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The foundations of the human cultural niche
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Technological innovations have allowed humans to settle in habitats for which they are

poorly suited biologically. However, our understanding of how humans produce complex

technologies is limited. We used a computer-based experiment, involving humans

and learning bots, to investigate how reasoning abilities, social learning mechanisms and

population structure affect the production of virtual artefacts. We found that humans’

reasoning abilities play an important role in the production of innovations, but that groups of

individuals are able to produce artefacts that are more complex than any isolated individual

can produce during the same amount of time. We show that this group-level ability to

produce complex innovations is maximized when social information is easy to acquire and

when individuals are organized into large and partially connected populations. These results

suggest that the transition to behavioural modernity could have been triggered by a change in

ancestral between-group interaction patterns.

DOI: 10.1038/ncomms9398 OPEN

1 Institute of Human Origins, Arizona State University, Tempe, Arizona 85287, USA. 2 School of Human Evolution and Social Change, Arizona State University,
Tempe, Arizona 85287, USA. Correspondence and requests for materials should be addressed to M.D. (email: maxime.derex@gmail.com).

NATURE COMMUNICATIONS | 6:8398 | DOI: 10.1038/ncomms9398 |www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:maxime.derex@gmail.com
http://www.nature.com/naturecommunications


T
echnological innovations have allowed humans to settle in
habitats for which they are poorly suited biologically1,2.
The obvious evolutionary advantage of the ability to make

such innovations raises many questions about how complex
technologies arise, and why only humans are able to produce
them. Many authors have linked our remarkable ability to
develop new technologies with our no less remarkable reasoning
abilities3. The fossil record reveals increasing encephalization in
the human lineage during the past 2 Myr ago4 and comparative
studies demonstrate that brain volume and intelligence covary5,6,
suggesting that modern humans developed complex technology
because biological evolution made them smarter than non-
humans species. However, (1) the archaeological record indicates
that major increases in technological complexity occurred
significantly after the appearance of anatomically modern
humans7, and (2) human populations typically overcome
environmental challenges that isolated individuals cannot cope
with1, suggesting that increased intelligence does not fully explain
this phenomenon.

An alternative explanation is that human social learning
abilities are also essential for the ecological success of our
species1. According to this view, humans possess unique social
learning mechanisms that stabilize cultural knowledge and allow
successive innovations to be gradually added to existing cultural
traits8. Bursts of cultural complexity that occurred during the
Upper Palaeolithic transition (45,000 years ago) could then be the
product of demographic processes: bigger populations, that host a
greater number of particularly skilful social learners, are more
likely to maintain and improve complex cultural traits9–13.

Although experimental studies have recently confirmed that
decreases in social learning ability and population size can both
prevent transmission of cultural knowledge12,14,15, a clear
demonstration of cumulative cultural evolution in controlled
conditions is lacking. Several cultural evolution experiments
have shown that the use of social information increases the
average performance of individuals14–16 and allows increasingly
effective artefacts to arise across successive generations17,
but these experiments have not clearly demonstrated cultural
accumulation of technologies beyond what most individuals
could accomplish on their own18. As a consequence, we should be
cautious in drawing conclusions from these experiments about
how new cognitive abilities or increased population densities
allow populations to succeed where isolated individuals failed.

Here we present results from a large scale experiment involving
both human participants and automated learning bots (with and
without social learning abilities). Using a combinatorial computer
game in which participants had to discover increasingly complex
and nested innovations to produce virtual ‘totem poles’ (hereafter
‘totems’, Fig. 1), we investigated the achievements of (1) isolated
individuals and groups of six humans provided with full social
information (full treatment, Fig. 2); (2) automated learning ‘bots’
(either alone or in groups of six) generating only random
variation (reasoning ability treatments); (3) human participants
provided with information about the tools made by other group
members, but not about the underlying production process
(partial information treatment); and (4) participants provided
with full social information, organized in groups of three (small
group treatment) or in metapopulations of 3� 2 players (partial
connectivity treatment). We find that human reasoning abilities
(defined as the ability to produce guided variation) play an
important role in the production of innovations, but that subjects
working in groups are able to produce more complex artefacts
than single individuals working for the same amount of time. We
show that this cultural accumulation process is enhanced by
learning mechanisms that make social information easy to
acquire and large population size. Surprisingly, we also find that

the rate of cultural accumulation is higher within partially
connected groups than in fully connected groups of the same total
size, which suggests that the transition to behavioural modernity
could have been triggered by changes in ancestral between-group
interaction patterns.

