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Measurement of geometric dephasing using
a superconducting qubit
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A quantum system interacting with its environment is subject to dephasing, which ultimately

destroys the information it holds. Here we use a superconducting qubit to experimentally

show that this dephasing has both dynamic and geometric origins. It is found that geometric

dephasing, which is present even in the adiabatic limit and when no geometric phase is

acquired, can either reduce or restore coherence depending on the orientation of the path the

qubit traces out in its projective Hilbert space. It accompanies the evolution of any system in

Hilbert space subjected to noise.
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T
he information stored in a quantum bit is ultimately lost
when the interaction with its environment causes rando-
mization of its quantum phase in a process known as

dephasing1. Part of this dephasing is of geometric origin2 and is
related to a type of geometric phase known as Berry phase3,4,
which is accumulated when a quantum system is adiabatically
steered along a closed contour in the parameter space of its
Hamiltonian. This phase underlines the dynamics and
thermodynamics of a broad spectrum of quantum systems as
measured in spins5,6, systems dominated by spin–orbit
coupling7–9, experiments exhibiting Aharonov–Bohm phases10,
as well as atomic11,12 and optical set-ups13,14.

The geometric phase roots in the structure of Hilbert space and
is—unlike the dynamic phase—not related to the duration of a
quantum process. When it comes to quantum dissipative systems,
ubiquitous in our physical world, the nature of the geometric
phase may be put to question: noise may screen out geometric
effects and the condition for adiabaticity is not self-evident. The
former effect is frequently modelled by adding non-geometric
dissipative rates to the equations of motion for the density matrix,
see for example, ref. 15. The latter concern is alleviated in ref. 16:
naively one may expect that adiabaticity implies that the rate of
change involved is smaller than the excitation gap. It turns out
though that a gapless spectrum, which may be the result of
coupling the system to a dissipative reservoir, does not necessarily
annul the Berry phase3,4. Moreover, dephasing and level
broadening due to classical low-frequency noise randomizing
the Berry phase are addressed in refs 17,18; corrections to the
Berry phase, due to both slow, classical noise and high-frequency
quantum noise have been discussed in ref. 2. In that work, the
concept of geometric dephasing has been introduced. Indeed,
decoherence in quantum systems stems not only from the
stochastic evolution of the dynamic phase of the system’s wave
function (dynamic dephasing), but also from geometric effects.

In this article, we experimentally confirm the existence of
geometric dephasing using a superconducting quantum system19

exposed to artificial noise. We find that geometric dephasing can
either reduce or restore coherence depending on the orientation
of the path a qubit traces out in its projective Hilbert space. This
asymmetric decoherence mechanism is expected to play a role in
numerous stochastic systems exhibiting geometric phases20,21.

Results
Experimental background. Our experiment complements earlier
ones on orientation-independent dephasing induced by non-
adiabatic corrections to the Berry phase22,23, and on the effect of
classical noise24 and a quantum bath25 on the geometric phase.

Below, we show that the state (Bloch) vector of a qubit evolving
adiabatically in the presence of Gaussian noise contains a
suppression factor

n ¼ exp �D Tð Þ Aþ sgn nð ÞBoB þCo2
B þ :::

� �� �
; ð1Þ

where T � 2p nj j=oB is the duration of the time evolution, n 2 Z
the oriented number of loops of the qubit in its projective Hilbert
space (equal to the number of loops performed by the magnetic
field for adiabatic evolution), oB40 the precession frequency and
2p/oB the duration of a single loop. The function D(T) describes
the spectral properties of the noise. The first term in equation (1)
is independent of oB and represents dynamic dephasing. The
second term, proportional to sgn(n)oB, represents geometric
dephasing. The third term goes as o2

B and stands for non-
geometric non-adiabatic dephasing. It is especially noteworthy
that the second term can either increase or decrease the total
dephasing, depending on the sign of n. This makes the geometric
nature of this term explicit. The contribution to dephasing

stemming from the first term is independent of the sign of n and
is therefore not geometric. Likewise, the third term does not
describe geometric dephasing. However, it leads to fluctuations in
the Berry phase18 as observed in refs 22,23.

