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Dynamical preparation of Floquet Chern insulators
Luca D’Alessio1,2 & Marcos Rigol1

Realizing topological insulators is of great current interest because of their remarkable

properties and possible future applications. There are recent proposals based on Floquet

analyses that one can generate topologically non-trivial insulators by periodically driving

topologically trivial ones. Here we address what happens if one follows the dynamics in such

systems. Specifically, we present an exact study of the time evolution of a graphene-like

system subjected to a circularly polarized electric field. We prove that for infinite

(translationally invariant) systems the Chern number is conserved under unitary evolution.

For systems with boundaries, on the other hand, we show that a properly defined topological

invariant, the Bott index, can change. Hence, it should be possible to experimentally prepare

topological states starting from non-topological ones. We show that the chirality of the edge

current in such systems can be controlled by adjusting the filling.
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T
opological and Chern insulators are fascinating phases of
quantum matter that are qualitatively different from
conventional insulators and semiconductors1,2. They are

characterized by a gap in the bulk and have topologically
protected gapless excitations at the boundary3,4. Topological
phases fall outside the Landau–Ginsburg (effective) theory of
spontaneous symmetry breaking and are characterized by bulk
topological invariants, such as the Chern number5, which can be
interpreted as non-local order parameters. Recently, it has been
proposed that time-periodic perturbations can induce topological
properties in otherwise non-topological materials, opening the
exciting possibility of studying non-equilibrium topological
transitions6–8.

The link between topology and time-periodic driving can be
established via the Floquet theorem9–12, which is very similar to
Bloch’s theorem13. The Floquet theorem states that the evolution
operator of any system described by a time periodic Hamiltonian
H(t)¼H(Tþ t) can be factorized as

U t; 0ð Þ ¼ P t; 0ð Þe� i HF 0½ �t=‘ ð1Þ
where P(t, 0)¼P(tþT, 0) is a unitary periodic operator and
HF[0] is the time-independent Floquet Hamiltonian. Being time
independent, the Floquet Hamiltonian can be characterized using
standard concepts developed for undriven situations. For
example, the Floquet Hamiltonian is considered topological if
the Chern number of the Floquet bands is non-zero8. As noted in
ref. 14, this characterization is incomplete since it ignores the
properties encoded into the operator P. Moreover, periodically
driven systems are manifestly out of equilibrium and the
topological properties of the time-evolving state do not need to
reflect the topology of the underlying Floquet Hamiltonian.

Here we extend the topological characterization above to
isolated, thermodynamically large, out-of-equilibrium systems. In
particular, we address what should happen in an experiment on
an isolated system when one turns on the periodic driving using
linear ramps. For infinite (translationally invariant) systems, in
the absence of dissipation, we prove a no-go theorem. We show
that the Chern number is conserved under unitary evolution. On
the other hand, for systems with boundaries, we show that a
properly defined topological invariant, the Bott index15, can
change. Hence, it is possible to dynamically prepare a topological
wavefunction starting from a non-topological one via unitary
evolution.

Results
Model. We consider the following Hamiltonian (or a unitary
equivalent):

H tð Þ ¼ HS þ f tð ÞH1 tð Þ ð2Þ

where HS is time independent, H1(t) is time periodic with period
T and the amplitude f(t) is given by

f tð Þ �
0 for t � 0
t=t for 0otot
1 for t4t

8<
: ð3Þ

We restrict our analysis to non-interacting fermionic Hamilto-
nians, for which a complete characterization of the (equilibrium)
topological phases exists16. We take the initial state jcS

0i to be the
ground state of the static Hamiltonian HS. At time t40, the time-
dependent wavefunction is c tð Þj i. We are interested in situations
in which the undriven system is described by a topologically
trivial Hamiltonian HS and the driving is such that the Floquet
Hamiltonian HF is topologically non-trivial.

We focus on spinless fermions in a honeycomb lattice
with nearest-neighbour hopping J and a staggered sublattice
potential D subjected to a circularly polarized electric field
~EacðtÞ ¼ E0f ðtÞ½ � cos Otð Þ; sin Otð Þ�6,7. In the electromagnetic
gauge, in which the vector potential is zero, the time-dependent
Hamiltonian is given by equation (2) with

HS ¼� J
X
ia;ja0h i

cyi;a cj;a0 þH:c:
� �

þ D
2

X
i

ni;1 � ni;2
� �

H1 tð Þ ¼
X
ia

UE ~ri;a; t
� �

ni;a

ð4Þ

where the sum in HS extends over nearest-neighbour sites,
aA{1, 2} indicates the sublattice A and B, respectively,

ni;a¼cyi;aci;a are the site number operators, UE ~r; tð Þ¼� e~r �~Eac tð Þ
is the electrostatic potential energy, and e is the electric charge.

