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Directly measuring mean and variance of
infinite-spectrum observables such as the
photon orbital angular momentum
Bruno Piccirillo1, Sergei Slussarenko1,2, Lorenzo Marrucci1,3 & Enrico Santamato1

The standard method for experimentally determining the probability distribution of an

observable in quantum mechanics is the measurement of the observable spectrum. However,

for infinite-dimensional degrees of freedom, this approach would require ideally infinite or,

more realistically, a very large number of measurements. Here we consider an alternative

method which can yield the mean and variance of an observable of an infinite-dimensional

system by measuring only a two-dimensional pointer weakly coupled with the system. In our

demonstrative implementation, we determine both the mean and the variance of the orbital

angular momentum of a light beam without acquiring the entire spectrum, but measuring the

Stokes parameters of the optical polarization (acting as pointer), after the beam has suffered

a suitable spin–orbit weak interaction. This example can provide a paradigm for a new class of

useful weak quantum measurements.
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I
n the canonical approach to quantum measurement, a full
experimental characterization of an observable O, for a
physical system prepared in a given quantum state cj i,

requires determining the probability distribution of its entire
spectrum of eigenvalues by performing many repeated projective
measurements. The statistical moments of the observable,
including its mean and variance, are then also determined. For
infinite-spectrum observables, however, such scheme entails the
considerable overhead of having to measure a very large (ideally
infinite) number of probabilities. On the other hand, one is often
not really interested in such a full experimental analysis: the mean
and variance of the observable O, although generally insufficient
for fully reconstructing its spectral distribution, may provide very
important information about the system and its state cj i. Hence,
a problem of general interest in quantum theory is that of directly
measuring the mean and variance of a given observable O,
without passing through the determination of its full spectral
distribution.

A noteworthy example is the long-standing problem of
measuring the angular momentum of light1. This quantity and
the ensuing rotational effects induced in matter, for example, by
the circular polarization of light or by the optical ray-torsion2,3,
have recently gained an increasing interest. These two cases
correspond also to the natural subdivision of the angular
momentum of a (paraxial) light beam into a spin part (SAM),
associated with the polarization degree of freedom, and an orbital
part (OAM), associated with the phase front structure2,4,5. The
photon OAM along the propagation axis z can be defined as the
quantum average of the operator L̂z ¼ x̂p̂y � ŷp̂x in a given state
of radiation, where p̂ ¼ � i‘r is the photon momentum
operator and ‘ is the reduced Planck constant5. Consistently,
the fraction of the total intensity belonging to the helical
transverse modes characterized by the phase factor exp i‘fð Þ,
where f is the azimuthal coordinate around the z axis, can be
identified with the probability of obtaining ‘ ‘ in an ideal
projective measurement of the OAM of the photon in that
state4,6. The OAM is defined over an infinite-dimensional Hilbert
space and has a discrete infinite spectrum, sometimes named
as ‘spiral spectrum’. Most existing methods for measuring
such spiral spectrum are based on filtering or splitting the
wave field according to the OAM eigenmodes, that is, using mode
selectors7–10 or mode sorters11–17. However, in all those cases
in which the spiral spectrum is not confined a priori to a
sufficiently small range, this projective scheme for determining
the whole spectrum requires a very large number of
measurements. On the other hand, one is often only interested
in determining the average OAM and, possibly, its variance,
without passing through the determination of the entire
spectrum. OAM mean and variance may, for example, provide
partial but important information about the source of the
radiation field, or about angular momentum conservation in
radiation–matter interactions18,19.

To tackle the problem we posed, we may exploit the theory of
quantum weak measurements (WMs). This theory, developed by
Aharonov et al.20, has recently gained a great deal of interest due
to the possibility of extracting information from a measurement
process while disturbing the state of the observed system as little
as possible. In particular, much attention was focused on the
more specific concept of ‘weak values’ (WV), which arise in a
WM when the measurement is combined with post selection of
the observed system on a given final state. WMs (and WVs)
have proved to be a powerful tool for addressing fundamental
questions in quantum mechanics, such as the direct measurement
of the wave function of a particle21–23, as well as for technical
applications, such as enhanced precision measurements24,25 or
the active control of quantum systems26,27.