Results
Isolated individuals versus groups. Individuals in groups
produced much better results than isolated individuals. Only 18%
of isolated individuals managed to build a totem, while 87% of
participants from groups of six fully connected players with full
information (full information treatment) were able to do it.
Players from the full information treatment also produced much
more complex and rewarding totems (that is, resulting from a
building process that involved more innovations, Fig. 1c), and, on
average, outperformed isolated individuals by a factor of 8
(mean¼ 181, s.d.¼ 222 and M¼ 1,461, s.d.¼ 1,599, respectively,
Fig. 3). The best isolated individual (out of 60) that played our
game scored 1,250, while 70% of people participating in the full
information treatment achieved a score that was at least this high.

Reasoning abilities. No isolated bot built a totem, and only
0.004% of all bots benefiting from social information were able to
build a totem. The performances of bots and humans were
affected by reasoning and social learning abilities, and the inter-
action between these factors (Fig. 3). As a consequence, isolated
bots scored almost four times lower than isolated humans
(M¼ 51, s.d.¼ 1), while groups of bots scored 15 times lower
than groups of humans (M¼ 99, s.d.¼ 28).

Social learning mechanisms. Participants who were provided
with information about innovations, but not about the related
production processes (partial information treatment) were able to
build a totem 65% of time. They achieved scores that were three
times higher than that of isolated individuals and about half of
that achieved by players provided with full information (M¼ 654,
s.d.¼ 500, Fig. 4). No individual in the partial information
treatment was able to outperform the very best isolated
individual. Thus, the cumulative cultural process broke down
when individuals only had access to partial social information.

Population structure. The success of participants in groups of
three was intermediate between isolated players and players in
groups of six. Players in groups of three with full social infor-
mation managed to build a totem 70% of time and outperformed
isolated players by a factor of 4 (M¼ 774, s.d.¼ 511, Fig. 5).
None of the participants in groups of three were able to
outperform the best isolated individual.

Participants in the partial connectivity treatment achieved
scores that were quite similar to those of players in the full
treatment (M¼ 1275, s.d.¼ 162). 90% of participants in the
partial connectivity treatment earned scores that were as high as
the most successful isolated individual and 100% of them were
able to build a totem.

Discussion
Our experiment provides the first empirical evidence that people
working in groups are able to accumulate information and
develop artefacts that are too complex for any isolated individual
to invent during the same period. This result is consistent with
the cultural niche hypothesis that holds that human populations
would have been able to settle and prosper in harsh environments
as a result of cultural information accumulation rather than
evolved cognitive abilities alone1.
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The comparison with bots, however, highlights the role of
guided variation in the innovation production process. Even
isolated humans outperformed groups of bots by a factor of 2.
This striking difference is partially explained by the fact that bots
searched for solutions at random, while evolved cognitive abilities

allow humans to produce mental simulations that bias the way
they explore their environments19. For example, in the first trial,
the 60 isolated individuals produced only 20 different
combinations (among 209 possibilities). Although all of these
initial solutions were unsuccessful, this illustrates how humans

a b c

Figure 1 | General principle. Our game simulates the real-world innovation process in which the production of complex artefacts (that is, virtual ‘totem

poles’) depends on the discovering of high-level innovations (for example, axes), whose discovery is contingent on the discovering of lower-level

innovations (for example, stone tools), both low- and high-level innovations resulting from a specific production process. (a) The ‘resources panel’. Players

were provided six initial basic resources that could be combined using a workshop panel containing four slots (Fig. 2). (b) Examples of successful

combinations. By placing items into a four-slot workshop panel (black squares; only three are depicted here), participants could produce innovations