We work in the high-frequency limit in which the driving
frequency is larger than the single-particle bandwidth17, that is,
‘O46J . In this limit, there is no ambiguity in the ordering of the
Floquet quasi-energies and therefore the ground state of the
Floquet Hamiltonian is well defined. Moreover, to obtain a non-
trivial high-frequency limit, we scale the electric field with the
frequency of the driving18, eaE0 / ‘O where a is the lattice
spacing. Our parameters are:

D
J ¼ 0:15; ‘O

J ¼ 7; K � e a E0
‘O ¼ 1 ð5Þ

and are chosen so that the (effective) Floquet Hamiltonian HF is
topological (results for other value of K are presented only in
Fig. 4). The staggered sublattice potential D is introduced to make
direct connection with the experiment in ref. 17, and to ensure
that the edge modes that are not topological in nature are gapped
out. The period of the driving is T¼ 2p/O and we consider
ramping times t=T 2 ½0; 2000�. We stress that this choice of
parameters is relevant for the recent experimental realization of
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Figure 1 | Energy ‘En’ band structure of the infinite, translationally invariant system in units of the hopping J. (a) The band structure of HS has a

gap of size D at the two Dirac points and the Chern number of each band is zero. (b) The band structure of HF has a gap of sizeB0.30 J andB0.16 J at the

two Dirac points (the two gaps become equal only when D¼0), and the Chern number of the bands is þ 1 (top) and � 1 (bottom). Moreover the

bandwidth is renormalized from 6 J to 6 J J 0 Kð Þ � 4:59 J (where J 0 is the zeroth Bessel function of first kind and K is defined in equation (5)).
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the Haldane model in cold atoms17. In ref. 17, t¼ 20ms and 1/
T¼O/(2p)¼ 4 kHz so that t=T ¼ 80. However, the loading
procedure there was more complex than the linear ramp
considered here.

Translationally invariant system. We first consider the transla-
tionally invariant (infinite) system. In this case, it is convenient to
work in the electromagnetic gauge in which the electric field is
represented via the vector potential, that is, E(t)¼ � qtA(t),
as this gauge choice does not break translational invariance.
By going to momentum space the system can be mapped,
at half filling, onto a collection of independent pseudo spin-12.
The Hamiltonian H ¼

P
k Hk and the density matrix

r ¼ jcihcj ¼
Q

k rk are (we take ‘ ¼ 1 in what follows):

Hk ¼ � 1
2 Bk � skð Þ; rk ¼ 12�2 þ Sk �sk

2

� �
ð6Þ

Here, 12� 2 is the 2� 2 identity matrix, s are the Pauli matrices
and Sk and Bk are three-dimensional time-dependent vector fields
defined in the two-dimensional Brillouin zone (see Supple-
mentary Fig. 1a). For a pure state, the vector Sk has unit length
and the Chern number (Ch) of the state is simply the number of
wrappings of the pseudo-spin configuration around the Bloch
sphere5:

Ch tð Þ ¼ 1
4p

ZZ
BZ

dkxdkyS tð Þ � @kxSk tð Þ�@kySk tð Þ
� �

ð7Þ

Here the integral extends over the Brillouin zone. In the ground
state, the pseudo-spin configuration is parallel to the pseudo
magnetic field, that is, Sk ¼ Bk= Bkj j. This does not need to be the
case out of equilibrium, where Sk and Bk are in general not
parallel to each other. The exact equation of motion is:

i@trk ¼ Hk; rk½ � ! @tSk ¼ Sk�Bk; ð8Þ
which is simply the precession of the pseudo spin Sk around the
pseudo magnetic field Bk.

With this mapping, the ground states cS
0

�� 	
and cF

0

�� 	
obtained

by filling the valence bands of HS and HF are represented by the
pseudo-spin configurations SSk and SFk , respectively. We note that
this mapping is valid for any two-band model at half filling. The
explicit form of Bk(t) in the case of graphene subject to the
circularly polarized electric field is given in the Supplementary
Note 1.

For the parameters chosen (equation (5)) these ground states
have different topology: SSk does not wrap around the Bloch
sphere (Ch¼ 0) while SFk does (Ch¼ � 1) (see Fig. 1a,b). This
implies that there is at least one k-point in the Brillouin zone

for which the vectors SSk and SFk point in opposite directions
(Supplementary Fig. 1b and Supplementary Note 2) and, as a
result, the overlap of the ground states is identically zero:

cS
0


 ��cF
0

	�� ��2¼ Y
k

1þ SSk � SFk
2

� �
¼ 0 ð9Þ

We can now consider the dynamical process by which the
periodic driving is turned on. In principle, the Chern number
inherits a time dependence from the time dependence of the
pseudo-spin configuration S(t) obtained by integrating the
equation of motion (8) subject to the initial condition Sk ¼ SSk .
However, a straightforward calculation shows that this is not the
case. This follows from the fact that qtCh can be written as:

@tCh tð Þ ¼ 1
4p

RR
BZ dkxdky @kyBk tð Þ � @kxSk tð Þ

� �

� @kxBk tð Þ � @kySk tð Þ
� ��

:
ð10Þ

If Sk(t) and Bk(t) are sufficiently smooth vector fields in the
Brillouin zone then it follows that the expression above is
identically zero (see Methods). From equation (8) one can see
that an initially smooth pseudo-spin configuration Sk(t) remains
smooth under a smooth pseudo magnetic field Bk(t). We can
therefore formulate a no-go theorem as follows:

‘If the initial pseudo-spin configuration is smooth (at least C1)
in the Brillouin zone and the pseudo magnetic field is smooth (at
least C2), then the Chern number is conserved under the unitary
evolution generated by the pseudo magnetic field.’

