deficient SL1 is bound by TFIIB, which
then forms the PIC of RNAP2 to initiate transcription (Fig. 8).
The presence of a TATA element that conforms to theB90� bent
structure required for the PIC formation52–54 potentiates this
process (Fig. 6). Thus, SL1 might facilitate probing for DNA
sequences suited to TBP-induced bending. SL1 might induce a
similar bent structure to form the PIC of RNAP1 (ref. 51) at the
ribosomal RNA promoters that lack a TATA element22. Most
gene promoters do not contain TATA elements that satisfy the
TATA box consensus sequence. It appears that TATA-like
AT-rich sequences serve as alternative TBP-binding sequences to
promote transcription at TATA-less promoters55,56. The AEP/
SL1 complex might facilitate the formation of the TBP–DNA
complex and the subsequent induction of DNA bending not only
at the TATA element but also at TATA-like AT-rich sequences.

In summary, our study identified a novel cofactor of MLL–AEP
fusion proteins and the AEP coactivator complex. To our
surprise, the essential cofactor required for AEP-dependent gene
activation is SL1, a component of the PIC of RNAP1. These
results not only provide significant insights into the molecular
mechanisms underlying MLL fusion-mediated leukemogenesis
but also shed light on the previously unrecognized involvement of
SL1 in RNAP2-dependent transcription.

Methods
Vector construction. The pMSCV-neo-FLAG-MLL-ENL vector and its deriva-
tives11, the pBICEP2-AF4 vector3 and the pcDNA3.1 hygro (þ )-MEN1-HA
vector12 were generated previously. Various new gene constructs were generated
through restriction enzyme digestion/PCR-based mutagenesis. The complementary
DNAs were cloned into the pMSCV neo vector (for virus production; Clontech) or
into the pCMV5 vector and the pcDNA4 HisMax vector (for transient expression).
The pFR-LUC plasmid with the deletion of the TATATA sequence in the TATA
element was made by GeneArt Gene Synthesis (Life Technologies) from the
pFR-LUC plasmid (Agilent). The pLKO.1-puro-FR-LUC vectors and its blasticidin
version, with or without the TATA element, were generated by restriction enzyme
digestion/PCR-based mutagenesis of the pFR-LUC plasmids, the pLKO.1 vector
(GE Healthcare) and a blasticidin cassette. pLKO.1-hygro–TK–RL vector and its
zeocin version, which contains the Herpes simplex virus thymidine kinase
promoter, the Renilla luciferase (RL) coding sequence and a hygromycin or zeocin
cassette was generated by restriction enzyme digestion/PCR-based mutagenesis of
the pRL–TK plasmid (Promega), the pLKO.1 vector and a hygromycin or zeocin
cassette. The shRNA expression vectors, targeting murine Enl (TRCN0000084405),
Men1 (TRCN0000034394), Mll (TRCN0000034426), Taf1c#1 (TRCN0000082215)
and Taf1c#2 (TRCN0000082217) were obtained from GE Healthcare.

Cells and cell culture. The human leukemia cell line HB1119 (ref. 3) was cultured
in RPMI 1640 medium, supplemented with 10% fetal bovine serum (FBS) and
penicillin–streptomycin (PS). The 293T and 293TN (System Biosciences) cell lines
and iMEFs57 were cultured in DMEM medium supplemented with 10% FBS and
PS. To exclude the effects of the mosaic expression of Hox genes in iMEFs, cells
were cloned once to establish a cell line that expressed a certain set of Hox genes
homogeneously. Ecotropic virus packaging cells (PLAT-E cells)58 were cultured in
DMEM supplemented with 10% FBS, puromycin, blasticidin and PS. 293T–LUC
cells were generated by transduction of the lentivirus carrying pLKO1-puro-FR-
LUC. 293T–RL–LUC cells were generated by sequential transduction of the pLKO-
hygro–TK–RL reporter and the pLKO-puro-FR-LUC reporter with or without the
TATA element. 293T–LUC–fG cell lines were generated by sequential transduction
of pLKO-zeo–TK–RL reporter, the pLKO-bla-FR-LUC reporter and the pMSCV-
hygro-fGAL4 fusion vectors.

