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Giant barocaloric effects at low pressure
in ferrielectric ammonium sulphate
P. Lloveras1, E. Stern-Taulats2, M. Barrio1, J.-Ll. Tamarit1, S. Crossley3, W. Li3,4, V. Pomjakushin5,

A. Planes2, Ll. Mañosa2, N.D. Mathur3 & X. Moya2,3

Caloric effects are currently under intense study due to the prospect of environment-friendly

cooling applications. Most of the research is centred on large magnetocaloric effects and

large electrocaloric effects, but the former require large magnetic fields that are challenging

to generate economically and the latter require large electric fields that can only be applied

without breakdown in thin samples. Here we use small changes in hydrostatic pressure to

drive giant inverse barocaloric effects near the ferrielectric phase transition in ammonium

sulphate. We find barocaloric effects and strengths that exceed those previously observed

near magnetostructural phase transitions in magnetic materials. Our findings should

therefore inspire the discovery of giant barocaloric effects in a wide range of unexplored

ferroelectric materials, ultimately leading to barocaloric cooling devices.
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F
oodstuffs, beverages, medicine, electronics and populated
spaces all require cooling, but existing refrigeration and air-
conditioning units rely primarily on the compression and

expansion of environmentally harmful fluids. Resurgent interest
in solid materials that display magnetically, electrically and
mechanically driven phase transitions near room temperature1–3

has provoked interest in the possibility of environment-friendly
cooling applications, but these will only come to fruition if it is
possible to develop or discover inexpensive materials that show
large reversible thermal changes in response to fields that are
small and easy to generate.

Mechanical stress is easy to generate, but large barocaloric (BC)
effects driven by hydrostatic pressure near phase transitions have
only been observed in a small number of relatively expensive
magnetic materials, where changes of magnetization are accom-
panied by changes in crystal symmetry4,5 or volume alone6–8

(Table 1). (Large BC effects have also been observed in
poly(methyl methacrylate) away from any transition9.) Here we
demonstrate giant BC effects near the ferrielectric phase
transition10–13 in a powder of ammonium sulphate (AS)
[(NH4)2SO4], which is made from cheap abundant elements
and enjoys widespread agricultural use as a fertilizer. We use
calorimetry to identify pressure-driven isothermal entropy
changes of |DS|B60 J K� 1 kg� 1, which exceed the
corresponding values that have been found for metallic alloys
near first-order magnetic phase transitions (B10–25 J K� 1 kg� 1;
Table 1), and predicted for PbTiO3 and BaTiO3 near first-order
ferroelectric phase transitions14,15 (B3–4 J K� 1 kg� 1). These
giant entropy changes are driven using small changes of
hydrostatic pressure |Dp|¼ |p� patm|B|p|B0.1GPa, yielding
giant BC strengths1 |DS|/|Dp|, |Q|/|Dp| and |DT|/|Dp| (Table 1)
(where Q is the heat, T is the temperature and atmospheric
pressure patmB0GPa). Our giant BC effects may be understood
via pressure-driven changes in ionic ordering, whereas the smaller
BC effects in magnetic materials4–8 arise due to pressure-driven
changes in the density of electronic states near the Fermi level.

Results
Ferrielectric phase transition in AS at atmospheric pressure. At
room temperature, AS adopts a centrosymmetric orthorhombic
structure (Pnam) with four formula units per unit cell comprising
three ionic groups (Fig. 1a) that are understood to adopt a dis-
ordered configuration at any given instant16,17. On cooling, the
material is generally considered to undergo a reversible order–
disorder phase transition to an orthorhombic polar structure
(Pna21) that is ferrielectric10,11. Our heat flow dQ/dT
measurements confirm that this transition occurs in two steps10–
13. First, the symmetry change arises from a non-isochoric first-
order transition at T1B221K associated with partial ionic ordering
(Fig. 1b). Second, further ordering yields additional changes of

volume in a continuous manner down to B160K (Fig. 1b-d).
(Figure 1d was obtained using temperature-dependent lattice
parameters (Supplementary Fig. 1) calculated from X-ray
diffraction patterns (Supplementary Fig. 2).) The first-order
transition is weakly hysteretic and occurs at T1B224K on heating.
Its start and finish temperatures on cooling are Tc1B223K and
Tc2B216K, respectively, and its start and finish temperatures on
heating are Th1B222K and Th2B229K, respectively.