WMs are based on the ancilla measurement scheme
which generalizes the von Neuman protocol28 and comprises
two essential stages: ‘premeasurement’, which consists in
the interaction process between the object–system and the
measurement device, also called pointer or ancilla, and ‘read-
out’, which consists in a projective (strong) measurement on the
ancilla. The disturbance on the object–system is reduced by
weakening the interaction underlying the premeasurement. When
the premeasurement is also followed by another projective
measurement that post-selects a particular final state of the
object–system (besides the ancilla), one obtains the above
mentioned WVs. In our case, however, WVs play no role. We
will benefit instead from a thus far unexploited feature of WMs
that consists in their capability to obtain the mean (or expected)
value of an object–system variable Ô by measuring the mean
value of an ancilla variable M̂, after a suitable weak interaction
between the two (taking place during the premeasurement) and
without post selecting the object–system on a given final state
(case named as ‘standard’ weak measurements, SWMs)29,30. Such
a ‘weak mean’ can be proved to be equal to the quantum
expectation value of the observable Ô determined by strong
measurements28. Though apparently the measurement problem
in this way is just shifted from the object to the ancilla, this is not
without advantages. In general, the ancilla’s observable can be
more easily measured than the object’s one, and it can be also
simpler in structure, for example by having a smaller Hilbert
space dimensionality. Moreover, by exploiting the same weak
interaction process it is possible to extract multiple elements
of information (limited by ancilla dimensionality) about the
object–system by considering different projective measurements
on the ancilla.

In the demonstrative implementation we present here, the
object’s observable is the photon OAM, which is infinite
dimensional, while the ancilla is the photon polarization, which
defines a two-dimensional Hilbert space and is hence much easier
to be measured. Moreover, as we shall see, it is possible extracting
not only the mean but also the second order moment (and hence
the variance) of the object-observable statistical distribution just
by selecting two suitable observables of the ancilla. We are not
aware of prior demonstrations of this kind of applications of the
WM concept, which in our opinion can have wide applicability in
different areas of quantum physics.

Results
Concept of the experimental method. In our method, the
object–system is represented by the OAM carried by an
arbitrarily prepared paraxial beam and the ancilla or meter by its
SAM. In the premeasurement, OAM and SAM are made to
interact through a Sagnac Polarizing Interferometer containing a
Dove prism (PSID)31 as shown in Fig. 1. Essentially the input
beam is first divided by the polarizing beam splitter (PBS1) into
two copies orthogonally polarized along the horizontal H and
vertical V directions, respectively. These copies, through the Dove
prism, are rotated with respect to each other by a small angle
around the propagation axis. The base of the Dove prism is
located in a plane tilted by the angle a with respect to the
horizontal plane containing the interferometer. The intersection
axis between such planes makes the rotation axis of the PSID.
Consequently, the beams propagating in opposite directions
along the arms of the PSID suffer opposite azimuthal angular
shifts of 2a, leading to their relative rotation of 4a. This provides
the premeasurement stage. After exiting the PSID, the H- and
V-polarized beams are then superimposed in the final homodyne
detection (or read-out) stage, as shown in Fig. 1. The total system
OAMþ SAM of a light field is assumed to be prepared in a
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separable state represented by the initial density matrix
t̂0 ¼ ŝ0 � m̂0, where m̂0 is the initial density matrix of the
SAM (or polarization), playing the role of the ancilla or meter,
and ŝ0 is the initial density matrix of the OAM, playing in turn
the role of the object. The SAM initial state is always assumed to
be pure, while the initial OAM state may be either pure or mixed.
For the sake of simplicity, in the experimental demonstration
that follows, we assumed the OAM initial state to be a pure
(that is coherent) finite or infinite superposition of helical
modes, so that ŝ0 ¼ c0j i c0h j, while the SAM initial state was
chosen to be the antidiagonal polarization state Aj i so that
m̂0 ¼ Aj i Ah j. The premeasurement is described by the evolution
operator

Û að Þ ¼ e� i2a=‘ L̂z � Ŝ1 ; ð1Þ
where Ŝ1 ¼ Hj i Hh j � Vj i Vh j is the first Stokes parameter
observable, L̂z is the OAM operator with respect to the PSID
axis and 2a is the effective coupling constant. Û að Þ is able to
distinguish between the different helical modes ‘j i, since
Û að Þ ‘j i � Aj i ¼ ‘j i � s‘