We note that this theorem is valid for any two-band model at
half filling for which the mapping in equation (6) applies. More-
over the theorem holds even for time-dependent Hamiltonians
and/or gapless Hamiltonians, as long as Bk(t) is C2 in the
Brillouin zone for all times. Finally smoothness in time is not
required, that is, our results also apply to sudden quenches for
which the conservation of the Chern number has been noted
before in various contexts19–21. We should stress that the
smoothness of Bk(t) in k is guaranteed by the locality of the
H(t) in real space, that is, Bk(t) can become singular in k only if
the Hamiltonian H(t) includes infinite range hopping in real
space, and it is therefore not very restrictive. For example, the
band structure of graphene is singular at the two Dirac points, but
the pseudo magnetic field configuration:

Bk ¼ 1þ cos 3
2 kx �

ffiffi
3

p

2 ky
� �

þ cos 3
2 kx þ

ffiffi
3

p

2 ky
� �

;
�

sin 3
2 kx �

ffiffi
3

p

2 ky
� �

þ sin 3
2 kx þ

ffiffi
3

p

2 ky
� �

; 0
� ð11Þ
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Figure 2 | Geometry and indicators for the system with boundaries. (a) One of the patch geometries considered. It contains a total of 928 lattice sites

evenly divided into the A (red dots) and B (blue dots) sublattices. The green and black circles indicate the sites defined as the centre and the edges,

respectively. These sites are used to compute the CLDOS. (b) The CLDOS of HS is flat around e¼0 indicating a gap. The Bott index is identically zero

for all energies. (c) For HF, the CLDOS at the edges (at the centre) has a finite (zero) slope about e¼0. This indicates the presence of edge states inside the

bulk gap. Moreover, the Bott index for energies within the bulk gap is þ 1 indicating that the system is topological. Inset in c shows a site in sublatticeA and

its three nearest neighbours. The nearest-neighbour vectors are: d1;2 ¼ a=2ð Þ 1; 	
ffiffiffi
3

p� �
, d3¼ a(� 1, 0).
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is analytic in the Brillouin zone and satisfies the condition of the
theorem.

The no-go theorem opens the question of whether it is
experimentally possible to prepare a topologically non-trivial state
by driving a topologically trivial one.

System with boundaries. Experimental systems have boundaries,
so here we address what happens when translational invariance is
broken. We consider a finite, isolated system (such that the
dynamics is unitary) with open boundary conditions (see Fig. 2a).
To characterize the topological properties of systems with broken
translational symmetry one cannot rely on the Chern number.
We use two complementary indicators: the cumulative local
density of states CLDOSðeÞ ¼

R e
�1 de0 LDOS e0ð Þ; and the Bott

index15.
The Bott index is a topological invariant that can be thought

as the generalization of the Chern number for finite, non-
translationally invariant systems. Some remarkable properties of
the Bott index are: it is computed directly in real space; it is
quantized for finite systems; and it can be defined in a patch
geometry. This is in contrast to the Chern number that
is computed by integrating the partial derivatives of the
wavefunction over a two-dimensional torus, is generically non-
quantized when the integration is replaced by a discrete sum and
cannot be defined in a patch geometry. In ref. 15, the Bott index
was introduced for finite, disordered two-dimensional systems
with periodic boundary conditions (that is, on a torus), but it can
be straightforwardly generalized to other geometries (see
Methods). In equilibrium, the Bott index is a function of the
energy e. It is computed by projecting special matrices (see
Methods) onto the subspaces spanned by the eigenstates of the
Hamiltonian with energies e0oe. This definition assumes that
the eigenstates with energy e0oe are fully occupied while the
eigenstates with energies e04e are empty. We have extended the
Bott index definition to arbitrary sample geometries and non-
equilibrium situations by taking into account the non-equilibrium
character of the wavefunction (see Methods). The numerical
evidence gathered in this work strongly suggests that this
generalized Bott index is a function of time and is quantized.
However, these properties have not been proven rigorously.

In Fig. 2a, we show one of the patch geometries considered and
indicate the edge and bulk sites that have been used to compute
the CLDOS. In Fig. 2b,c, we show the CLDOS and the
equilibrium Bott index for the static Hamiltonian HS and the

Floquet Hamiltonian HF, respectively. We stress that the Floquet
Hamiltonian is computed exactly (see Methods). The CLDOS(e)
of HS (both at the centre of the sample and along the edges) has a
plateau around e¼ 0 signifying that there are no states at e¼ 0,
that is, the system is gapped. Moreover, the Bott index is
identically zero indicating that both HS and its ground state jcS

0

	
are topologically trivial. On the contrary, HF has edge states inside
the bulk gap, as shown by the finite (zero) slope of the CLDOS at
the edge (centre) for eE0. The existence of topologically
protected edge modes is confirmed by the Bott index. In fact,
in equilibrium, the Bott index at energy e, i.e. Bott(e), is equal to
the number of edge states at that energy. As one can see in Fig. 2c,
Bott e ’ 0ð Þ ¼ 1, indicating that the ground state of HF at half
filling (e¼ 0) is topologically non-trivial.