In our experiments, a superconducting qubit (Supplementary
Methods and Supplementary Fig. 1) is subject to resonant driving
with slowly modulated amplitude and phase. In a frame
corotating with the drive, the system can be modelled as a qubit
in a slowly varying magnetic field—a paradigmatic system to
observe the Berry phase5,22,26. To study geometric dephasing, we
add artificial noise to the drive, mimicking noise in the magnetic
field. Our analysis shows explicitly that the decay of a pure
quantum state into a mixed state includes a term that is
exponential in n, the number of oriented loops: the dephasing is
asymmetric in the direction of the loops, as schematically
represented in Fig. 1. The coherence (that is, the length of the
Bloch vector) of the qubit recorded in a Ramsey-type
interferometric experiment illustrates this phenomenon. As
shown in Fig. 2a, a cyclic change of the effective magnetic field
in clockwise (Cþ þ ) or counter-clockwise (C� � ) direction leads
either to a decrease or an increase in coherence when compared
with a static but still fluctuating magnetic field, as discussed in
detail below.

The dynamics of the system in a frame rotating at the
frequency od of the drive are described by the Hamiltonian
(‘¼ 1)26

H1 ¼
1
2

D sz þO cos jð Þsx þO sin jð Þsy
� �

¼ 1
2
B � r; ð2Þ

where r¼ (sx, sy, sz) are the Pauli matrices, D�o01�od the
detuning in frequency between drive and qubit transition,
O(t) the amplitude and j tð Þ the phase of the drive and
B ¼ O cos jð Þ;O sin jð Þ;Dð Þ the effective magnetic field in units
of angular frequency. We let the magnetic field form an angle
y¼ arctanO/D with the D axis and have it precess about this
axis at a rate _jj j ¼ oB ¼ 2p nj j=T . After a time T, the magnetic
field has traced out n loops and enclosed a solid angle
A¼ 2np(1� cosy) as seen from B¼ 0. If oB is small enough,
that is, if the evolution is adiabatic, the qubit’s state vector
acquires a geometric phase A/2 (ref. 4). We induce fluctuations
dO in the effective magnetic field in radial direction, which
in our set-up correspond to amplitude noise in the signal driving
the qubit, so that O(t)¼O0þ dO(t) and as a consequence
y(t)¼ y0þ dy(t). Applying a transformation H2 ¼ RH1Ry þ i _RRy

with R ¼ exp ijsz=2½ � (see for example, ref. 27) to equation (2)

a b

n=+1 n=–1

〈�z〉⎜⎜Δ

〈�x〉⎜⎜Ωx

〈�y〉⎜⎜Ωy

Figure 1 | Qubit in a noisy environment. Bloch vectors (green arrows)

describing the qubit state after evolving adiabatically in an precessing noisy

magnetic field. When the qubit state evolves adiabatically, its Hilbert space

can be identified with the parameter space of the Hamiltonian, that is, the

three-dimensional effective magnetic field. The magnetic field (white line)

follows a closed loop n times. In a, the number of loops is n¼ þ 1, in b it is

n¼ � 1. Owing to geometric dephasing, the Bloch vectors are fanned out

more in a than in b.
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results in the Hamiltonian

H2 ¼
1
2
D� sgn nð ÞoB½ �sz þ

1
2

O0 þ dOð Þsx: ð3Þ

From equation (3), it follows that in a Ramsey experiment, in
which the effective magnetic field performs n oriented loops in
the time interval [0, T], the eigenstates of the qubit acquire a total
relative phase g([0, T], n), where

g Ti;Tf
� �

; n
� �

�
ZTf

Ti

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� sgn nð ÞoB½ �2 þ O0 þ dO tð Þ½ �2

q
: ð4Þ

We make sure that the conditions dO � O and oB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þO2