�� �
, with the SAM state s‘

�� �
¼

exp � i2a‘ð Þ=
ffiffiffi
2

p
Hj i þ exp i2a‘ð Þ=

ffiffiffi
2

p
Vj i acting as marker for

‘j i. The premeasurement correlates the polarization components
with the orientation of their transverse azimuthal phase
distribution by rotating them in opposite directions, yielding a
SAM–OAM entangled state. The object–device interaction is
weakened by decreasing the Dove prism rotation angle a,
which amounts to decreasing the effective coupling constant 2a.
Noticing that in the initial state, Ŝ1

� �
0¼ 0 and Ŝ21

� �
0¼ 1,

disregarding terms of order a3 and higher, the final OAM
unconditional density matrix reads

ŝ1 að Þ � ŝ0 �
2a2

‘ 2 ŝ0; L̂z
� �

; L̂z
� �

: ð2Þ

In the same approximation, the final unconditional SAM matrix
density reads

m̂1 að Þ � m̂0 þ i
2a
‘

L̂z
� �

0 m̂0; Ŝ1
� �

� 2a2

‘ 2 L̂2z
� �

0 m̂0; Ŝ1
� �

; Ŝ1
� �

:

ð3Þ

Generalizing the von Neumann protocol, the premeasurement
device, PSID, can be used to translate the measurements of the
mean and variance of the OAM of the input beam into the
measurements of the means of two suitable polarization
‘pointers’, specifically the polarization Stokes observables of the
output beam. In detail,

Ŝ2
� �

1¼ TrS m̂1Ŝ2
� 	

¼ 1� 8a2

‘ 2 L2z
� �

0 þOða3Þ ð4Þ

Ŝ3
� �

1¼ TrS m̂1Ŝ3
� 	

¼ 4a
‘

Lzh i0 þO a3
� 	

ð5Þ

where Ŝ2 ¼ Hj i Vh j þ Vj i Hh j and Ŝ3 ¼ � i Hj i Vh j þ i Vj i Hh j are
the second and third Stokes parameters, respectively. The amount
of information returned by SWMs when applied to a single
system is almost vanishing, since the average ‘pointer deflection’
is much less than the pointer uncertainty. Consequently, a reliable
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Figure 1 | Schematic of the setup for measuring the first and second moments of the OAM probability distribution carried by a paraxial light beam.

An initially Gaussian beam is converted into an OAM superposition state using a quarter waveplate (QWP) and a q-plate (QP). A polarizer (P) and a

half waveplate (HWP1) are then used to prepare the polarization in a linear state oriented at 45� with respect to the axes of the polarizing beam splitter

(PBS1). This PBS1 is the input/output port of a polarizing Sagnac interferometer (PSID)31,36, whose path is closed by mirrors M1, M2 and M3, that contains

the Dove prism used to rotate the two counterpropagating beams with respect to each other. At the output of the PSID, a Babinet–Soleil compensator

(BSC) is used to adjust the relative phase-shift d. The last stage is the balanced polarizing homodyne detector HD, with the axes rotated by 45� with
respect to the PSID axes through the half waveplate HWP2.
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estimation of the mean of the object-observable can be obtained
only by performing the measurements on each member of a
sufficiently large ensemble of systems all prepared (preselected) in
the same state. Therefore Ŝ2

� �
1 and Ŝ3

� �
1 have been measured by

the homodyne detection stage HD (Fig. 1 and Fig. 5), which makes
the scheme suitable for both continuous wave and photon-counting
operation (see the section ‘The homodyne detection method’ in
Methods). The optical powers Pþ and P� at the output ports of
PBS2 are electronically processed to provide the total power
P0¼Pþ þP� and the difference DP¼Pþ �P� , so that

DP
P0

¼ cosd� 4a
‘

sind Lzh i0 �
8a2

‘ 2 cosd L2z
� �

0 þO a3
� 	

; ð6Þ

where d is the phase retardation between the H- and V-polarized
photons exiting the PSID and can be tuned through the
Babinet–Soleil compensator. From equation (6), we obtain Lzh i0¼
� ‘=4að ÞDP=P0 for d ¼ 2kþ 1ð Þp=2, and L2z

� �
0¼

‘ 2=8a2
� 	

1�DP=P0ð Þ for d¼ 2kp, with k being an integer.

