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The DNA structure and sequence preferences
of WRN underlie its function in telomeric
recombination events
Deanna N. Edwards1, Amrita Machwe1,2, Li Chen2,3, Vilhelm A. Bohr4 & David K. Orren1,2

Telomeric abnormalities caused by loss of function of the RecQ helicase WRN are linked to

the multiple premature ageing phenotypes that characterize Werner syndrome. Here we

examine WRN’s role in telomeric maintenance, by comparing its action on a variety of DNA

structures without or with telomeric sequences. Our results show that WRN clearly prefers to

act on strand invasion intermediates in a manner that favours strand invasion and exchange.

Moreover, WRN unwinding of these recombination structures is further enhanced when the

invading strand contains at least three G-rich single-stranded telomeric repeats. These

selectivities are most pronounced at NaCl concentrations within the reported intranuclear

monovalent cation concentration range, and are partly conferred by WRN’s C-terminal region.

Importantly, WRN’s specificity for the G-rich telomeric sequence within this precise structural

context is particularly relevant to telomere metabolism and strongly suggests a physiological

role in telomeric recombination processes, including T-loop dynamics.
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H
uman chromosomes are capped by telomeres containing
noncoding, repetitive TTAGGG/AATCCC duplex DNA
sequences, ending with 30 overhangs of the G-rich strand.

In dividing somatic cells, telomeric regions become shortened due
to the end-replication problem, stochastic deletion events and
insufficient activity of telomerase, the reverse transcriptase
present in germ, stem and most cancer cells that adds back a
telomeric sequence1–4. Indeed, telomere length is associated with
cellular replicative capacity and correlations exist between donor
age and in vitro replicative potential5,6, suggesting telomere
shortening and dysfunction contributes to ageing. Dysfunctional
telomeres are revealed as double-strand breaks that initiate an
ATM- and p53-dependent DNA damage response, whereas
functional telomeres suppress this response as well as telomeric
fusions, thus protecting both telomeric and genomic integrity7–9.
Telomeric protection involves (recombination-like) invasion and
sequestration of G-rich 30 overhangs within telomeric duplex
regions, forming so-called T-loops10–12. A group of proteins
collectively termed shelterin, which in humans includes TRF1,
TRF2, POT1, TIN2, RAP1 and TPP1, interact specifically with
telomeres and regulate their structure and function9,13.

Several human diseases are associated with telomere instability
including Werner syndrome (WS), an autosomal recessive
disorder characterized by premature emergence of numerous
ageing phenotypes that include cataracts, atherosclerosis and
increased cancer susceptibility14–16. Amazingly, these multiple
ageing features result from defects in a single gene product,
WRN17. Forced expression of telomerase prevents premature
cellular senescence that occurs in primary WS fibroblasts18,
strongly suggesting that telomeric defects cause this accelerated
senescence. Moreover, WRN-deficient cells exhibit stochastic
telomere loss19,20 and other telomere-related abnormalities21,22.
WRN associates with telomeres during the S-phase20,23 and
functionally interacts with shelterin components TRF2 and POT1
(refs 23–28). Most importantly, Wrn deficiency specifically led
to telomeric defects and premature ageing features in late-
generation, telomerase-deficient mice with ‘pre-shortened’
telomeres29,30. Although this evidence indicates a telomeric role
for WRN, its precise molecular function remains unclear.

As a RecQ family member, WRN possesses 30–50 helicase
and strand-annealing activities along with 30–50 exonuclease
activity31–34. WRN action appears most robust on DNA
structures reflecting replication, repair and recombination
intermediates35–39. Consistent with a possible role in
homologous recombination (HR) processes, WRN also
coordinates its helicase and strand-annealing activities to
catalyse strand exchange33. To investigate WRN’s potential role
in telomeric recombination, here we examine WRN function on
strand invasion intermediates without and with telomeric
sequences. Our results demonstrate that WRN preferentially
acts on these recombination intermediates and with a
directionality promoting further strand invasion. Importantly,
this activity is further enhanced by the presence of single-
stranded, unstructured G-rich telomeric sequence along the
invading strand, a structural context precisely relevant to
telomeric HR and T-loop dynamics. WRN’s C-terminal region,
downstream of its helicase domain, contributes to these structure
and sequence preferences. Our results strongly suggest that WRN
specifically acts in telomeric HR processes possibly including
T-loop formation.