0

q
are met, so that the qubit evolves adiabatically (also see Methods
section). A second-order Taylor expansion of equation (4) in the

two small parameters dO and oB yields

g 0;T½ �; nð Þ ¼
ZT

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þO2

0

q
� sgn nð ÞoB cosy0½

� dO siny0 þ dO
sgn nð ÞoBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þO2

0

q cosy0 siny0 þ . . .�:
ð5Þ

In this expansion, where y0� arctanO0/D, we have dropped two
second-order terms which are non-consequential for our analysis:
one / o2

B (non-adiabatic corrections) and onepdO2 (next-order
correction to the dynamical phase and to the dynamical
dephasing). The first two terms in equation (5) give rise to gh i,
the sum of dynamic and geometric phase in the absence of noise.
The last two terms lead to dephasing, as seen by computing the
variance dgð Þ2

� �
of the phase in equation (5),

dgð Þ2
� �

¼ 2D Tð Þ Aþ sgn nð ÞBoB þCo2
B þ :::

� �
: ð6Þ

Thus, we recover the suppression factor from equation (1)

describing the length n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sxh i2 þ sy

� �2 þ szh i2
q

of the state
vector of the qubit. The function

D Tð Þ � 1
2

ZT

0

dt1

ZT

0

dt2 dO t1ð ÞdO t2ð Þh i ð7Þ

is the integrated time-correlator of the noise. The functions

A ¼ a siny0ð Þ2; B ¼ b 2cosy0 siny0ð Þ2ffiffiffiffiffiffiffiffiffiffiffiffi
D2 þO2

0

p

C ¼ c cosy0siny0ð Þ2
D2 þO2

0

; ð8Þ

appear in the three first terms in equation (6), which represent
dynamic dephasing, geometric dephasing and non-geometric
non-adiabatic corrections, respectively.

In equation (8) we have introduced dimensionless decoherence
factors a, b, c (all equal to one in the Ramsey experiment
considered) to accommodate different types of experiments, as
detailed below. In particular, we use spin echo techniques to
observe geometric dephasing while eliminating the dynamic
phase and enhancing the qubit coherence time.

Protocols for measuring dephasing. Two protocols leading to
different decoherence factors a, b, c are considered. The first one
is a complete echo, in which the orientation of the loop the
magnetic field traverses is identical in both halves. In this protocol
(named ‘protocol P’, as in ‘preserved’), the phase acquired by the
qubit is

gP ¼ g 0;T½ �; þ nð Þ� g T; 2T½ �; þ nð Þ: ð9Þ
In the second protocol, the orientation of the loop is reversed

in the second half of the echo sequence. We therefore call it
‘protocol R’ (for ‘reversed’). The accumulated phase is

gR ¼ g 0;T½ �; þ nð Þ� g T; 2T½ �; � nð Þ: ð10Þ
To illustrate the protocols, schematics of the pulse sequences are
shown in Fig. 3.

In our experiment, phase and coherence of the qubit have been
recorded as a function of the solid angle enclosed by the effective
magnetic field B. The detuning of the off-resonant pulses is
D/2p¼ � 35MHz. The fluctuations dO applied to B conform
to an Ornstein–Uhlenbeck process with correlation time
1/G¼ 10MHz, intensity s2 and normalized noise amplitude
s2=O2

0 ¼ 0:1. Intrinsic dephasing due to a finite decoherence
rate of the qubit causes the coherence to drop to about 0.7 at
the end of the pulse sequence. This effect is calibrated out23.
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Figure 2 | Coherence of the qubit. Measured normalized coherences as a