The preselected value of a is set through the goniometer
G(±0.008�) and an accurate estimate for its value was then
obtained by the calibration procedure. Zeroing and calibration of
the apparatus were carried out by adopting as standard input the
OAM imparted by perfectly tuned q-plates9,32, for several values of
q (with qr8), onto the high-quality TEM00 mode generated by a
single-mode continuous wave laser (wavelength l¼ 532nm). The
selection criterium for a is a critical point of the method. In fact, it
sets an upper limit to the maximum value of ‘ that can be measured
within a specified accuracy (upper cutoff) and controls the signal-
to-noise ratio. For instance, to set the cutoff ‘max ¼ 100,
maintaining within 1% the theoretical accuracy in the
measurement of both Lzh i0 and L2z

� �
0, an aE0.05� is to be

selected. Since, the signal returning Lzh i0 is proportional to a while
that returning L2z

� �
0 is proportional to a2, to accurately discern the

eigenstate ‘ ¼ 1, the noise in the signals must be lower than
E10� 5. This requires a very precise control of the optical path
within the PSID, which reflects into a good control of the noise in
the phase retardation d. Our experiment was carried out with
a¼ (0.85±0.01)�, corresponding to ‘max ¼ 10 and a maximum
acceptable noise in the signals of E10� 3.

Experimental demonstration. To validate our method, after
calibration on OAM eigenstates, we measured the moments Lzh i0
and L2z

� �
0 of light beams containing different OAM super-

positions. These beams were all obtained from a Gaussian TEM00

laser beam (VERDI LASER, @l¼ 532 nm, continuous wave
operation) using q-plates (QP) with different charges q, while
varying the following parameters: (i) the polarization before the
QP, (ii) the QP birefringent retardation (that is, the QP ‘tuning’)
and (iii) the relative alignment of the beam axis and the QP
centre. After passing through the QP, the beam polarization is
reset to the 45� linear polarization needed for erasing the
SAM–OAM correlation established by the QP due to its
intrinsic birefringence and prepared for the subsequent OAM
measurement.

When the QP is centred on the beam axis, for each q the
generated OAM superpositions involve just three OAM eigen-
states, that is, ‘ ¼ 0; � 2q. The relative weight of these three
states in the superposition can be controlled using the polariza-
tion input helicity s3 before the QP and the QP phase retardation
y, the latter being controlled by the QP voltage V. The theoretical
expressions for the first and second moments of the resulting
OAM distribution can be easily calculated and are given by

Lzh i0¼
2q‘ s3sin2y=2

1� 1� s23ð Þcos2y=2 ð7Þ

and

L2z
� �

0¼
4q2‘ 2sin2y=2

1� 1� s23ð Þcos2y=2 : ð8Þ

The (device-dependent) tuning function y(V) is obtained
from an independent characterization of the QP birefringent
retardation33. The results of our measurements on these OAM
superposition states are shown in Figs 2 and 3, together with the
theoretical predictions from equations (7) and (8). The agreement
is clearly very good, particularly considering that there are no
adjustable parameters in the theory. However, the calibration of
the setup is not entirely independent from these data, as pure
OAM eigenstates correspond to the first two opposite maxima
obtained in the outermost curves at a voltage of about 4.2 V (for
which y¼ p and the QP is tuned). In particular, as mentioned,
the precise value of the Dove prism angle a with respect to the
PSID plane was estimated by matching the measured values of
mean OAM to the theoretical ones in these specific cases.
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Figure 2 | Measurement of the OAM moments of a superposition of