Results
Preferential action of WRN on strand invasion intermediates.
Since WRN catalyses strand exchange and has affinity for
multistranded recombination intermediates33,35–39 potentially
relevant to its telomeric function, we first investigated WRN

activities on three-way junction substrates reflecting strand
invasion HR intermediates that are also key structural features
of T-loops. Our initial experiments compared three-way junction
substrates containing random (non-telomeric) sequences with
substrates lacking certain structural elements (Fig. 1a). These and
other static three-way junction substrates (Supplementary
Tables 1 and 2 specify oligo and substrate composition) used
hereafter contained a common labelled oligomer (*62-base) to
facilitate comparison based on radioactivity. The basic three-way
junction substrate (*3-way jct) contained 50 and 30 flaps of 21 nt
each and two 31-bp regions with similar nucleotide content to
avoid unwinding bias for either duplex. On the basis of parallels
with HR intermediates, we often refer to 50 and 30 single-stranded
flap strands as invading and non-invading strands, respectively.
Other DNA substrates (Fig. 1a) structurally related to *3-way jct
included (1) *Left Fork, lacking the entire non-invading strand,
(2) *Right Fork, lacking the entire invading strand, (3) *50 Flap,
lacking only the single-stranded 30 flap and (4) *30 Flap, lacking
only the single-stranded 50 flap. Since intranuclear monovalent
cation concentration is reported to be as high as 250mM
(refs 40–42), effects of NaCl concentration were examined here
and in many subsequent experiments addressing WRN’s DNA
structure and sequence preferences. Adenosine triphosphate
(ATP)-dependent WRN unwinding on these substrates was
revealed by appearance of faster-migrating products after
native polyacrylamide gel electrophoresis (PAGE) (Fig. 1b).
Exonuclease-deficient WRN-E84A, hereafter simply identified as
WRN, was used to prevent substrate digestion and thereby allow
straightforward evaluation of helicase activity, at sub-saturating
concentrations for *3-way jct unwinding. These experiments
(Fig. 1b,c) show an obvious, significant preference for WRN
unwinding of *3-way jct between 50 and 150mM NaCl compared
with other substrates that was most prominent at 100mM NaCl.
For all data derived from multiple experiments (here and
subsequently), error bars indicate s.e.m. and P values are
calculated using two-tailed unpaired Student’s t-tests. A kinetic
analysis at 100mM NaCl with *3-way jct, *30 Flap and *Right
Fork substrates demonstrated a similar and statistically significant
preference for unwinding *3-way jct within 2.5min (Fig. 1d),
confirming that these results reflect structure-specific WRN
unwinding and not differential annealing. Clearly, WRN
preferentially unwinds 3-way junction structures resembling
strand invasion intermediates; importantly, this preference is
most pronounced at 100–150mM NaCl.

To determine whether this structure preference was due to
higher DNA-binding affinity, electrophoretic mobility shift assays
(EMSAs) were used to examine WRN binding to these same
substrates, as well as single-stranded DNA. While discrete,
concentration-dependent WRN–DNA complexes were observed
with all substrates, differences in WRN affinity between substrates
were evident (Fig. 1e). The general hierarchy of WRN binding
was: *3-way jct and *Right Fork4*Left Fork and *30 Flap4
*50 Flap and *62-base (Fig. 1f). More specifically, WRN binding to
*3-way jct was significantly better than all other substrates at the
lowest WRN concentration, while binding to both *3-way jct and
*Right Fork was significantly better than other substrates for all
WRN concentrations (Fig. 1f). Although this pattern of structural
discrimination showed similarities to our unwinding results, we
further interrogated binding to *3-way jct and *Right Fork
substrates, exploiting our knowledge that WRN–DNA binding is
negatively impacted by xylene cyanol (XC) and bromophenol
blue (BPB) dyes (typically added to assist sample loading and
tracking). Under these more stringent conditions, binding was
significantly higher to *3-way jct compared with *Right Fork
across WRN concentration (Fig. 1g). These results indicate that
WRN binds with higher affinity and stability to 3-way junctions
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than to other structures, and suggest that enhanced binding is at
least partly responsible for WRN’s increased unwinding efficiency
on model strand invasion intermediates.