(red squares). Innovations occurred when players produced a combination that belonged to a list of pre-determined successful combinations. Low-level

innovations (created by combining basic resources) could be combined to produce higher-level innovations. Further accumulation of innovations could

produce complex tools (such as axes) that potentially allowed players to get logs (by cutting trees) to build their totem. From top to bottom: a ‘stick’ could

be obtained by placing a ‘bough’ alone in the workshop. A ‘stone tool’ could be obtained by combining two ‘refined stones’. A ‘string’ could be obtained by

combining two ‘bunches of fibres’. The combination of a bough, a string and a stone tool allowed players to get an ‘handaxe’. The handaxe allowed players

to cut trees and get ‘logs’. The order of the items in the workshop panel had no effect on the result. (c) Examples of totem poles. Other high-level

innovations (such as carving tools or pigments) could be subsequently used to refine totems to increase their value. Players’ gain depended on the number

of innovations they discovered and the value of their totem. The totem depicted on the left represents the achievement of the best isolated individual,

required 22 innovations and scored 920 points. The totem depicted on the right represents the achievement of the best social learner, required 54

innovations and scored 6,526 points.

Stock TotemResourcesTribe
Click on the player’s name you want to observe

You Player 2 Player 3 Player 4 Player 5 Player 6

Score Score Score Score Score Score
300 465 645 315 480 1,169

Best totemTools

Click on tools to see how to build them

884

Workshop

Try

Bin

150

Figure 2 | Game interface. Resources could be dropped into the ‘workshop panel’ to be refined. Players could trigger an automatic refining process by

clicking on the ‘try’ button. A red cross indicated that the current combination was unsuccessful. Successful combinations resulted in a new item that could

be dropped into the ‘stock panel’ or in the ‘workshop panel’ to be further refined. Logs (for example, the most basic log outlined in the black dashed square)

were the minimal elements that could be dropped into the ‘totem panel’ and provided players with a totem score. The ‘tribe panel’ provided players with

social information. The ‘tribe panel’ depicted here illustrates the ‘full treatment’ in which players benefited from five constant sources of information.

By clicking onto an anonymised name, players could see the innovation record of the corresponding player. By clicking onto an item (for example, the

carved log outlined in black), players could benefit from the underlying combination that resulted in this item (depicted in the red dashed rectangle).

Players from the partial information treatment did not benefit from the information depicted in the red dashed rectangle. Players from the small group

treatment benefited only from two constant sources of information. Players from the low connectivity treatment benefited only from one changing source

of information (among five). Isolated players benefited from the same panel (relabelled ‘innovation record’) but were not able to switch between their own

record and any other players’ record. All players benefited from underlying combinations when clicking on their own innovations.
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provided only with an overall objective are able to reason
about (1) what subordinate objectives could lead them to fulfil
their ultimate goal and (2) which combinations are likely to be
useful given the properties of the items involved. Furthermore,
our results also suggest that individuals were able to generalize
the function/properties of specific items within the game20, as
indicated by the fact that the isolated players’ average rate of
successful combinations increased across time (likelihood ratio
test (LRT): w2¼ 5.38, d.f.¼ 1, P¼ 0.02, N¼ 431).

The humans’ ability to produce successful guided variation was
greatly amplified when it was combined with social information
and allowed groups of six humans to score 15 times higher than
same-sized groups of bots. This interaction between reasoning
and social learning abilities could indicate that observing other
players’ solutions allowed social learners to refine their own
intuitions about the properties of items faster than individuals
working alone21. It is also possible that groups, due to

complementary knowledge or experience, collectively explored a
wider range of possibilities than individuals working alone,
even though participants shared strong intuitions about which
combinations are most likely to be successful. Consistent with this
view, our results indicate that, on average, 5 out of 6 players
produced at least one innovation that was not previously present
within their own group, which might suggest that within-group
interindividual variability could help explain the success of
human groups22.

Even if the isolated players’ average rate of successful
combinations was low (2%), it is likely that the difference we
observed between bots and humans was at least partially due to
the experimental task we designed. Although our task was virtual,
it was likely to elicit naive physics-based heuristics, which could
have helped participants to produce successful combinations.
Thus, we might expect the observed difference to be smaller if
participants face a more demanding or causally opaque task
(for example, kayak production)23.