‘ ¼ 0; �6 with variable coefficients. Behaviour of the first (a) and

second (b) moment and of the root mean square deviation (c) of the OAM

distribution of the beam prepared using a q-plate, as a function of the

q-plate tuning voltage controlling its retardation y and for different values of

the polarization helicity s3 before the q-plate. The two parameters y and s3,

together with the q-plate charge q, define the specific OAM superposition

of states having ‘ ¼ 0 and ‘ ¼ � 2q ¼ �6. Experimental data points for

s3 ¼ 1:0 � 1:0ð Þ are represented by J (K), for s3 ¼ 0:87 �0:87ð Þ by
& (’), for s3¼0.50(�0.50) by B (~) and for s3¼0 by m. Error bars

represent standard deviations due to misalignment errors, estimated by

repeating the experiments after realignment. The curves give the

corresponding theoretical predictions calculated from equation (7) for

s3¼±1 (dotted curves), s3¼±0.87 (dashed curves), s3¼±0.50

(dot-dashed curves) and s3¼0 (solid curve).
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To test the validity of our method in a more complex situation,
we then measured the first and second moments of the OAM
distribution of a beam generated by means of a perfectly tuned
q-plate (y¼p) with q¼ 4, for circular polarization input
(s3¼ 1.0), whose centre is translated off of the beam axis by a
variable distance xms. In this situation, the input beam in the
measurement setup is similar to a Gaussian beam with an added
vortex located at a distance xms from the beam axis. This is not an
eigenstate of OAM but is a superposition of many different values
of ‘. In such case, the theoretical predictions for the first
two moments of the OAM distribution can be shown to
be the following: hLzi0 ¼ ‘ ‘expð� x2ms=w

2Þ and Lzh i0¼ ‘ 2‘2

expð� x2ms=w
2Þ, with ‘ ¼ 2q and o the beam waist in the plane of

the q-plate. We stress that these results are based on setting the
origin of the coordinate system in the beam centre (and not in the
vortex centre). Experimentally, this is fixed by aligning the beam
axis with the rotation axis of the Dove prisms in the PSID. The
experimental results for this test are reported in Fig. 4, where they

are compared with the above theoretical predictions, showing
again a very satisfactory agreement.

Discussion
In this paper, we have demonstrated that a possible approach to
overcome the practical difficulties that arise when measuring the
probability distribution of an infinite-spectrum quantum
observable is provided by weak measurements without post
selection or ‘standard’ weak measurements. We have proposed to
exploit the capability of standard weak measurements to shift the
problem of getting the statistics from the object to the ancilla, to
acquire multiple elements of information about a complex object
system via measurements performed on a much simpler ancilla.
In particular, we applied this method to measuring both the mean
and the variance of the OAM distribution of a general paraxial
optical beam by doing only standard polarimetry. Immediately
after the premeasurement, which entangles weakly the OAM and
polarization of the input beam state, without introducing any post
selection on a specific transverse OAM mode, the required
moments of the input OAM distribution turn out to be
proportional to the output polarization Stokes parameters and
can therefore be easily measured through a polarizing homodyne
scheme. Our demonstrative result is important in itself, as it is the
first measurement of mean and variance of the optical OAM that
does not pass through the acquisition of the full spiral (OAM)
spectrum. Such a scheme could be of great help in experimental
studies of OAM exchange in light–matter interaction or to
weaken the usual alignment requirements typical of OAM-based
free-space communication12,34,35. We notice that our
demonstration is based on a purely classical optics experiment
(not differently from previous WM demonstrations, for example,
refs 24,21), which could also be discussed entirely in classical
terms, not requiring WM or even quantum concepts. However,
the quantum interpretation we provide of our experiment is
much more general and also applicable to systems which are
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entirely nonclassical. Schemes of weak measurements without
post-selection modelled after our example are expected to find
application in many other quantum metrological problems, for
example in which the object observable cannot be easily accessed
directly or in which the interaction with the measuring device is
constrained.

Methods
The premeasurement. In the measurement, the observer couples the uknown
OAM input state (observed system) to SAM (pointer or ancilla) through the
PSID. This coupling is represented by the unitary operator Û að Þ in equation (1).
Let the OAM input state be represented by the initial density matrix ŝ0 and
manipulate the photon polarization so that the SAM input state is m̂0 ¼ Aj i Ah j,
that is, antidiagonal with respect to the PSID axes. The initial state of the total
system OAMþ SAM is separable and is therefore represented by the density
matrix t̂0 ¼ ŝ0 � m̂0. The SAM–OAM entangled state arising from the
premeasurement is