In addition, we used DNase I footprinting to pinpoint where
WRN binds relative to the duplex regions of *3-way jct substrate
(Fig. 1h). Without WRN, DNase I produced a characteristic DNA
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Figure 1 | WRN preferentially acts on strand invasion intermediates. (a) Basic 3-way jct and related substrates, with 50- and 30-flap strand variations in

magenta and turquoise, respectively. (b) Helicase assays were performed for 10min using WRN-E84A (0.45 nM) on *3-way jct, *30 Flap, *50 Flap, *Right

Fork or *Left Fork substrates (0.2 nM each) in 50–200mM NaCl as specified; substrate and product migrations are noted. (c) Percentages (mean±s.e.m.

of four experiments, as in a) of each substrate unwound are plotted versus NaCl concentration. (d) Helicase assays on *3-way jct, *Right Fork and *30 Flap

substrates (0.2 nM each) in 100mM NaCl were performed for 0–10min and analysed as in a. Percent unwinding (mean±s.e.m. of five experiments) for

each substrate is plotted versus time. (e) EMSA with WRN-E84A (0, 0.04, 0.08 or 0.15 nM) and *3-way jct, *Left Fork, *Right Fork, *50 Flap, *30 Flap,or

*62-base substrate (0.1 nM each) in 50mM NaCl for 10min at 37 �C. After adding one-sixth volume of 30% glycerol, samples were analysed by native

PAGE at 25 �C. (f) Percent (mean±s.e.m. of four experiments, as in e) of substrate bound plotted versus WRN concentration. (g) WRN-E84A (0, 0.03,

0.06 or 0.12 nM) incubated with *3-way jct or *Right Fork (0.1 nM each) was analysed as in e, except 0.25% BPB and 0.25% XC were included with added

glycerol. Binding (mean±s.e.m. of five experiments) was calculated as in f. (c,d,f,g) Asterisks indicate significant differences (Po0.035, 0.0066, 0.019 and

0.0024) between values for *3-way jct compared with analogous data points for each other substrate, while double asterisks in f indicate significance

(Po0.0044) between both *3-way jct and *Right Fork compared with remaining substrates; all P values were determined using two-tailed unpaired

Student’s t-tests. (h) Reactions containing WRN-E84A(0, 0.72, 1.4, 2.9 or 5.8 nM) and *3-way jct (2.1 nM) were analysed by DNase I footprinting.

Fragment sizes (right) and locations of the junction (black arrow), hypersensitive site (red arrow) and WRN footprint (bracket) are indicated.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9331 ARTICLE

NATURE COMMUNICATIONS | 6:8331 | DOI: 10.1038/ncomms9331 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


fragment ladder, including a prominent 31-nt band essentially at
the junction point and weak cutting immediately 30 to the
junction (Fig. 1h, lanes 2 and 7). With increasing WRN, the 31-nt
band progressively disappeared, accompanied by more modest
decreases of the 22–40-nt bands (lanes 3–6). In contrast, a 46-nt
fragment was moderately increased, especially at the highest
WRN concentration, indicating a mild hypersensitive site
(Fig. 1h, lane 6) that likely highlights the periphery of WRN
bound to this duplex region. This evidence indicates that WRN
protects an 18–23-bp region centred almost symmetrically
around the three-way junction, a binding mode presumably
relevant to substrate unwinding.