function of solid angle with fluctuations in the effective magnetic field. Each

data point is the average of 400 realizations of noise. If not stated

otherwise, the precession period of the field is T¼ 100 ns. Solid lines

indicate fits to the data. The error bars indicate the s.d. (a) Coherence

measured in a complete spin echo experiment (‘protocol P’, see Fig. 3) with

noise during the first window of the spin echo only. The direction of

precession is preserved in the second window of the echo, leading to pulse

sequences Cþ þ and C� � . The exponents denote sgn(n), the direction of

precession of the field. ‘dynamic phase (D. P.) only’ denotes a magnetic field

which does not precess (oB¼0), so that the qubit acquires only dynamic

phase. (b) As in a but with uncorrelated noise. (c) Coherence measured in a

spin echo in which the direction of precession of the magnetic field is

reversed in the second half (‘protocol R’), giving Cþ � and C� þ . (d) As in

c but with uncorrelated noise. (e) As in c but with precession period

T¼ 160 ns. (f) Dynamic (solid line), geometric (dashed line) and non-

geometric non-adiabatic (dotted line) contributions to dephasing, as they

appear in the exponent of n in equation (1), as a function of precession

period T. The curves are computed with the parameters used for recording

the data shown in c and e for A¼p/2. The values for dynamic and

geometric dephasing extracted from fits to these measurements are

indicated by black dots. The vertical lines indicate the periods T¼0.1,

0.16ms used in our experiments.
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The correlation function of the noise process is
dO1 t1ð ÞdO1 t2ð Þh i ¼ s2e�G t1 � t2j j, and the integrated time-
correlator from equation (7) is D Tð Þ ¼ s2 GT � 1þ e�GT

� �
=G2.

Since the noise dO(t) is artificial, we may control its time
correlations, in particular those between the first time window,
0otoT and the second time window, Toto2T. For
convenience, we define dO1(t)� dO(t) and dO2(t)� dO(tþT).

Geometric and dynamic dephasing. A spin echo sequence with
noise in the first window only, that is, dO2(t)�0, allows us to
measure the dephasing the qubit experiences during a Ramsey
experiment. There is geometric dephasing in both protocols (ba0
in Fig. 2a,c,e) which, depending on the sign of n, either increases
or reduces the total dephasing. Interestingly, in protocol P geo-
metric dephasing is present although the Berry phase (not shown)
is eliminated along with the dynamic phase. This phenomenon
can be explained by computing the variance of the phases in
equations (9) and (10), from which the decoherence factors a¼ 1,
b¼ 1 follow. In our experiment, a fit to the data yields
a¼ 1.14±0.02 for protocol P and a¼ 1.07±0.02 for protocol R
(Table 1), in good agreement with computations. The observed
geometric dephasing (b¼ 1.46±0.05 for protocol P and
1.58±0.12 for protocol R) is somewhat larger than predicted. The
procedure used to extract a and b from fits to the data is described
in the Methods section. The measured phases in protocol R agree
with the prediction for a weakly anharmonic multi-level system28,
with and without applied noise. However, when the noise causes
the coherence to drop below E0.2, the phase can no longer be
determined reliably and the measured phase deviates from theory.

Dynamic dephasing is more pronounced if the sequence is
longer (T¼ 160 ns in panel e, versus T¼ 100 ns in panel c), but
geometric dephasing is always present. The time-dependence in
equation (1) describes the experimental data in Fig. 2 well, with
a¼ 1.12±0.03 and b¼ 1.45±0.15 (for T¼ 160 ns) and
a¼ 1.14±0.02 and b¼ 1.58±0.12 (for T¼ 100 ns). Examining
the three contributions to dephasing appearing in the coherence
suppression factor in equation (1) as a function of T (Fig. 2f), we
see that the dynamic contribution / Að Þ grows with T, while the
geometric contribution / Bð Þ saturates in the limit of short
correlation times GT � 1: it does not vanish in the adiabatic
limit T-N. The non-geometric non-adiabatic contribution
/ Cð Þ vanishes in this limit. This holds for a general noise process
(see Supplementary Methods).

While the experiment with noise in the first half of the spin
echo only is adequate to measure geometric dephasing, a more
physically relevant scenario is to consider noise appearing in both
halves of the spin echo.