t̂1 að Þ ¼ Û að Þt̂0Ûy að Þ ¼ Û að Þŝ0 � m̂0Û
y að Þ

¼
X

‘;m

s‘
�� �

P̂‘ŝ0P̂m smh j; ð9Þ

where P̂‘ ¼ ‘j i ‘h j is the projector operator along the ‘j i state and
s‘
�� �

¼ exp � i2a‘ð Þ=
ffiffiffi
2

p
Hj i þ exp i2a‘ð Þ=

ffiffiffi
2

p
Vj i is the SAM state marking the

OAM state ‘j i. The separate states ŝ1 for the system and m̂1 for the ancilla, after the
premeasurement, are obtained by taking the partial trace over the non-interesting
degrees of freedom. Therefore, in the weak coupling regime, to the second order in
a, the final OAM state unconditional density matrix ŝ1 að Þ, as reported in
equation (2), is given by

ŝ1 að Þ ¼ TrS t̂1 � ŝ0 �
2a2

‘ 2 ŝ0; L̂z
� �

; L̂z
� �

; ð10Þ

where TrS denotes the partial trace over the SAM degrees of freedom. The matrix
elements of ŝ1 in the ‘j i-basis are

‘h jŝ1 mj i ¼ ‘h jŝ0 mj i s‘
� ��smi: ð11Þ

For a weak measurement there is almost total overlap between different pointer
states sl

�� �
(while for an ideal strong measurement the overlap tends to zero).

Specifically the overlap of the final polarization states is

s‘
� ��smi � 1� 2a2=‘ 2 ‘�mð Þ2: ð12Þ

This implies that the correction to the initial OAM density matrix is even of second
order in a. Analogously, the unconditional density matrix m̂1 að Þ of the final SAM
state is obtained from t̂1 að Þ as

m̂1 að Þ ¼ TrL t̂1 � m̂0 þ i
2a
‘

L̂z
� �

0 m̂0; Ŝ1
� �

� 2a2

‘ 2 L̂2z
� �

0 m̂0; Ŝ1
� �

; Ŝ1
� � ð13Þ

where TrL denotes the partial trace over the OAM degrees of freedom. Form the
density matrix m̂1ðaÞ, the expectation values of all the pointer variables after the
premeasurement can be calculated. In particular, the expectation value of Ŝ1 is
conserved in the measurement, while the expectation values of Ŝ2 and Ŝ3 in the
final state of the ancilla are given by equations (4) and (5), which are related to
L̂2z
� �

and L̂z
� �

, respectively.
In conclusion, in weak coupling regime, the measurements of both the mean

and variance of the photon OAM are translated by the premeasurement into the
measurements of two distinct variables of the same pointer or ancilla, Ŝ3 and Ŝ2
respectively. However, Ŝ3 yields L̂z

� �
to the first order in the coupling constant a

and Ŝ3 yields L̂2z
� �

to the second order in a.

The homodyne detection method. The Stokes parameters of the beam after the
premeasurement, Ŝ2

� �
1 and Ŝ3

� �
1, have been measured by the homodyne detection

stage HD (Fig. 5). The H- and V-polarized photons exiting the PSID pass through a
d retardation waveplate and are then made interfere through the polarizing beam
splitter PBS2. In this way, the optical powers Pþ and P� at the output ports of
PBS2 are respectively proportional to the probabilities that an input photon in the
initial polarization state Aj i is dragged by the PSID towards the final polarization
states E y�ð Þj i ¼ cosy� Aj i þ i siny� Dj i, yþ ¼ d and y� ¼ d–p. d is the phase
retardation between the H- and V-polarized photons exiting the PSID and can be
tuned through the Babinet–Soleil compensator. A straightforward calculation
shows that

P� / TrS m̂1 að Þ E y�ð Þj i E y�ð Þh jð Þ

¼ 1
2

1þ cosy� Ŝ2
� �

1 � siny� Ŝ3
� �

1

� 	
:

ð14Þ

Pþ and P� are then electronically processed to provide the total power
P0¼ Pþ þP� and the difference DP¼Pþ � P� , involved in equation (6).
In practice, in the experiment, d was set to p to measure Ŝ2

� �
1 or to p/2 to

measure Ŝ3
� �

1.
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