To study the adiabatic turning on of the periodic driving,
we solve the time-dependent Schrödinger equation22,23 subject
to the initial condition c t ¼ 0ð Þj i ¼ cS

0

�� 	
(see Methods). At

stroboscopic times tn¼ nT during the time evolution, we monitor
the Bott index and the overlaps of c tð Þj i with both the initial
state and the Floquet ground state:

BottðnTÞ; cS
0


 ��c nTð Þi
�� ��2; cF

0


 ��c nTð Þi
�� ��2 ð12Þ

Their behaviour, for a system of size Nsites¼ 928 and ramping
time t¼ 80T, is shown in Fig. 3. One can see that overlap with
the initial state decays to zero rapidly while the overlap with
the ground state of the Floquet Hamiltonian increases. For
tn¼ nT4t, the electric field has reached its final value and the
overlap with cF

0

�� 	
becomes independent on n since cF

0

�� 	
is an

eigenstate of the evolution operator over a period:

cF
0


 ��c tnþ 1ð Þi
�� ��2¼ cF

0


 ��U Tð Þ c tnð Þj i
�� ��2¼ cF

0


 ��c tnð Þi
�� ��2: ð13Þ

Interestingly, for the parameters chosen, at tEt� 11T (that is,
slightly before the electric field is fully on) the Bott index jumps
from zero and becomes one, indicating the wavefunction has
acquired a topological character. We also note that the overlap
with the Floquet ground state cF

0

�� 	
increases non-monotonically

with time. This suggests that the final overlap cF
0


 ��c t ¼ 1ð Þi
�� ��2

can be increased by using more sophisticated ramping protocols.
For example, by instantaneously quenching the amplitude of the

electric field from its value when the overlap cF
0


 ��c tð Þi
�� ��2 has a

local maximum to its final value. In the inset in Fig. 3, we plot the
value of the overlap with the Floquet ground state at the end of

the ramp, that is, cF
0


 ��c t ¼ 1ð Þi
�� ��2, for different ramping times

t and observe that, as expected, it generally increases with
increasing t. We note that the system can become topological
even if the ramp is not adiabatic and the overlap between c tð Þj i
and cF

0

�� 	
is small.

To relate the dynamical behaviour of the non-equilibrium Bott
index to the properties of HF, we first study the critical field
Ec(Nsites) at which the Floquet Hamiltonian becomes topological.
For each system size, we compute the exact Floquet Hamiltonian
for many different values of the electric field and repeat the
analysis in Fig. 2c. For weak electric fields, Bott(e) is identically
zero, while for E4Ec the Bott index is unity for some energies.
This allows us to extract Ec for different system sizes, which is
reported in Fig. 4a. A fit to those results shows that Ec approaches
the infinite system size result exponentially in the linear
dimension of the system L �

ffiffiffiffiffiffiffiffiffiffi
Nsites

p
ð Þ. The infinite size result

is, in turn, compatible with the value EChern
c ¼ 3.485 at which the

translationally invariant system becomes topological, as shown by
the Chern number of the lowest Floquet band in Fig. 4b.

Next, we study the value of the electric field at the time at
which the non-equilibrium Bott index jumps, that is, E


c Nsitesð Þ.
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Figure 3 | Dynamical ramp with t¼80Tand Nsites¼928 in a system with

boundaries. (Main) The evolution, at stroboscopic times tn¼ nT, of the Bott

index and the overlaps cS
0


 ��c tð Þi
�� ��2 and cF

0


 ��c tð Þi
�� ��2. For x¼ t� t40, the

electric field is fully on. The overlap cF
0


 ��c tnð Þi
�� ��2 is a non-monotonic

function of tn¼ nT. (Inset) The overlap at the end of the dynamical ramp

tends to increase with increasing t.
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One could advance that, when the driving is turned on very
slowly (that is, adiabatically) E


c Nsitesð Þ is identical to Ec(Nsites) for
any given system size. This is indeed what we find. In Fig. 4c, we
show the critical field E


c at which c tð Þj i becomes topological, for
a system with 928 sites, as a function of the ramping time. A fit to
the results shows that E


c approaches the adiabatic limit
(infinite time ramp) result exponentially in the ramp time. Our
extrapolated result for the adiabatic limit is compatible with
Ec(Nsites¼ 928)E5.0 for which HF becomes topological (see point
signalled by an arrow in Fig. 4a). We have also studied what
happens if one fixes the ramp time and increases the system size,
see Fig. 4d. In this case, the critical field approaches the
thermodynamic limit result also exponentially with the linear
dimension of the system.