For uncorrelated noise, that is, when the correlation time of the
noise is shorter than the timescale of the spin echo (as for
example, for white noise29,30), we have dO1 t1ð ÞdO2 t2ð Þh i ¼ 0. In
addition, the spectral power of the noise is kept constant,
dO1 t1ð ÞdO1 t2ð Þh i ¼ dO2 t1ð ÞdO2 t2ð Þh i. In this case, we measure
geometric dephasing in the complete spin echo only (protocol P,
Fig. 2b and Table 1). In protocol R, there is only dynamic
dephasing (Fig. 2d, see Methods section for details).

For perfectly correlated noise dO1(t)¼ dO2(t), which corre-
sponds to fluctuations slower than typical spin echo time scales as
typical for 1/f-noise, neither dynamic nor geometric dephasing is
expected. Non-adiabatic contributions (quantified by c) only play
a role in protocol R, where c¼ 4 is expected and c¼ 2.25±0.25 is
found from a fit to data (not shown). In protocol P, all
fluctuations cancel out (a¼ b¼ c¼ 0 in theory) and a fit gives
c¼ 0.24±0.54. The effect of correlated noise has been studied in
refs 18,22,23.

Finally, we have also considered anticorrelated noise (dO1(t)¼
� dO2(t)) which maximizes both dynamic and geometric
dephasing (Table 1) in accordance with expectations. As with
uncorrelated noise, geometric dephasing is only present in
protocol P.

Although in this experiment we consider geometric dephasing
for closed loops, this effect may be detected even for open
trajectories in parameter space: In any interferometric set-up,
interference fringes originating from the non-unity overlap
between the initial reference state and the final state after a
non-cyclic evolution will exhibit dephasing in the form of a
decaying envelope. Geometric dephasing will reveal itself as a rate
of decay which depends on the direction, that is, the sign of n.

Given the broad spectrum of systems whose dynamics involves
geometric phases, the presence of geometric dephasing is

�/2 �/2 read.
�
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Figure 3 | Pulse sequences. Pulse sequences for protocol R (where the

direction of precession of the magnetic field is reversed in the second half

of the spin echo) and protocol P (where it is preserved). The p- and
p/2-pulses implementing the spin echo are on resonance with the qubit

transition frequency o01 (purple). At the end of the sequence, the state of

the qubit is read out by applying a tone at frequency or (orange). The

components Ox and Oy of the magnetic field are shown in dark and light

blue. D is kept constant and is not shown.

Table 1 | Decoherence factors.

Correlation of noise Theory Experiment

Protocol R Protocol P Protocol R Protocol P

a b c a b c a b a b

Correlated, dO1¼ dO2 0 0 4 0 0 0 — — — —
Anticorrelated, dO1¼ � dO2 4 0 0 4 4 4 4.29±0.07 — 4.54±0.06 5.84±0.20
Uncorrelated, hdO1dO2i¼0 2 0 2 2 2 2 2.14±0.04 — 2.27±0.03 2.92±0.10
First window, dO2¼0 1 1 1 1 1 1 1.07±0.02 1.58±0.12 1.14±0.02 1.46±0.05

Decoherence factors for spin echo experiments with noise on the effective magnetic field. Two different protocols are considered, with four types of noise correlations between the first and the second
halves of the echo sequence (cf. text). Theoretical decoherence factors (see equation (8)) associated with dynamic dephasing (a), geometric dephasing (b) and non-geometric corrections originating
from the stochasticity of the Berry phase (c).
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expected to be commonplace. While this additional contribution
to decoherence is typically small, it can be of relevance for high-
fidelity quantum operations and decoupling pulse techniques. For
example, residual coupling to spurious modes will cause the
system of interest to precess and induce dephasing with both
dynamical and geometric contributions. Moreover, as shown
here, geometric dephasing is present even when no geometric
phase is acquired. One resulting intriguing question concerns the
effect of geometric dephasing on the braiding phase of topological

quasiparticles, when the separation of the relevant particles is
within reach of stochastic fluctuations of the braiding path.