WRN unwinds 30 flap strands of strand invasion structures.
The directionality of WRN action on three-way junction struc-
tures defines whether WRN promotes or disrupts strand invasion.
Results above (Fig. 1b, lanes 2–4) indicated that WRN generally
unwinds one strand of *3-way jct, yielding a two-stranded fork.
However, the two fork products formed from unwinding this
symmetric substrate migrate very similarly (Fig. 1b, lanes 16
and 21). To clarify WRN unwinding directionality on these
structures, another three-way junction substrate, *3-way asymm,
with a longer (31 nt) 50 flap was designed so that the fork pro-
duced by 30-flap strand unwinding should migrate slower than
the fork generated by 50-flap strand displacement (Fig. 2a).
Unwinding of *3-way asymm substrate was assessed in reactions
containing 0–100mM NaCl. Without NaCl, WRN generated both
forks and some single-stranded product (Fig. 2b, lane 2);
importantly, the weaker fork product migrated slightly faster and
exactly like the fork with two shorter (21 nt) arms (Fig. 2b,
lane 7). With increasing NaCl, this faster-migrating fork product
resulting from 50-flap strand displacement progressively dis-
appeared, while the more abundant, slower-migrating fork
seemed unaffected (Fig. 2b, lanes 3–6). Quantification of multiple
experiments (Fig. 2c) confirmed that generation of the slower-
migrating fork stayed relatively constant or even increased
slightly with increasing NaCl concentration (21.8–25.6%), while
amounts of the faster-migrating fork dropped from 9.2% without
NaCl to 3.6% at 100mM NaCl; single-stranded product also
declined with increasing NaCl concentration, reflecting reduced
secondary unwinding of one or both forks. Clearly, WRN pre-
ferentially unwinds the 30 flap strand of three-way junction
structures, and this preference becomes nearly absolute at
100mM NaCl. Interestingly, this preferential, salt-resistant
unwinding of the 30 flap strand depended upon the presence of a
50 flap, as WRN unwinding of *30 Flap substrate lacking this
50 flap showed primarily the opposite directionality without NaCl
and was drastically inhibited as NaCl concentration increased
(Supplementary Fig. 1a,b). Notably, a different substrate (*3-way
50 5 nt) containing a short (5 nt) 50 flap restored the unwinding
directionality pattern observed with the *3-way asymm substrate
that persisted even at 100mM NaCl (Supplementary Fig. 1a,b).
Together, these results demonstrate that strand invasion
intermediates are high-affinity structures for WRN, which
exclusively displaces the 30 flap (non-invading) strand at
Naþ levels within the reported intranuclear monovalent
cation concentration range40–42. Importantly, this directionality
promotes further strand invasion and exchange. Intriguingly, the
mere presence of a single-stranded 50 flap markedly influences
WRN-mediated unwinding, suggesting that WRN senses the
invading strand within strand invasion intermediates even though
it displaces the non-invading strand.

Homology boosts WRN unwinding of strand invasion structures.
Since strand exchange normally occurs between homologous

DNA segments, we also examined the effect of sequence com-
plementarity on WRN action. Thus, we designed new three-way
junction substrates, *3-way 50comp and *3-way 30comp, with
50 and 30 single-stranded flaps, respectively, for which the distal
16 nt were complementary (to corresponding duplex regions),
while 5 nt of non-complementarity adjacent to the junction pre-
vented spontaneous branch migration (Fig. 2d,e). Original *3-way
jct substrate lacking complementarity served as comparative
control and, as previously, WRN unwound this substrate to
produce a two-stranded fork (Fig. 2d, lanes 8–11). However,
reactions on partly complementary three-way junction substrates
showed marked differences with the control and each other. On
*3-way 30comp substrate possessing 30-flap homology (Fig. 2d,
lanes 12–16), WRN generated two products of similar intensity,
indicating some 50-flap strand unwinding to yield a faster-
migrating, 5-bp bubble product. Although the sum of these
products was greater than for *3-way jct, both products were
reduced as NaCl concentration increased and unwinding was
essentially abolished at 150mM NaCl (Fig. 2d,e); note the residual
levels of bubble observed at 150–200mM NaCl were present in
the substrate preparation without WRN (Fig. 2d, lane 12). In
contrast, on *3-way 50comp substrate with 50 flap homology
(Fig. 2d, lanes 1–5), WRN exclusively generated 5-nt bubble
products by displacing the 30 flap strand, the directionality
observed with *3-way jct asymm (Fig. 2b,c), with more efficient
unwinding across NaCl concentration (Fig. 2e). Kinetic experi-
ments performed at 100mM NaCl showed that reaction rates on
this substrate were very significantly enhanced compared with
other substrates at each time point, with unwinding at 39.5% after
30 s and near completion (89.6%) after 5min (Fig. 2f,g). These
results demonstrate that sequence homology specifically on the
50 flap greatly stimulates unwinding of the 30 flap strand and
its salt resistance on three-way junction substrates, again
emphasizing the importance of this structural feature for WRN’s
function in promoting further strand invasion and exchange.