Integration of (dQ/dT)/T yields the corresponding entropy
change DS(T) (Fig. 1c), with |DSf|¼ 130±6 J K� 1 kg� 1 for the
full transition. Integration of dQ/dT across the full transition
yields a corresponding heat of |Qf|¼ 29±2 kJ kg� 1. These values
are in good agreement with previous experimental values12,13

of |DSf|B126–133 J K� 1 kg� 1 and |Qf|B28–30 kJ kg� 1,
and are consistent with the change of entropy
|DSf|¼ 3Rln2¼ 130 J K� 1 kg� 1 expected16 for an order-
disorder transition involving three ionic groups per formula
unit (R¼ 8.314 J K� 1mol� 1). For the first-order transition
alone, integration yields |DS1|¼ 65±4 J K� 1 kg� 1 and latent
heat |Q1|¼ 14.5±1.0 kJ kg� 1. These values correspond to B50%
of the aforementioned values for the full transition and closely
match literature values13 of |DS1|¼ 61 J K� 1 kg� 1 and
|Q1|¼ 13.6 kJ kg� 1 for deuterated AS [(ND4)2SO4], where no
aspect of the transition is modified by the deuteration.

On heating through the ferrielectric transition, X-ray diffraction
data confirm the expected changes in crystal structure10,11,13. The
unit-cell volume V decreases by B0.9% across the full transition
(DVf¼ � 4.4±0.2Å3) and by B0.5% across the first-order
transition alone (DV1¼ � 2.5±0.2Å3) (Fig. 1d). Given that BC
effects per unit massm due to pressure change Dp¼ p2� p1 may be
expressed using the Maxwell relation m� 1(qV/qT)p¼ � (qS/qp)T
as1 DS(p1-p2)¼ �m� 1R p2

p1
(qV/qT)p0dp0, we anticipate inverse

BC effects in the transition regime where (qV/qT)p¼ 0o0 and we
anticipate conventional BC effects away from the transition regime
where (qV/qT)p¼ 040.

Ferrielectric phase transition in AS under applied pressure. For
the first-order transition, heat flow measurements dQ/dT reveal a
strong pressure-induced shift in T1 (Fig. 2a,b), with dT1/dp¼
� 57±4KGPa� 1 on heating and dT1/dp¼ � 45±4KGPa� 1

on cooling. A similar shift of � 45±6KGPa� 1 on heating is
obtained via the Clausius-Clapeyron equation dT1/dp¼Dv1/DS1,
using DS1¼ 65±4 J K� 1 kg� 1 (Fig. 1c) and specific volume
change Dv1¼ � (2.9±0.2)� 10� 6m3 kg� 1 (from Fig. 1d).
These large values of dT1/dp are similar to those reported for
single-crystal AS18,19 and magnetic alloys (Table 2), and indicate
that the narrow first-order transition of width
Tc1�Tc2BTh2�Th1B7K may be fully driven in either
direction using moderate values of |Dp|B0.15GPa.

Table 1 | Giant BC effects at first-order phase transitions.