To make closer contact with experiments (such as ref. 17), we
investigate the current that flows through the sample under
driving (Supplementary Fig. 2 and Supplementary Note 3). This
is, in principle, a measurable quantity24. We stress that the
physical current is different from the current one obtains using
the Floquet Hamiltonian18,25 (see Methods). The former connects
only nearest-neighbour sites, while the latter can flow between far
away lattice sites if there are longer-range hopping terms in HF.
We compute the physical current by solving the time-dependent
Schrödinger equation.

Contrary to the overlap, the average current over a period
continues to evolve for t4t (that is, when the electric field
amplitude has already reached its final value). Therefore, after the
end of the ramp, we evolve the system for a large number of
periods (103) so that the averaged current (over a period)
becomes stationary. (We note that the instantaneous current still
changes within a period.) Results for the average current are
shown in Fig. 5. Remarkably, we find that the chirality of the non-
equilibrium current depends on the filling fraction (recall that the

initial state is the ground state of HS), see Supplementary Figs 3–7
and Supplementary Note 4. To identify what changes when the
Bott index jumps in systems at half filling, we have compared the
currents for four different ramps (Supplementary Figs 8 and 9,
Supplementary Table 1 and Supplementary Note 5). The first
three ramps (last ramp) are (is) such that the final value of the
electric field is smaller (larger) than the critical value required for
the Bott index to jump. For the last ramp, after the Bott index
jumps to one, the currents are much larger than for the first three
ramps and are localized along the edges of the system.

Discussion
The two topological invariants studied here during the switching
on of a periodic perturbation, the Chern number in translation-
ally invariant (thermodynamically large) systems and the Bott
index in systems with boundaries, exhibit qualitatively different
behaviour. The Chern number is conserved while the Bott index
can change under unitary evolution. The conservation of the
Chern number might appear surprising since, during any non-
equilibrium process, some excitations are generated and the final
state, which corresponds to a partially filled valence and
conductance band, need not have a quantized Chern number.
However, this argument does not take into account that under
unitary evolution each quasi-momentum k is in a coherent
superposition of the valence and conduction band. It is precisely
this coherence that prevents the Chern number from changing.

Our results for the Bott index show that, when one turns on a
drive slowly starting from a topologically trivial state in finite
systems with open boundary conditions, there is a critical field E


c
(which depends on the ramp time t) at which the Bott index
jumps from zero to one. This indicates that the system becomes
topologically non-trivial, even if the turn on is not adiabatic. If the
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p
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of the translationally invariant system jumps discontinuously at EChernc ¼ 3.485 indicating that, for E4EChernc , the translationally invariant system becomes

topological. (c) For a fixed system size (Nsites¼ 928), the value of the electric field E
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drive is turned on adiabatically, E

c approaches (with increasing

system size) EChern
c ¼ 3.485 at which the Chern number indicates

that the Floquet Hamiltonian of the system with periodic
boundary conditions becomes topological in the thermodynamic
limit. This agrees with the intuition that an adiabatic turn on of
the drive should allow one to generate a topologically non-trivial
state, but is in stark contrast with the fact that the Chern number
is a conserved quantity. Two possible explanations to these
fundamental differences in thermodynamically large systems are:
either dynamical topological transitions only occur in systems
with boundaries or those transitions can happen in systems with
and without boundaries, despite the fact that the Chern number
does not change in the latter. Unfortunately, we have not been
able to use the Bott index to discriminate between those
possibilities. We note that the Bott index is not a smooth
function of the energy in clean system with periodic boundary
conditions (Supplementary Fig. 10 and Supplementary Note 6).

Closer to experiments, our results for the chiralities of the edge
currents, namely, that they depend on the filling fraction, might
also appear intriguing. They contrast with the fact, which we have
checked, that the edge modes of a topological Floquet
Hamiltonian support a single-particle current whose chirality is
determined by the polarization of the electric field. Our results are
a consequence of the fact that the current in many-particle non-
equilibrium states has contributions from Floquet eigenstates
with many different quasi-energies. While it is well known that a
topological Floquet Hamiltonian supports chiral edge modes in
the bulk gap, we have verified that other Floquet eigenstates can
support currents with both the chiralities (Supplementary
Figs 3–7 and Supplementary Note 4). By changing the filling
fraction one can change the contributions of different Floquet
eigenstates and control the chirality of the resulting current. This
means that any potentially sharp signature of the topological
transition (identified by the jump in the Bott index) in the many-
particle current is smeared out by the contributions of Floquet
eigenstates that are away from the bulk gap. The dependence of
the chirality on the filling fraction is a strong prediction of this
work that can be tested in current experimental setups.

Our results open many interesting questions: what is the nature
of the topological transition in systems with boundaries? What is
the dynamics of the edge states26 across those transitions? What
happens in the presence of interactions27,28 and/or a coupling to
a bath? Which loading protocols maximize the occupation of the
Floquet ground state? What are the distinctive signatures of non-
topological wavefunctions evolving according to topological
Hamiltonian (and vice versa)? Is the presence of deep lying
current carrying Floquet eigenstates connected to the existence of
new topological invariants unique to Floquet systems? Which

physical observables capture best the time change of the Bott
index? Is there a dynamical topological transition in clean systems
with periodic boundary conditions? If so, which topological
indicator captures it? We hope our work will motivate further
studies to address these and other related questions and to
establish, in full mathematical rigor, the properties of the non-
equilibrium Bott index introduced here.