Effect of telomeric sequence and its placement on WRN action.
Given WRN’s putative role in telomere maintenance, we next
investigated how telomeric sequences within the context of strand
invasion intermediates affected unwinding. We initially con-
structed three-way junction substrates, designated *Mobile-G
or *Mobile-C, that contained G-rich (TTAGGG) or C-rich
(AATCCC) telomeric sequences, respectively, proximal to the
junction on the 50 (invading) and 30 (non-invading) flaps as well
as homologous segments on their duplex regions, permitting
spontaneous but limited movement of the junction (Fig. 3a).
Importantly, placement of telomeric sequences in *Mobile G
reflects their position in HR intermediates formed by invasion of
telomeric G-rich 30 overhangs, as also occurs in T-loops. WRN
unwinding of these substrates was examined from 0 to 250mM
NaCl. Similar to results with static three-way junction substrates,
WRN predominantly displaces 30 flap strands from both sub-
strates, although minor 50-flap strand unwinding is observed,
particularly without NaCl (Fig. 3a); note that, 50-flap strand
unwinding of *Mobile-G substrate generates single-stranded
products (Fig. 3a, lane 10), dictated by the radiolabel’s position.
Strikingly, differences in WRN-mediated unwinding of
*Mobile-C and *Mobile-G substrates are clearly evident as
NaCl concentration increases (Fig. 3a,b). While unwinding of
*Mobile-C substrate drops markedly to 18.7 and 7.6% at 100 and
150mM NaCl, respectively, unwinding of the 30 flap strand of the
*Mobile-G substrate persists at around 80% up to 150mM NaCl,
with substantial unwinding (B50%) at 200mM NaCl (Fig. 3a,b).
These results demonstrate that WRN unwinds three-way
junctions with G-rich telomeric, single-stranded flaps much bet-
ter than those containing C-rich telomeric flaps, a preference that

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9331

4 NATURE COMMUNICATIONS | 6:8331 | DOI: 10.1038/ncomms9331 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


becomes particularly pronounced at 100–200mM NaCl con-
centration. Further, WRN unwinding of *Mobile-G substrate
appears more ‘salt resistant’ compared with static three-way
junction substrates containing random sequences.

Importantly, these results were our first indication that WRN
possessed sequence preferences pertinent to telomere metabolism.
However, *Mobile-G substrate was inappropriate for determining
the precise positioning of G-rich sequences that mediated WRN’s
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Figure 3 | G-rich telomeric sequence specifically on the invading strand of strand invasion intermediates mediates heightened WRN unwinding.

(a) *Mobile-C and *Mobile-G substrate structures with positions of G-rich and C-rich telomeric sequences in magenta and blue, respectively. Helicase

assays with *Mobile-C and *Mobile-G (0.2 nM each) and WRN-E84A (1.2 nM) were performed for 15min in 1mM MnCl2 and 0–300mM NaCl as

indicated. Migrations of substrates and products are denoted. (b) Percent unwinding (meanþ s.e.m. of two experiments, as in a) of *Mobile-C (blue

diamonds) or *Mobile-G (magenta squares) to fork and single-stranded products was calculated and plotted versus NaCl concentration. (c) Helicase

assays were performed for 15min on *3-way 50G3.5X (Gtelo), *3-way 50S3.5X (Gscr), *3-way 50C3.5X (Ctelo) or *3-way jct (Random) substrate (0.2 nM

each) using WRN-E84A (0.24 nM) in 50–200mM NaCl as indicated. 50 flap sequences for each substrate are specified and colour-coded in relation to d–f