Giant BC material T |DS| |DT| |Q| |Dp| |DS/Dp| |DT/Dp| |Q/Dp| RC Ref.
K J K� 1 kg� 1 K kJ kg� 1 GPa J K� 1 kg� 1 GPa� 1 KGPa� 1 kJ kg� 1 GPa� 1 J kg� 1

Ni49.26Mn36.08In14.66 293 24 [4.5] 7.1 0.26 92.3 17.3 27.3 120 4

Gd5Si2Ge2 270 11 1.1 2.9 0.20 55 5.5 14.5 81 5

LaFe11.33Co0.47Si1.2 237 8.7 2.2 2.0 0.20 43.5 11 10 180 6

Fe49Rh51 308 12.5 [8.1] 3.8 0.11 114 74 34.5 105 7

Mn3GaN 285 21.6 [4.8] 6.2 0.09 232 51.4 66.2 125 8

AS 219 60 [8] 13.2 0.10 600 80 132 276 This work

BC, barocaloric; |Dp|, hydrostatic pressure change; |Q|, isothermal heat; RC, refrigerant capacity; |DS|, isothermal entropy change; T, starting temperature; |DT|, adiabatic temperature change.
|DS|, |DT| and |Q| arise at T, due to changes of |Dp|. The corresponding strengths |DS|/|Dp|, |DT|/|Dp| and |Q|/|Dp| were maximized by choosing the smallest values of |Dp| compatible with maximizing
|DS|. Bold entries denote data derived from direct measurements. Italicised entries denote data derived from quasi-direct1 measurements. Bracketed entries denote data derived via
-cDTCTDS¼Q using zero-pressure specific heat capacity c. For all entries, Q¼TDS.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9801

2 NATURE COMMUNICATIONS | 6:8801 | DOI: 10.1038/ncomms9801 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


The discrepancy in values of T1(p) measured on heating and
cooling (Fig. 2b) evidences a thermal hysteresis that is suppressed
below the maximum value of pB0.3GPa for our calorimeter. At
even higher pressures, neutron diffraction data for deuterated AS
reveal that dT1/dp remains constant (open symbols, Fig. 2b), while
|DV1| falls (Fig. 2c), implying via the Clausius–Clapeyron equation
a pressure-induced suppression of |DS1|. (Figure 2c was obtained
using temperature-dependent lattice parameters (Supplementary
Fig. 1) calculated from neutron diffraction patterns (Supplementary
Fig. 3).) This suppression was confirmed (Fig. 2d) from finite-
pressure plots of |DS1(T)| (Supplementary Fig. 4a,b) obtained from
the calorimetric data of Fig. 2a, as described in Methods.

BC effects in AS. The fall in |DS1(p)| arises because of additional
changes in isothermal entropy DSþ (p) that are reversible, large
and change sign across the first-order transition. Above T1(p),
these additional entropy changes correspond to conventional BC
effects associated with elastic heat, which arises at all tempera-
tures, except while driving transitions. Near and below T1(p),
these additional entropy changes correspond to inverse BC
effects, because the continuous part of the full transition pre-
cludes elastic heat. The additional entropy changes would be
challenging to detect via the calorimetry of Fig. 2, but they may be
expressed1 away from the first-order transition as DS(p1-p2)¼
�m� 1R p2

p1
(qV/qT)p0dp0, using the aforementioned Maxwell

relation with Sþ replacing S. From this formulation, we
anticipate large values of DSþ given an AS volumetric
thermal expansion coefficient V� 1(qV/qT)p whose magnitude
B10� 4 K� 1 (Supplementary Fig. 5a) exceeds the corres-
ponding values6,20–24 of B10� 7–10� 5 K� 1 for the magnetic
BC materials of Table 1.

To confirm that the fall in |DS1(p)| arises due to additional
changes of entropy DSþ away from T1(p), we evaluated
DSþ (p) on applying pressure above T1(p) at Tþ ¼ 236K by
assuming (qV/qT)p to be independent of pressure such that DSþ
(p)¼ � [m� 1(qV/qT)p¼ 0]p (pressure-dependent data are unavail-
able due to inaccurate low-pressure control coupled with excessive
neutron acquisition times). Choosing Tþ4T1(p) is convenient,
because it avoids the forbidden possibility of T1(p) falling to Tþ at
high pressure. Using the resulting values of DSþ (p) at Tþ ¼ 236K
(Supplementary Fig. 5b) to displace at this temperature the finite-
pressure plots of DS1(T) (Supplementary Fig. 4a,b for heating and
cooling, respectively), we have constructed finite-pressure plots of
total entropy change DS(T,p) (Fig. 3a,b) specified with respect to the
zero-pressure total entropy below the first-order transition at 208K.
Whether the calorimetrically accessible value of DS1(T) was
measured on heating (for Fig. 3a) or cooling (for Fig. 3b), the
resulting values of DS(208K, p) match well with predictions of
DSþ (p) that were obtained by setting Tþ to 208K (Supplementary
Fig. 5b), thus providing quantitative confirmation that the fall in
|DS1(p)| arises due to the sign change in BC effects across the first-
order transition.