Methods
Considerations about adiabaticity. The adiabaticity parameter is defined
according to ref. 31. Given a Hamiltonian H(t), we can define an instantaneous
(adiabatic) basis such that H tð Þ cn tð Þj i ¼ En tð Þ cn tð Þj i. Writing D(t) for the
transformation from a fixed basis (given for example, by H(0)) to the instantaneous
basis, the Hamiltonian in the instantaneous basis is D� 1 tð ÞH tð ÞD tð Þþ ‘w, with
w ¼ � iD� 1 tð Þ _D tð Þ. In the adiabatic case, w vanishes. The adiabatic parameter is
defined as s tð Þ ¼ ‘ w tð Þk k=G, where w tð Þk k ¼ tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wy tð Þw tð Þ

p
is the trace norm of

w(t) and G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

0 þD2
q

is the energy gap in the spectrum of H(0). Evolution is

adiabatic if s � 1.
The off-resonant pulses are shaped such that s is constant over time and

independent of the solid angle when the drive O is increased or decreased (that is,
at beginning and end of the pulses). For larger solid angles, the pulses need to be
longer to keep s constant across solid angles. When the effective magnetic field
precesses (central part of the pulses), s varies from solid angle to solid angle because
oB is kept constant. The data in Fig. 4 shows that s(t) is always smaller than 0.28
and thus adiabaticity is maintained during the whole off-resonant pulse sequence,
even when noise is applied. As expected, s is smaller for oB=2p nj j ¼ T ¼ 160 ns
than for T¼ 100 ns.

Going to the extreme adiabatic limit s-0 is not desirable. Although geometric
dephasing is still present in this limit, it cannot be resolved experimentally because
dynamic dephasing increases linearly with time (see Supplementary Methods).

Fitting the measured coherences. This section describes the fit models used to
extract the parameters a, b and c quantifying dynamic and geometric dephasing.

In the fitting procedure, in a first step the effective normalized noise amplitude
is found by fitting the function given in equation (1) describing the coherence n to
the data from protocol R with noise in the first window and dynamic phase only,
assuming a¼ 1, b¼ 0, c¼ 0 and with the normalized noise amplitude as the only fit
parameter. In this way, a normalized noise amplitude of s=O2

0 ¼ 0:085 was
determined, which is slightly smaller than the set value 0.1.

In a second step, all data from protocol R are fitted simultaneously for
coefficients a and b of the functions A and B. Where the theory predicts b¼ 0, we
do not wish to constrain the fitting function (and, by extension, limit the model) by
setting b¼ 0. Rather, we use a fitting function with a separate, primed variable,
which ideally the fit then shows to be zero. We note that using the same variable b
as in the other fits, where ba0 is expected, is not possible, since all data is fitted
simultaneously. As an example, consider protocol R with anticorrelated noise and
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Figure 4 | Adiabaticity parameter. Adiabaticity parameter during the off-

resonant part of the pulse sequence for oB/2p¼ T¼ 100 ns (a) and 160 ns

(b) without applied noise. Graphs for an example of a pulse sequence with

applied noise are shown in panels c and d. In each panel, the adiabaticity

parameter is shown for solid angles A¼ p/16 (orange) to 3p/4 (pink) in

steps of p/16. The pulse envelopes for A¼ 3p/4 are shown on top of the
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Table 3 | Parameter estimates quantifying dephasing.

Correlation of noise Unconstrained fit Constrained fit

Protocol R Protocol P Protocol R Protocol P

a b, b0 a b, b0 a b a b

Correlated — 0.06±0.07 — �0.30±0.12 — — — —
Anticorrelated 4.31±0.08 0.06±0.07 4.63±0.07 6.00±0.21 4.29±0.07 — 4.54±0.06 5.84±0.20
Uncorrelated 2.15±0.04 0.06±0.07 2.32±0.04 3.00±0.11 2.14±0.04 — 2.27±0.03 2.92±0.10
First window 1.08±0.02 1.59±0.12 1.16±0.02 1.50±0.05 1.07±0.02 1.58±0.12 1.14±0.02 1.46±0.05

Parameters estimates for a and b (respectively b0) extracted from constrained and unconstrained fits to data in Fig. 2 and additional data (not shown). For the unconstrained fit to the data of protocol R
with dynamic phase, b0 0 ¼ �0.08±0.08 is found.