Our third experiment demonstrates that social learning
mechanisms strongly impact cultural accumulation. It is
commonly acknowledged that the cultural evolution process
requires information to be efficiently transmitted across
generations, but the minimal social learning mechanism that
allows information to accumulate across time is still widely
debated14,24–27. Human social learning mechanisms, for example,
seem more oriented towards production processes than those of
chimpanzees24, and this could prevent information loss and
promote cumulative culture. Experimental studies, comparing the
performance of humans benefiting from product information
with those benefiting from process information have produced
mixed results14,26,27, demonstrating that the amount of
information loss depends on the complexity of the task. Here
we do not claim that the difference between the full information
and partial information treatments illustrates the effects of
process- and product-oriented learning mechanisms. Rather, we
stress the fact that players faced transparent tasks in the full
information treatment, and opaque ones in the partial
information treatment. Players in the full information treatment
could easily reproduce the targeted items because they were able
to learn the required combination of resources, while players in
the partial information treatment had to infer the missing
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Figure 3 | Reasoning abilities and social learning affect the information

accumulation. The final achievements of individuals were significantly

affected by reasoning abilities (bots versus humans, likelihood ratio test

(LRT): w2¼ 534, d.f.¼ 1, Po0.001, N¼ 2120), social learning (LRT:

w2¼ 1374, d.f.¼ 1, Po0.001, N¼ 2120) and the interaction between both

(LRT: w2¼ 159, d.f.¼ 1, Po0.001, N¼ 2120). The horizontal red line shows

the score of the very best isolated individual, which was equated or

outperformed by 70% of participants from the full treatment (full dark grey

bar). Both human-based treatments involved 60 participants. Simulations

involving bots were run 1,000 times. The error bars show 95% confidence

intervals.
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Figure 4 | Cumulative culture depends on social learning mechanisms

that make information easy to learn. Players from the full information

treatment were provided with the underlying combination when clicking on

other players’ innovations, while players from the partial information did

not. Both full and partial social information allowed players to outperform

individual learners (LRT: w2¼ 29.3, d.f.¼ 1, Po0.001, N¼ 120 and

w2¼ 24.7, d.f.¼ 1, Po0.001, N¼ 120, respectively), but only some players

from the former treatment scored higher than the best isolated individual

(represented by the horizontal red line). On average, players benefiting

from the full social information outperformed those who benefited only

from partial social information (LRT: w2¼4.59, d.f.¼ 1, Po0.04, N¼ 120).

All treatments involved 60 participants. The error bars show 95%

confidence intervals.

0

500

1,000

1,500

S
co

re

1 3 6
Group size

Partial connectivity

Full connectivity

Figure 5 | Population structure affects cultural accumulation. Group size

had a significant linear effect on the performance of players (LRT: w2¼ 37.9,

d.f.¼ 1, Po0.001, N¼ 180). Players from the partial connectivity treatment,

who experienced a 3� 2-player metapopulation structure, outperformed

individual learners (LRT: w2¼41.2, d.f.¼ 1, Po0.001, N¼ 120) and did

not significantly differ from players from fully connected six-player groups

(LRT: w2¼0.90, d.f.¼ 1, P¼0.34, N¼ 120). The horizontal red line shows

the score of the best isolated individual. Players from the partial

connectivity treatment equated or outperformed the score of the best

isolated individual in 90% of cases. All treatments involved 60 participants.

The error bars show 95% confidence intervals.
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combinations. Although process information made the tasks
transparent in our experiment, ecologically valid tasks, such as
stone tool production, may require still more evolved social
learning mechanisms to be similarly transparent. For instance,
even the acquisition of relatively simple Oldowan tool-making
skills is greatly enhanced by verbal teaching28. More generally,
one should expect more complex social learning mechanisms to
be useful whenever these mechanisms allow individuals to acquire
crucial information that cannot be easily inferred from process
observation. Thus, the present experiment does not allow us to
determine the minimum social learning mechanisms necessary
for cultural accumulation. However, it does show that removing
process information has a critical effect on cultural evolution.
Compared with previous studies, our experiment most likely
shows a more general effect of product and process-oriented
social learning mechanisms because players from the partial
information treatment had to successively infer the underlying
combination of many different innovations (such stone tools,
axes and so on) rather than the underlying production process of
a single item14,26,27. Thus, the current results indicate that
cumulative cultural evolution requires process-oriented social
learning mechanisms, although some forms of teaching could also
be necessary.