Our plot of DS(T,p) for data obtained on heating (Fig. 3a)
permits us to establish isothermal BC effects on applying pressure
(Fig. 3c), as heating and high pressure both tend to favour the
high-temperature, high-pressure centrosymmetric phase. Simi-
larly, our plot of DS(T,p) for data obtained on cooling (Fig. 3b)
permits us to establish isothermal BC effects on decreasing
pressure (Fig. 3c), as cooling and low pressure both tend to favour
the low-temperature ferrielectric phase. Near and above the value
of Tc1(p¼ 0) indicated, discrepancies in isothermal entropy
change on applying and removing pressure evidence irreversi-
bility. By contrast, reversible BC effects are apparent a few degrees
below Tc1(p¼ 0) and at all lower temperatures studied, consistent
with no significant thermal hysteresis in the first-order transition
(Fig. 2b). The largest reversible isothermal entropy change
|DS|B60±5 J K� 1 kg� 1 arises at B219K and exceeds the giant
BC effects reported for magnetic alloys (Table 1). The sharpness
of the transition in DS(T) (Fig. 3a,b) permits this large
entropy change to be achieved with a low value of |Dp|¼ 0.1GPa
(Fig. 3c), yielding giant BC strengths1 |DS|/|Dp| and |Q|/|Dp|
(Table 1). Larger pressures extend reversible BC effects to
lower temperatures, causing the large refrigerant capacity25

RC¼ |DS|� (FWHM of DS(T)) (Table 1) to increase (Fig. 4)
despite the small reduction in |DS1(p)| (Fig. 2d) and therefore
|DS(p)|. For any given value of applied pressure, AS outperforms
all of the magnetic alloys so well that comparable RC values
would require much larger changes of pressure (Fig. 4).

Our largest value of |DS|B60±5 J K� 1 kg� 1, arising due to
|Dp|¼ 0.1GPa at B219K, corresponds to an adiabatic tempera-
ture change |DT|¼ (T/c)|DS|B8±1K, using a specific heat
capacity c¼ 1,700±80 J K� 1 kg� 1 (Supplementary Fig. 6) that
is assumed to be independent of pressure as usual4–8. The
resulting value of |DT|/|Dp| is seen to be the largest observed for
giant BC materials (Table 1).

Discussion
Our observation of giant reversible BC effects in ferrielectric salts
made from inexpensive abundant elements should inspire the
study of BC effects in similar materials, most immediately bulk
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Table 2 | Properties of first-order phase transitions in giant BC materials.

Giant BC material |DV1| |DV1|/V1 |dT1/dp| Ref.
Å3 % KGPa� 1

Ni49.26Mn36.08In14.66 0.2 0.4 18 4

Gd5Si2Ge2 3.4 0.5 32 5

LaFe11.33Co0.47Si1.2 18 1.2 73 6

Fe49Rh51 0.3 1.2 (ref. 24) 54 7

Mn3GaN 0.6 1.2 (ref. 34) 65 8

AS 2.5±0.2 0.5 45±2 This work

AS, ammonium sulphate; BC, barocaloric; |dT1/dp|, pressure-driven shift in transition temperature; |DV1|, unit-cell volume change; |DV1|/V1, relative unit-cell volume change.
For AS, we give the shift obtained over a wide pressure range on cooling.
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ferroelectrics that display large thermally driven entropy changes
associated with displacive and order-disorder phase transitions.
In future, it would be attractive to increase transition tempera-
tures by chemical substitution26,27 or using an electric field28. It
would also be attractive to perform direct thermal measurements
in the vicinity of room temperature, to confirm the large BC
effects predicted using the Maxwell relation (Supplementary
Fig. 5b), which are reversible over a wide range of temperatures.