Antibodies. The antibodies used for the assays are described in Supplementary
Table 2. The uncropped WBs are provided in Supplementary Figs 6–11.

Virus production. The ecotropic retrovirus was produced using PLAT-E packa-
ging cells58. The lentivirus was produced in 293TN cells using the pMDLg/pRRE,
pRSV-rev and pMD2.G vectors59. The supernatant medium containing the virus
was harvested 24–48 h following transfection and used in viral transduction.
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Myeloid progenitor transformation assay. The myeloid progenitor transfor-
mation assay was performed using cells harvested from the femurs and tibiae of
5-week-old female C57BL/6 mice11. C-Kit-positive cells were enriched using
magnetic beads conjugated with an anti-c-Kit antibody (Miltenyi Biotech),
transduced with a recombinant retrovirus by spinoculation and then plated in a
methylcellulose medium (Iscove’s modified Dulbecco’s medium, 20% FBS, 1.6%
methylcellulose, 100mM b-mercaptoethanol) containing murine stem cell factors,
interleukin-3 and granulocyte–macrophage colony-stimulating factors (10 ngml� 1

of each). G418 (1mgml� 1) was added to the first round of culture to select for
transduced cells. Hoxa9 was quantified in reverse transcriptase–qPCR after the first
round of culture. Colony-forming units at the third and fourth rounds were
quantified per 104 plated cells, after 4–6 days in culture. Experiments were
approved by the Kyoto University Institutional Animal Care and Use Committee.

Reverse transcriptase–qPCR. RNA was prepared using the RNeasy kit (Qiagen)
and reverse transcribed using a Superscript III First Strand cDNA Synthesis kit,
with oligo(dT) primers or random hexamers (for experiment of a-amanitin
treatment; Life Technologies). Gene expression was confirmed with qPCR, using
the TaqMan probes described in Supplementary Table 3 (Life Technologies). The
expression levels, normalized to those of Gapdh, Tbp or 18 S rRNA, were
determined using a standard curve and the relative quantification method, as
described in ABI User Bulletin #2.

Immunoprecipitation. The expression vectors for MLL fusion proteins and the
cofactors were transfected into 293T cells using the Lipofectamine 2000 reagent
(Life Technologies). 293T cells cultured in a 10-cm dish were suspended in 1ml of
isotonic buffer (150mM NaCl, 10mM Tris-HCl pH 7.5, 1.5mM MgCl2, 0.5%
NP-40 and an EDTA-free protease inhibitor cocktail (Roche)). The suspension was
incubated on ice for 5min and then centrifuged at 400g for 3min. The pellet was
resuspended in 1ml of lysis buffer (250mM NaCl, 20mM sodium phosphate
pH 7.0, 30mM sodium pyrophosphate, 5mM EDTA, 10mM NaF, 0.1% NP-40,
10% glycerol, 1mM dithiothreitol (DTT) and an EDTA-free protease inhibitor
cocktail) and cleared by centrifugation at 37 000g (R22A4; Hitachi) for 30min at
4 �C. The supernatant was then used in IP experiments. Twenty microlitres of anti-
FLAG M2 magnetic beads (Sigma) was added to each sample and the mixture was
incubated for 4 h in a rotating chamber. The beads were washed five times with
500ml of lysis buffer. The coprecipitated proteins were harvested in elution buffer
(1% SDS, 50mM NaHCO3). The eluted samples were mixed with an equal volume
of 2� SDS–PAGE sample buffer and then subjected to WB.

Liquid chromatography–tandem mass spectrometry analysis. Purified proteins
were visualized with Oriole staining (Bio-Rad) after SDS–PAGE analysis. The
pieces of acrylamide gel containing proteins were cut out and washed with 50mM
of ammonium hydrogen carbonate containing 50% acetonitrile. The gel pieces were
dried using a SpeedVac (Thermo) and suspended in 50mM of ammonium
hydrogen carbonate. The proteins were deoxidized and acetylated with the addition
of 10mM DTT and 50mM iodoacetamide, and then digested with trypsin at 37 �C
for 18 h. The digested peptides were alternately extracted in 50mM ammonium
hydrogen carbonate and acetonitrile, and then subjected to liquid
chromatography–tandem mass spectrometry analysis. Peptides were separated
using a NanoLC-Ultra-2D Plus system (Eksigent) and quadrupole time-of-flight
mass spectrometry was performed using a Triple TOF5600 system (AB SCIEX) in
an information-dependent acquisition mode. Using the acquired data sets, database
searches were performed with the ProteinPilot software (AB SCIEX) and Uni-
ProtKB/Swiss-Prot database. The reliabilities of the protein identification were
evaluated from the protein scores (Unused ProtScore), which were calculated using
the Pro Group algorithm (AB SCIEX). Mass spectrometry was performed at the
Medical Research Support Center, Graduate School of Medicine, Kyoto University.