Methods
Chern number conservation under unitary evolution. By going to momentum
space, the system is parametrized as in equation (6), where Sk and Bk are three-
dimensional time-dependent vector fields. The Chern number of the occupied state
is simply the number of wrapping of the pseudo-spin configuration around the
Bloch sphere (equation (7)). The exact equation of motion is equation (8) (we have
set ‘ ¼ 1). Putting together equations (6) and (8), we can perform the calculation
using standard manipulations of classical vector fields. Our results are, however,
fully quantum. We now compute qtCh:

@tCh ¼ 1
4p

RR
dkxdky _S � @xS�@yS

� �

þ S � @x _S�@yS

� �
þ S � @xS�@y _S

� ��
;

ð14Þ

where we have introduced the short-hand notation qkxS¼ qxS¼ Sx, qkyS¼ qyS¼ Sy,
and we have suppressed the suffix k in Sk. We consider the three terms
separately:

I ¼ _S � @xS�@yS
� �

¼ S�Bð Þ � @xS�@yS
� �

¼ S � Sxð Þ B � Sy
� �

� S � Sy
� �

B � Sxð Þ; ð15Þ

where we have used the evolution equation qtS¼ S�B and the Binet–Cauchy
identity:

a�bð Þ � c�dð Þ ¼ a � cð Þ b � dð Þ� a � dð Þ b � cð Þ: ð16Þ
The second and third terms are more involved. For example:

II ¼S � @x _S�@yS
� �

¼ @x _S � @yS�S
� �

¼@x S�Bð Þ � @yS�S
� �

¼ Sx�Bþ S�Bxð Þ � Sy�S
� �

;
ð17Þ

where we have used the distribution property of the cross product qx(S�B)¼
Sx�Bþ S�Bx. One can apply the Binet–Cauchy identity to obtain:

II ¼ Sx � Sy
� �

B � Sð Þ� Sx � Sð Þ B � Sy
� �

þ S � Sy
� �

Bx � Sð Þ� S � Sð Þ Bx � Sy
� �

:
ð18Þ

In a similar way, we get:

III ¼ � Sx � Sy
� �

B � Sð Þþ Sy � S
� �

B � Sxð Þ
� S � Sxð Þ By � S

� �
þ S � Sð Þ By � Sx

� �
:

ð19Þ

Putting all together, and carrying out the cancellations, we get:

@tCh ¼ 1
4p

RR
Iþ IIþ IIIð Þ

¼ 1
4p

RR
S � Sy
� �

Bx � Sð Þ� S � Sð Þ Bx � Sy
� �


þ S � Sð Þ By � Sx
� �

� S � Sxð Þ By � S
� ��

:
ð20Þ

So far this expression is completely general. Now we use that the initial state is a
pure state:

1 ¼ Tr r2
� �

¼ Tr
12�2 þ S � s

2

� �2
" #

¼ 1þ S � S
2

; ð21Þ

from which it follows that S?S¼ 1, that is, S is a unit vector for any point in the

a b c

Figure 5 | Time-averaged physical current after a dynamical ramp with t¼80. We show results for systems with filling factors: n¼0.46, 0.5 and 0.54.

The red colour indicates a current flowing from sublattice A to B along the nearest-neighbour vectors di: d1;2 ¼ a=2ð Þ 1; 	
ffiffiffi
3

p� �
, d3¼ a(� 1, 0). The blue

colour indicates the opposite direction. The black arrows indicate the direction of the edge current and are a guide to the eye. (a) For an initial filling

n¼0.46, the non-equilibrium current is concentrated along the edges and moves anticlockwise. (c) For an initial filling n¼0.54, the non-equilibrium

current is concentrated along the edges and moves clockwise. (b) At half filling, both chiralities are presents. On the top and left edge the current

moves clockwise, while on the bottom and right edge it moves anticlockwise. These edge currents are balanced by a current diffusing through the bulk.