Our last experiment shows that changes in social structure
might have had critical effects on the rise of cumulative culture. In
addition to confirming recent experimental results about the effect
of group size on cultural complexity12,13,15, our results suggest that
the rate of cultural accumulation may be highest in sizable and
partially connected populations (as indicated by an higher
probability of building a totem). This counter intuitive result is
most likely due to the fact that less efficient networks can lead to
more thorough exploration of design space29 (but see ref. 30). In
our game, players could produce different innovations from the
same pool of items. This means that innovations that might have
been discovered from a given pool of items were increasingly
harder to find each time a new item was added to this pool due to
combinatorial explosion. In the partial connectivity treatment,
partially independent subgroups were more likely to discover all
the innovations that a specific pool of items provide, before sharing
them. The fact that reducing connectivity within six-player groups
had no significant effect on average performances (and even some
positive effects on exploration) could be especially important for
explaining the burst of cultural complexity that occurred during
the Upper Palaeolithic transition. Hunter-gatherer societies display
a unique social structure involving extensive interaction between
people living in different residential groups31,32. These results
suggest that a change in ancestral interaction patterns that created
larger, but only partially connected, interaction networks, could
have elicited a burst of cultural complexity. Second, this kind of
metapopulation structure could have an unsuspected effect on the
innovation rate. Indeed, it has been suggested that partially
connected networks are better at maintaining cultural diversity
in multi-modal fitness landscapes29,33. As a consequence,
recombination of pre-existing cultural traits, which some have
argued is the main mode of technological innovation34,
might have been greatly favoured within partially connected
populations.

Our results are consistent with the hypothesis that
cultural information accumulation played an essential role in
the evolution of modern humans1. Although the present
experiment involved bots generating random combinations, and
do not replicate the actual mode of reasoning of a distant
ancestor, our results illustrate how changes in the ability to
produce successful guided variation may have speeded up
innovation rates. According to previous theoretical work, an
increase in reasoning abilities might have coevolved with more

efficient and cognitively costly social learning abilities6,35,
establishing propitious conditions for cultural information
accumulation. Finally, our experiment confirms the critical role
of demographic processes in cumulative cultural evolution,
and suggests that shifts in ancestral between-group interaction
patterns might have paved the way to behavioural modernity.

Methods
Participants. A total of 300 Arizona State University students (150 women and
150 men) were randomly selected from a database managed by the Elinor Ostrom
Multi-Method Lab at Arizona State University and recruited by email. Informed
consent was obtained from all subjects before starting the experiment (ethical
approval was given by Arizona State University IRB, codes: STUDY00002137 and
STUDY00002273). The subjects ranged in age from 18 to 26 years (mean 19 years,
s.d. 1.37 years). Participants received $5 for participating and an additional amount
ranging from $5 to $30 depending on their own performance.

Procedure. The experiments took place in a computer room at the Elinor Ostrom
Multi-Method Lab at Arizona State University. For each session, a maximum of
20 participants (exclusively male or female) were recruited and randomly assigned
to one condition of the experiment. Participants sat at physically separated and
networked computers and were randomly assigned to a group or worked alone.
Players did not know who belonged to their group and were instructed that
communication and note taking were not allowed. Before starting the experiment,
participants were requested to enter their age and sex. Participants could read
instructions on their screens. The game lasted 45min, after which subjects received
a reward according to their performance ($15 on average).