(box). (d) Percentage of substrate unwound (mean±s.e.m. of four experiments, as in c) plotted versus NaCl concentration. (e) Helicase assays performed

using WRN-E84A (0.2 nM) as in c, except specifically in 150mM NaCl for 0–15min; percent unwinding (mean±s.e.m. of three independent experiments)

is plotted versus time. (f) Reactions containing *3-way 50G3.5X or *3-way 50C3.5X (0.2 nM each) incubated with WRN-E84A (0, 0.10, 0.19 or 0.34 nM) at

4 �C for 10min in 100mM NaCl were analysed by EMSA, adding one-sixth volume of 30% glycerol with electrophoresis at 4 �C (inset). Percent of

substrate bound (mean±s.e.m. of five experiments) is plotted versus WRN concentration. For b and d–f, asterisks indicate significant differences

(Po0.0064, 0.025, 0.0044 and 0.027, respectively, determined by two-tailed unpaired Student’s t-tests) of values compared with analogous data

points from each of the other substrates.
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heightened activity. On the basis of the 30–50 directionality of
WRN helicase and predominant displacement of 30 flap strands of
three-way junction substrates, we anticipated that G-rich
sequences on the 30 flap strand might facilitate this preferential
unwinding. Surprisingly, this was not the case, as three static
three-way junction substrates (*3-way asymm, *3-way 30G3.5X or
*3-way 30C3.5X) containing scrambled G-telomeric, G-telomeric
or C-telomeric sequence, respectively, on their 21-nt 30 flaps were
unwound similarly with the expected directionality by WRN
across NaCl concentrations (Supplementary Fig. 2a,b). We then
constructed another series of static three-way junction substrates,
placing comparative sequences of interest on the 50 flap.
Specifically, the 21-nt 50 flaps of four three-way junction
substrates (*3-way jct, *3-way 50G3.5X, *3-way 50S3.5X or
*3-way 50C3.5X) contained random, G-telomeric, scrambled
G-telomeric or C-telomeric sequences, respectively (Fig. 3c,
top), while their 30 flaps contained an identical scrambled
G-telomeric sequence. Here and subsequently, WRN unwinding
was measured at Z50mM NaCl, conditions exclusively yielding
30-flap strand displacement (Fig. 3c), as expected from previous
experiments. Importantly, WRN more efficiently unwound the
three-way junction substrate with a G-rich telomeric sequence on
the 50 flap compared with substrates with other sequences at this
position; this preference was most pronounced at 100–150mM
NaCl (Fig. 3c,d). Interestingly, C-telomeric sequence on the
50 flap decreased unwinding even when compared with scrambled
G-telomeric and random sequences (Fig. 3d). Kinetic experiments
(at 150mM NaCl) confirmed this pattern, at each time point
showing significantly higher unwinding of 3-way 50G3.5X
substrate with a G-telomeric sequence on the 50 flap (Fig. 3e).
Unwinding observed on this and other substrates is specifically
performed by WRN, as helicase-dead mutant WRN-K577M31,43

does not detectably unwind 3-way 50G3.5X substrate
(Supplementary Fig. 2c). Collectively, these results indicate that
G-rich telomeric sequences (compared with C-rich telomeric and
non-telomeric sequences) specifically on the 50 flap strand of
three-way junction substrates confer heightened 30-flap strand
unwinding by WRN. Thus, not only is the 50 (invading) flap an
important determinant of WRN function on strand invasion
structures, but its sequence composition also influences WRN’s
unwinding strength.