Transactivation assay. Transactivation assays using the pFR-LUC reporter were
performed 1 day after transfection of the reporter and effector plasmids3. For the
chromatinized templates, the expression vectors for the various GAL4 fusion
proteins were transfected into 293T–LUC cells with the pRL–TK plasmid or solely
transfected into 293T–RL–LUC cells. The luciferase activity was measured using a
dual luciferase reporter kit (Promega). The luciferase activity values were
normalized to the RL activity and expressed as the mean and s.d. of triplicate
samples.

Fractionation-assisted native chromatin IP. The chromatin fractions of the
293T, 293T–LUC, 293T–RL–LUC and HB1119 cells were prepared as follows11.
Cells were suspended in cytoskeleton buffer (100mM NaCl, 10mM PIPES pH 6.8,
3mM MgCl2, 1mM EGTA pH 7.6, 0.3M sucrose, 0.5% Triton X-100, 5mM
sodium butyrate, 0.5mM DTT and an EDTA-free protease inhibitor cocktail) and
spun down to remove the soluble fraction. The pellet was resuspended in MNase
buffer (50mM Tris-HCl pH 7.5, 4mM MgCl2, 1mM CaCl2, 0.3M sucrose, 5mM
sodium butyrate, 0.5mM DTT and a protease inhibitor cocktail) and treated with
MNase. The MNase reaction was stopped by adding EDTA (pH 8.0) at a final
concentration of 20mM. Lysis buffer was then added to increase solubility. The
chromatin fraction was cleared by centrifugation and immunoprecipitated with

specific antibodies (Supplementary Table 2) and magnetic microbeads (Protein-G
magnet beads (Invitrogen)) or with anti-FLAG M2 antibody-conjugated beads. The
precipitates were washed five times with washing buffer (1:1 mixture of lysis buffer
and MNase buffer with 20mM EDTA) and then eluted in elution buffer (1% SDS
and 50mM NaHCO3). The eluted materials were analysed with various methods,
including WB, qPCR, deep sequencing and mass spectrometry. Deep sequencing of
the precipitated DNA was performed using a TruSeq ChIP Sample Prep Kit
(Illumina) and Genome Analyzer IIx (Illumina) at the core facility of Hiroshima
University. The data were analysed using the Integrative Genome Viewer (Broad
Institute). qPCR analysis of the precipitated DNA was performed using the
custom-made primer sets described in Supplementary Table 4. The value relative to
the input was determined using a standard curve and the relative quantification
method. Optionally, the precipitates were equilibrated with MNase buffer, treated
with DNase I (Qiagen) for 10min at 37 �C and washed five times with washing
buffer to remove the DNA in the sample. The precipitates were analysed with WB
or SYBR green staining.

mRNA sequencing. Total RNA was prepared using the RNeasy kit and the quality
was assessed using a eukaryote Bioanalyzer RNA Nano chip (Agilent). Deep
sequencing of the total RNA was performed using SureSelect Strand Specific RNA
Library Prep Kit (Agilent) and Genome Analyzer IIx (Illumina) at the core facility
of Hiroshima University. Gene expression was normalized as RPKM (reads per kilo
base of exon per million mapped) with the cutoff value set to 5 in the vector
control. Gene set enrichment analysis was carried out using the pre-ranked method
with 1,000 permutations with the gene sets. The target sets for TAF1C, ENL
and MLL were defined as genes downergulated upto threefold by shRNAs
transduction. The curated gene sets were obtained from Molecular signature
database (MSigDB) v5.0.

Statistical analysis. Correlation coefficient was calculated by Pearson’s correla-
tion method using GraphPad Prism 6.0 (GraphPad Software).
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