The non-equilibrium wavefunctions corresponding to a and c are topologically trivial (Bott index is zero) while the one corresponding to b is topological

non-trivial (Bott index is one).
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Brillouin zone. We then observe that:

S � Sy
� �

¼ 1
2 @y S � Sð Þ ¼ 0; S � Sxð Þ ¼ 1

2 @x S � Sð Þ ¼ 0: ð22Þ
Therefore, we arrive at equation (10) in the main text. We observe that:

By � Sx
� �

¼ @x By � S
� �

� Bx;y � S
� �

;

Bx � Sy
� �

¼ @y Bx � Sð Þ� By;x � S
� �

:
ð23Þ

If the vector field B is smooth the mixed derivative commute, that is, Bx,y¼By,x,
and we arrive at:

@tCh ¼ 1
4p

ZZ
dkxdky @x By � S

� �
� @y Bx � Sð Þ


 �
: ð24Þ

If qx(By?S) and qy(Bx?S) are continuous, we can use the periodicity of B and S in
the Brillouin zone to obtain:

@tCh ¼ 0: ð25Þ
We note that, up to this point, we have simply shown that @tCh(t)¼ 0 if S(t) and
B(t) are sufficiently smooth and S(t) represents a pure state, that is, S?S¼ 1.
However, to prove that the Chern number is conserved at all times, we still need to
prove that, under time evolution (i) a pure state remains pure and (ii) a smooth
pseudo-spin configuration remains smooth. To verify that this is indeed the case,
we look into the equation of motion (8). We note that, under this equation, the
length of the vector S is conserved, that is, qt(S?S)¼ 0, and therefore the condition
(i) is verified. We also note that the equation of motion is a linear differential
equation. If S(t¼ 0) is smooth in kx, ky and B(t) is smooth in kx, ky then S(t)
remains smooth at all times. Therefore, the condition (ii) is verified. This concludes
the proof of the theorem.

The statement that the Chern number cannot change independently of the time
evolution considered is similar to the result that, under unitary evolution, the von
Neumann entropy is conserved. Both results do not predict the exact wavefunction
at the end of a dynamical process but constrain the possible outcomes.

Bott index for out-of-equilibrium systems. Consider a single-particle
Hamiltonian (defined by a matrix H) on a lattice. Given the two diagonal
matrices Xi,j¼ xidi,j and Yi,j¼ yidi,j, where xi and yi are the coordinates of the ith
lattice site, we defined two unitary matrices:

Uxð Þi;j¼ exp i2p Xi;j

Lx

h i
; Uy

� �
i;j¼ exp i2p Yi;j

Ly

h i
ð26Þ

where Lx,y are the linear dimensions of the system. Let R be the projector onto the
eigenstates with up to energy e, that is, R �

P
e0oe ej i eh j. In equilibrium, the Bott

index at energy e is defined as15:

Bott eð Þ ¼ 1
2p

Im Tr log ~Uy ~Ux ~U
y
y
~Uy
x

� �� �h i
; ð27Þ

where ~Ux ¼ RUxR and ~Uy ¼ RUyR are the matrices Ux and Uy projected onto the
states up to energy e.

In ref. 15, the Bott index was defined on a torus geometry (that is, for H with
periodic boundary conditions). We generalize the Bott index to other geometries
and non-equilibrium situations by properly modifying the projector R. For
example, one can change the boundary conditions in H from periodic to open by
switching off some hopping elements. Using the projector constructed with the
eigenstates of H with open boundary conditions in equation (27), one can compute
the Bott index in a patch geometry. We further generalize the Bott index to non-
equilibrium situations by taking into account the occupation of the states during
the dynamics. The Bott index of the occupied states is obtained by replacing the
matrices ~Ux and ~Uy with the matrices Ux(t) and Uy(t):

Ux tð Þ ¼ R tð ÞUxR tð Þ Uy tð Þ ¼ R tð ÞUyR tð Þ ð28Þ
where R(t) is the projector onto states occupied at time t. For example,
if one has R ¼ aj i ah j þ bj i bh j at t¼ 0, at time t the projector becomes
R tð Þ ¼ a tð Þj i a tð Þh j þ b tð Þj i b tð Þh j, where a tð Þj i ¼ U tð Þ aj i and b tð Þj i ¼ U tð Þ bj i
are the time-evolved states.

One expects the generalized Bott index to be quantized if R is a sufficiently local
projector15, that is, Ri,j is small if sites i and j are far from each other. Strong
numerical evidence supporting the expectation that the non-equilibrium Bott index
defined on the patch geometry is quantized is provided in the main text. However,
we stress that a mathematically rigorous proof is lacking at the moment. On the
other hand, the Bott index in clean systems (the systems in ref. 15 had disorder) on
a torus is neither quantized nor a smooth function of the energy (Supplementary
Note 6). We expect this to be because the eigenstates of H for this problem are
plane waves, which are non-local in real space.

Currents. To identify the current operator, we look into the time derivative of the
site occupations:

nl ¼ c
y
l cl !

@nl
@t

¼ @c
y
l

@t
cl þ c

y
l

@cl
@t

: ð29Þ

The equation of motion of cl is
@cl
@t ¼ i H; cl½ � ¼ � i

P
m Hl;mcm , where we have used

the fact that any non-interacting fermionic Hamiltonian can be written as:

H ¼
P

n;m Hn;mc
y
n cm . Similarly, we compute

@c
y
l

@t ¼ i
P

m Hm;lc
y
m . Substituting these

expressions in equation (29), and computing the expectation value, one obtains:

@nl
@t


 	
¼ i

P
m
Hm;l c

y
mcl

D E
� i

P
m
Hl;m c

y
l cm

D E
¼

P
m 6¼ l

I 2Hl;m c
y
l cm

D Eh i ð30Þ

where I :½ � indicates the imaginary part, and we have used that Hm;l ¼ Hl;m and

hcymcli ¼ hcyl cmi and the overline indicates complex conjugation. The continuity
equation relates the time derivative of the local density to the net current:
@nl
@t


 	
¼

P
m 6¼ l Jm!l . This allows us to identify the current flowing from site m

to site l as:

Jm!l ¼ I 2Hl;m c
y
l cm

D Eh i
ð31Þ

It is crucial that the Hamiltonian that appears in the equation of motion and in the
definition of the current is the time-dependent Hamiltonian H(t) and not the
Floquet Hamiltonian HF. In general, the matrix elements of H(t) and HF are
different. Hence, the current computed using the Floquet Hamiltonian is, in
general, not equal to the current that will be measured in experiments18,25.

For graphene subjected to circularly polarized electric field, H(t) contains only
nearest-neighbour terms. This leads to a current flowing only between nearest-
neighbour lattice sites, while HF contains longer range hopping, which lead to a
current flowing between distant sites. In general, the exact current Jm-l is time

dependent because both the matrix element Hl,m and the expectation value hcyl cmi
are time dependent. Moreover, in non-equilibrium situations, the site occupancies
are non-stationary @nl

@t


 	
6¼ 0. This implies that the instantaneous current is not

locally conserved, that is,
P

m Jm!l 6¼ 0. We have averaged the instantaneous
current over a full driving period to obtain Javem!l , which is approximately conserved,
that is,

P
m Javem!l � 0.

Numerical simulations for system with boundaries. The time-dependent
Hamiltonian is given by equation (2). Because of its non-interacting character, this
problem can be efficiently solved in the single-particle basis22,23. We denote as HS

and H1(t) the Nsites�Nsites matrices (Nsites being the number of lattice sites) that
represent the static and time-dependent parts of the Hamiltonian in real space.

The evolution operator over a cycle is given by:

U T; 0ð Þ ¼
YN � 1

j¼0

U tjþ 1; tj
� �

ð32Þ

where tj ¼ j TN and U(tjþ 1, tj) is computed using a second-order Trotter–Suzuki
decomposition29–31:

U tþ dt; tð Þ ¼ e�
idt
2 H1 tþ dt

2ð Þ e� idtHS e�
idt
2 H1 tþ dt

2ð Þ: ð33Þ
Since HS is time independent, e� idt HS needs to be computed only once (this is done
by diagonalizing HS). This leaves the computation of e�

idt
2 H1 tþ dt=2ð Þ, from the

already diagonal H1(t), to be computed at each time step. By exact diagonalization
of U(T, 0), we obtain the Floquet eigenstates and eigenvalues:

U T; 0ð Þ ¼
X
l

clj ie� iyl clh j ¼
X
l

clj ie� i
‘elT clh j ð34Þ

from which the single-particle Floquet Hamiltonian can be explicitly built as
HF ¼

P
l clj iel clh j where el ¼ ‘

T yl� We note that this procedure is not limited to
high-frequency driving and gives the numerically exact Floquet Hamiltonian HF.
The time discretization dt is chosen small enough to ensure that it does not affect
the results. The lowest-energy single-particle eigenstates of HF (HS) are then
collected into a rectangular matrix WF (WS) of size Nsites�Np, where Np is the
number of particles in the ground state (at half filling Np¼Nsites/2). For the
parameters chosen (equation (5)) the Floquet phases yl do not span the entire
range [� p, p] and therefore an unambiguous separation of the states in the
‘Floquet valence band’ and ‘Floquet conduction band’ is possible.

The time evolution of the many-particle system is obtained by multiplying the
matrix WS from the left with the square matrix U(T, 0) of size Nsites�Nsites. The
overlaps between many-particle wavefunctions can also be easily computed as
determinants of products of matrices such as WF and WS, and their adjoints22,23.

Moreover, the hcyi cji elements of the equal-time single-particle density matrix are

given by the i,j element of the square matrix W0W
y
0 of size Nsites�Nsites.

Non-stroboscopic times. We have also computed wavefunctions overlaps and the
Bott index at non-stroboscopic times. The overlap between the time-evolving state
and the Floquet Fermi sea does not change after the electric field is fully on, with
the Floquet Hamiltonian computed from U(tþT, t)¼ exp[� iHF[t]T]. (Note that
the Floquet Hamiltonian depends on the choice of the initial time of period.
However Floquet Hamiltonians corresponding to different choices of the initial
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time are unitary equivalent to each other, see for example, ref. 18.) We also find
that for all t � t
n the Bott index does not change with time, that is,
Bott t � t
n

� �
¼ 1. Here t
n is the first stroboscopic times at which the Bott index

becomes unity. However, we found that just before the transition, in our case for
times t 2 t
n � 2T; t
n

� �
, the Bott index at non-stroboscopic times can jump back

and forth between zero and one. This is similar, and probably related, to the
oscillations observed in the (equilibrium) Bott index as the Fermi energy enters in
the bulk gap (Fig. 2c).
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