Our findings should stimulate the development of cooling
devices based on BC materials, whose energy efficiency29,30 is
good with respect to magnetocaloric, electrocaloric and
elastocaloric materials3. Unlike elastocaloric materials driven by
uniaxial stress, there are no losses or mechanical breakdown
associated with plastic deformation. Unlike magnetocaloric
materials, there is no need to generate large magnetic fields at
great expense. Unlike electrocaloric materials, there is no need to
fabricate multilayer devices to exploit giant effects in films31.
Moreover, the phase transitions giving rise to large BC effects can
be driven over a wide range of operating temperatures, unlike
both magnetocaloric and electrocaloric materials.

Methods
Samples. Powders of AS (Z99.0%) and deuterated AS (Z99.0%) were purchased
from Sigma-Aldrich. The typical grain size was o100 mm. AS was used for
calorimetry and X-ray diffraction. Deuterated AS was used for neutron diffraction
to reduce incoherent scattering.

Calorimetry at atmospheric pressure. Measurements of heat flow dQ/dT were
performed at atmospheric pressure using a commercial TA Q2000 differential
scanning calorimeter at 10 Kmin� 1. Heat |Qf|¼ |

R Tb

Ta
(dQ/dT0)dT0| and entropy

change |DSf|¼ |
R Tb

Ta
(dQ/dT0)/T0dT0| across the full transition were obtained after

subtracting baseline backgrounds32, with Ta chosen above (below) the transition on
cooling (heating) and Tb chosen below (above) the transition on cooling (heating).
The entropy change on partially driving the transition by heating to temperature
T is DS(T)¼

R T
Ta
(dQ/dT0)/T0dT0 . The entropy change on partially driving the

transition by cooling to temperature T is DS(T)¼ |DSf|�
R T
Ta
(dQ/dT0)/T0dT0.

Zero-field heat capacity data were obtained using the TA Q2000 on cooling
in the modulated differential scanning calorimetry mode, with the constant
temperature method33. The temperature step was 1K, the temperature modulation
was 0.5 K and the period was 60 s.

Calorimetry under applied pressure. Measurements of heat flow dQ/dT at
constant hydrostatic pressure were performed at ±1–2Kmin� 1, using a differ-
ential thermal analyser constructed in-house, with chromel-alumel thermocouples,
a Cu–Be Bridgman pressure cell operating up to 0.3GPa and a circulating
thermal bath (Lauda Proline RP 1290, 183–473 K). AS was mixed with an
inert perfluorinated liquid and hermetically encapsulated by Sn. DW-Therm
(Huber Kältemaschinenbau GmbH) was used as pressure-transmitting medium.

For more details, see refs 4–7. Absolute measurements of temperature in the
differential thermal analyser and differential scanning calorimeter differ by B1K.

X-ray diffraction. High-resolution X-ray diffraction was performed in transmis-
sion using Cu Ka1¼ 1.5406Å radiation in an INEL diffractometer, with a curved
position-sensitive detector (CPS120), a 0.5-mm diameter Lindemann capillary and
a 700 series Oxford Cryostream Cooler.

Neutron diffraction. High-resolution neutron diffraction was performed at the
Paul Scherrer Institute, using the high-resolution powder diffractometer for ther-
mal neutrons. Deuterated AS was mixed with NaCl powder to determine the
applied pressure, and the mixture was encapsulated in a Pb clamp cell operating up
to B1GPa. Temperature was varied using a cryostat operating in 1.4–320K. The
neutron wavelength was set to 1.88570Å. Lattice parameters were determined by
pattern matching using FullProf software.

Data availability. All relevant data are presented via this publication and
Supplementary Information.
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