Game principle. The participants played a computer game (programmed in
Object Pascal with Delphi 6) that simulated a real-world innovation process in
which the production of complex artefacts depended on the discovery of high-level
innovations. Discovering these innovations was contingent on the discovery of
lower-level innovations. Both low- and high-level innovations resulted from a
specific production process that was initially unknown to participants. Players were
initially provided with six basic resources (Fig. 1a) that could be used without any
limit and combined using a workshop panel containing four slots (Fig. 2). After
dropping between one and four resources into this panel, players could trigger an
automatic refining process at no cost and without any limit by clicking on a ‘Try’
button. Innovations arose when players produced a combination that belonged to a
list of pre-determined successful combinations (Fig. 1b). A specific slot displayed
the result: a red cross when the combination was unsuccessful, a new item
otherwise. When discovered, new items could be in turn associated with other
items to produce higher-level innovations. All combinations were allowed,
including those involving the repeated use of the same item. The order of the items
in the workshop panel had no effect on the result, so that 209 unique combinations
could be produced from six initial resources. The production of new items led to a
combinatorial explosion, so that 1,000 different combinations could be produced
after the discovering of four new items/innovations. In total, 27 additional items
(all useful) could be generated from the six initial resources. A stock panel allowed
the players to store up to 12 items, in addition to the six initial resources (Fig. 2).
The accumulation of innovations could result in the production of complex tools
(such as axes) that potentially allowed players to get logs by cutting trees. Basic logs
required at least eight innovations to be produced and were the minimal element
that could be dropped into a three-slot totem pole panel, which provided players
with a totem score. Logs could be refined when combined with relevant tools
(such as carving tools, pigments, brushes and so on) in the workshop panel.
115 different logs could be produced, so that a total of 142 innovations and 266,915
unique totems could be generated.

Tutorial and pre-game information. Before starting, the players had to complete a
tutorial during which basic actions, such as dragging and dropping resources into
the workshop panel, had to be completed. The tutorial also guided player’s actions
until the production of a first innovation (the same one for all the players) to make
sure that all players mastered the game interface before starting the experiment.
Players were informed that the ultimate aim of the game was to build a totem pole,
that innovations had to be produced before being able to produce logs and that
these logs could be used and refined to make totems. Players had no idea about
which items could be produced during the game. Players were also informed that
their score, and their monetary reward depended on the number of new items they
were able to produce and the value of their totem. The fitness function that
determined the value of a totem was unknown to players.

Score calculation. Each of the 115 different logs was associated with a unique
value that was randomly attributed within a range of scores that depended on the
log’s complexity. The complexity of logs was defined by the number of innovations
that was required to produce them. It means that logs with higher number of
underlying innovations were always more rewarding, although two logs with the
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same number of underlying innovations did not have the same value. The score of
a totem, which depended on the value of the logs and their diversity, was calculated
as follow:

ScoreTotem ¼ 1þ 0:15að Þ� ScoreLog1 þ ScoreLog2 þ ScoreLog3
� �

With a taking the value 0, 1 or 2 depending on whether the totem pole involved 1,
2 or 3 different logs.

Totem scores ranged from 50 to 7,410 points. The players’ final score was equal
to the score of the best totem they built plus 15 points for each new item they
produced.

Treatments. All players were provided with an additional panel whose content
varied according to the treatment (Fig. 2). Players from the individual learning
treatment were only provided with their own score and a record of their own
innovations (alongside their best totem, if any). All players could click on
innovations from their own record to generate a reminder about how to produce
them. Players from other treatments benefited from additional information and
could switch between their own record and others’ record by clicking on an
anonymised name (such as ‘player 3’) and associated score (Fig. 2). Other players’
scores were updated every 10 s. Players from the full and partial information
treatments were permanently provided with five constant sources of social
information. However, participants in the full information treatment were
provided with the underlying combination when they clicked on other players’
innovations, while participants in the partial information treatment were not
allowed to see the underlying combination (Fig. 2). Players from the small group
and partial connectivity treatments benefited from the same innovation-related
social information as in the full treatment, except that participants in the small
group treatment benefited only from two constant sources of information (from
the other members of their group), while the latter benefited from 1 changing
source of information (among 5). In the partial connectivity treatment, the
between-players ties were always reciprocal, so that, at any time, the population
structure can be described as a 3� 2-player group metapopulation. The between-
players ties were randomly generated and varied every 3min, so that, on average,
the probability of connecting every possible pairs of individuals during the course
of the experiment was about 1. Players provided with social information could
observe other group members without any limit. All treatments involved 30 men
and 30 women in single-sex groups (to facilitate statistical analyses).