These results suggested that WRN might have enhanced
binding affinity towards strand invasion intermediates containing
invading strand G-rich telomeric sequences. Indeed, WRN bound
a significantly higher percentage of the 3-way 50G3.5X substrate
with the G-rich 50 flap than 3-way 50C3.5X with a C-rich 50 flap
(Fig. 3f), consistent with WRN unwinding preference between
these substrates (Fig. 3c–e). To further determine whether G-rich
telomeric sequence conferred enhanced WRN-binding affinity in
a similar structural context, we compared a series of 50 flap
substrates (*50 Flap, *50 Flap G3.5X, *50 Flap S3.5X or *5’ Flap
C3.5X) containing random, G-rich telomeric, scrambled
G-telomeric or C-telomeric sequences, respectively (Supplementary
Fig. 3a, top). Collectively, these substrates were more weakly
bound by WRN than three-way junction structures (see Fig. 1e,f),
but *50 Flap G3.5X substrate with G-rich telomeric 50 flap was
more efficiently bound across WRN concentration than other
substrates (Supplementary Fig. 3a,b). These results indicate that
the presence of G-rich telomeric sequences on 50 flap regions
mediates increased WRN binding. Together with previous results,
we deduce that enhanced affinity for G-rich telomeric sequences
in specific structural contexts contributes to WRN’s increased and
salt-resistant unwinding of strand invasion intermediates with
invading strand G-rich telomeric sequences.

Because G-rich telomeric sequences can form G-quadruplex
structures, particularly in the presence of Naþ or Kþ cations44–47,

and WRN can disrupt G-quadruplexes35,48, we considered the
possibility that G-quadruplexes might mediate WRN’s enhanced
activity on three-way junction substrates with 50 flaps containing a
G-rich telomeric sequence. First, it was relevant to determine the
amount of G-rich telomeric sequence on the 50 flap required for
optimal WRN unwinding. Yet another series of three-way junction
substrates (*3-way 50G1.5X, *3-way 50G2X, *3-way 50G2.5X,
*3-way 50G3X, *3-way 50G3.5X and *3-way 50G4X) was designed,
containing 50 flaps with 1.5–4 G-telomeric repeats adjacent to the
junction; where applicable, their distal 50 ends had random
sequences used previously (Fig. 4a, top). These substrates had 21-nt
50 flaps except *3-way 50G4X substrate, its four telomeric repeats
necessitating a longer (25 nt) 50 flap (Fig. 4a, box). Unwinding
assays demonstrated that WRN most efficiently acted on *3-way
50G3X and *3-way 50G3.5X substrates, while the presence of fewer
than three GGG runs on the 50 flap decreased WRN unwinding
(Fig. 4a,b). This preference was consistent and significant across
NaCl concentration, except at 200mM NaCl where overall
unwinding was nearly abolished (Fig. 4b). Surprisingly, *3-way
50G4X substrate containing four G-rich telomeric repeats on the
50 flap also showed reduced unwinding compared with optimal
substrates with 3 or 3.5 repeats (Fig. 4b). Notably, single-stranded
DNA containing four telomeric (GGGTTA) repeats forms
intramolecular G-quadruplexes in NaCl solutions47,49, suggesting
that intramolecular G-quadruplex formation within this particular
substrate might be responsible for its reduced unwinding.
Therefore, unwinding of *3-way 50G3.5X and *3-way 50G4X
substrates with 3.5 and 4 repeats, respectively, was analysed in LiCl,
which disfavours G-quadruplex formation45,50, versus NaCl. As
above, *3-way 50G4X substrate showed markedly lower unwinding
than *3-way jct 50G3.5X from 50 to 150mM NaCl (Fig. 4c,d). In
contrast, WRN activity on these substrates with 3.5 or 4 G-rich
repeats was essentially identical in 50–150mM LiCl and similar
to unwinding levels on *3-way jct 50G3.5X substrate in NaCl
(Fig. 4c,d). These results indicate that intramolecular G-quadruplex
formation on these 50 flaps actually decreases WRN-mediated
unwinding of three-way junctions.