Table 2 | Fitting functions for quantifying dephasing.

Unconstrained fit Constrained fit

Protocol R Protocol P Protocol R Protocol P

Cþ � DP C� þ Cþ þ DP C� � Cþ � DP C� þ Cþ þ DP C� �

C (0, � b0 , 4c) (0, b0 0 , 0) (0, b0 , 4c0) (0, b0 , c0) (0, b0 , c0) (0, b0 , c0) (0, 0, 4c) (0, 0, 0) (0, 0, 4c) (0, 0, c0) (0, 0, c0) (0, 0, c0)
A (4a, � b0 , 0) (4a, b0 0 , 0) (4a, b0 , 0) (4a, �4b, 0) (4a, b0 , 0) (4a, 4b, 0) (4a, 0, 0) (4a, 0, 0) (4a, 0, 0) (4a, �4b, 0) (4a, 0, 0) (4a, 4b, 0)
U (2a, � b0 , 0) (2a, b0 0 , 0) (2a, b0 , 0) (2a, � 2b, 0) (2a, b0 , 0) (2a, 2b, 0) (2a, 0, 0) (2a, 0, 0) (2a, 0, 0) (2a, � 2b,) (2a, 0, 0) (2a, 2b, 0)
1 (a, � b, 0) (a, b0 , 0) (a, b, 0) (a, � b, 0) (a, b0 , 0) (a, b, 0) (a, � b, 0) (a, 0, 0) (a, b, 0) (a, � b, 0) (a, 0, 0) (a, b, 0)

DP, dynamic phase.
Fitting functions used to obtain the fit estimates for a and b presented in Table 3. The column headings are abbreviations for the correlations of the noise, viz. correlated (C), anticorrelated (A),
uncorrelated (U) and noise in the first window (1). Reading example: when the fit is unconstrained, the coherences for protocol R with correlated noise and Cþ � are fitted using the function n from
equation (1) with coefficients a-0, b-� b0 and c-4c.
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C� þ , where according to Table 2 no geometric dephasing (b¼ 0) is expected: a
fitting function with b-b0 is used and the fit ideally produces b0 ¼ 0. Similarly, for
protocol R, dynamic phase, a variable b0 0 is introduced to avoid unwanted
interference with b0 , as using a single parameter would prevent b0 from taking
values other than zero in the fits to protocol R, Cþ � and C� þ , where b0 ¼ 0 is
expected. Finally, the proportionality factors of a and b in the fitting functions are
fixed across the measurements. For instance, protocol R with anticorrelated noise
uses 4a and protocol R, and with uncorrelated noise uses 2a. The data from
protocol P is fitted similarly.

In a third step, the parameter c is only fitted for protocol R, correlated noise,
C±, where a and b vanish. This is the only measurement where it is relevant.

Fourth, the fitting parameters b0 and b0 0 are set to zero in the fit we call
‘constrained’. When dropping this constraint, the fitted values for a and b increase
slightly (by maximally 6%, see Table 3); in turn, b0 and b0 0 become negative. Simply
put, the ‘unconstrained’ model (where b0 and b0 0 are free parameters) trades-off
some fitting parameters against each other to obtain the best fit. If theory was in
perfect agreement with experimental data (no noise, no systematic errors), this
trade-off would not be possible. However, owing to experimental imperfections the
fit produces an unphysical result, namely ‘negative’ dynamic dephasing (b0 , b0 0o0).
To avoid this effect, we have opted for presenting the constrained model in the
main text. Comparing the parameter estimates in Table 3, it becomes apparent that
both models yield similar parameter estimates. In addition, as discussed in the
Supplementary Methods and in Supplementary Fig. 2, both models (constrained
and unconstrained) have empirical support.
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