Bots. Isolated bots generated combinations through a two-step process: they first
choose a random number N of workshop slots (1rNr4) before randomly
selecting N items from the same initial pool of items as human participants. When
they generated a successful combination, the resulting innovation was added to
their pool of items, which was used during subsequent trials. The number of
attempts performed by bots was parametrized using data generated by humans.
Human participants produced an average of 380 attempts, but half of them were
redundant (51%), which is mainly explained by a limited memory capacity
(an average 45% of unsuccessful combinations were redundant combinations).
As we were interested in the effect of the ability to generate guided variation
(and not in the effect of memory), we allowed bots to generate 188 unique
attempts/combinations (that is, new combinations were generated at no cost when
bots randomly produced an already tried combination), which was the average
number of unique combinations that human participants produced during our
experiment (the results are not sensitive to variation in the number of attempts
around this mean). The final score of isolated bots was based on the number
of innovations they discovered as no isolated bots were able to produce logs
(the minimal element required to build a totem). Groups of six bots generated
combinations according to the same process, except that they benefited from the
innovations of other bots in addition to their own discovery, which simulated the
effect of social learning. Bots could instantly use other bots’ discoveries to generate
new combinations and progress further in the fitness landscape (as each innovation
was useful). Bots that produced logs were provided with a totem score that equalled
the maximum number of points that could be obtained from these logs. The social
bots final score was based on the number of innovations they produced and their
totem score.

Analyses. All statistical analyses of scores were based on linear mixed models with
the log-transformed individuals’ final score as the response variable and group
identity as a random effect. Preliminary analyses revealed no effect of sex or age
and were not introduced in the final statistical models.

Reasoning abilities and social learning. The data set was composed of the
performance of humans and bots that were either isolated or organized in groups
of six. The binary variables ‘reasoning abilities’ (that is humans or bots) and ‘social
learning’ and the interaction between both were evaluated as explanatory variables.

Social learning mechanisms. The data associated with the ‘isolated individuals’,
‘partial information’ and ‘full information’ treatments were considered. ‘Treatment’
was introduced as explanatory variable.

Population structure. Two analyses were run. In the first, the data set was
composed of the data from the ‘isolated individuals’, ‘small group’ (three-player
group) and ‘full’ (six-player groups) treatments, and ‘group size’ was introduced in

the model as a continuous variable; in the other, the data set was composed of the
data from ‘partial connectivity’ and ‘full connectivity’ treatments, and ‘connectivity’
was modelled as a binary variable (low or high).

Rate of innovation. To determine whether humans were able to generalize the
function of specific items within the game, we investigated the number of
unsuccessful combinations that isolated players had to generate before producing a
successful one. This log-transformed value was the response variable. The rank of
the innovation (within the player’s own innovation record) was evaluated as an
explanatory variable. Theoretically, the response variable should be strongly
affected by the number of possible combinations that one player was able to
generate from his/her pool of items. For this reason, we introduced the
corresponding log-transformed number of possible combinations that the player
could produce as a control variable. The player’s identity was introduced as
random variable. Our results indicate that the number of unsuccessful
combinations that players had to generate before producing a successful one was
negatively affected by the rank of the innovation (LRT: w2¼ 5.32, d.f.¼ 1, P¼ 0.02,
N¼ 431), indicating that players got better at generating successful combinations
across time. As expected, the number of possible combinations negatively affected
the individuals’ ability to find successful combinations, although this effect was
only marginally significant (LRT: w2¼ 3.02, d.f.¼ 1, P¼ 0.08, N¼ 431).

All statistical analyses were conducted using R version 3.0.1 (ref. 36). The
significance of explanatory variables was assessed by comparing full and restricted
models using LRTs and parametric bootstrapping with 1,000 simulations. Both
tests yielded qualitatively similar results. Mixed models, LRTs and parametric
bootstrapping were performed using the lme4 (ref. 37) and pbkrtest38 packages.
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