While results above suggested enhanced WRN unwinding
caused by G-rich telomeric sequences was not due to
G-quadruplex formation, it remained possible that G-rich strands
from multiple substrate molecules could associate to form
intermolecular G-quadruplexes. To examine this possibility, the
dimethyl sulfate (DMS) protection assay was performed on
*52-50flap21G3.5X oligomer (containing 3.5 single-stranded
G-rich telomeric repeats) used to construct *3-way 50G3.5X
substrate, under NaCl and DNA concentration conditions
mimicking helicase assays. Guanines not involved in G-quad-
ruplexes are methylated by DMS and thus subject to piperidine
cleavage51, generating a pattern of DNA fragments after
denaturing PAGE52. As a positive control for the assay and
G-quadruplex formation, we also examined *22-G4X, a 22-mer
comprised of G-rich telomeric repeats including four GGG runs
(Fig. 4e, lanes 8–10). Without salt, *22-G4X produced a
fragment pattern corresponding to cleavage at guanines,
indicating a relatively unstructured conformation. Stabilization
of G-quadruplexes using 75mM KCl substantially reduced the
intensity of these bands, indicating protection of these guanines
by their involvement in G-quadruplexes. In contrast, fragment
patterns with 52-50flap21G3.5X strand over 0–200mM NaCl
(Fig. 4e, lanes 3–7) were essentially identical to a heat-denatured
control (lane 2). These results indicate that, under helicase assay
conditions, single-stranded G-rich telomeric repeats containing
three GGG runs do not detectably form G-quadruplexes.
Together, our findings indicate that an unfolded state of the
50 flap containing at least three G-rich telomeric repeats is
mediating both heightened and salt-resistant unwinding of
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Figure 4 | WRN unwinding of strand invasion intermediates is enhanced by Z3 unstructured G-rich telomeric repeats on the invading

strand. (a) Helicase assays performed with WRN-E84A (0.23 nM) incubated for 15min with *3-way 50G1.5X (1.5 repeats), *3-way 50G2X (2 repeats),

*3-way 50G2.5X (2.5 repeats), *3-way 50G3X (3 repeats), *3-way 50G3.5X (3.5 repeats) or *3-way 50G4X (4 repeats) substrate (0.2 nM each) in

50–200mM NaCl as indicated. Migration positions of substrates and products are denoted. 50 flap sequences for substrates are shown (box), colour-

coded in relation to a–d with G-rich telomeric sequence underlined. (b) Percent unwinding (mean±s.e.m. of three experiments, as in a). Asterisks indicate

significant differences (Po0.04, calculated using two-tailed unpaired Student’s t-tests) of data points compared with analogous data points from each

other substrate. (c) Helicase assays performed with WRN-E84A (0.27 nM) incubated for 15min with *3-way 50G3.5X (lanes 1–10) or *3-way 50G4X (lanes

11–20) substrate (0.2 nM each) in 50–200mM NaCl or LiCl as specified. Migrations of substrates and products are indicated. (d) Percent unwinding from

each lane in c. (e) DMS protection assays were performed on *52-50flap21G3.5X oligomer (0.2 nM) in 0–200mM NaCl as specified and *22-G4X oligomer

(0.2 nM) in 0 or 75mM KCl. After denaturing PAGE, uncleaved oligos and fragments resulting from cleavage at DMS-methylated (unprotected) guanines

are visualized; solid triangle (lane 2) indicates reaction was heat-denatured before DMS treatment. Fragments ending in guanines within telomeric repeats

are denoted with ‘G’; for reference, lengths of substrates and key DNA fragments (G-rich telomeric content in magenta) are indicated at the left.
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three-way junction substrates by WRN. Hence, our results reveal
that WRN has a marked preference for strand invasion structures
containing (unstructured) single-stranded G-rich telomeric
repeats on the invading strand, exactly mirroring their
positioning within T-loops and telomeric HR intermediates.

Involvement of WRN’s C terminus in DNA substrate specificity.
WRN contains multiple DNA-binding domains, including the
RecQ-conserved, winged helix (RQC-WH) and helicase and
RNase D-conserved (HRDC) domains in its C-terminal region53.
To determine whether this region contributed to our observed

structure and sequence specificity, we generated a fusion protein
(glutathione S-transferase (GST)–WRN949–1432) of WRN’s
C-terminal region (amino acids 949–1432) including both
RQC-WH and HRDC domains, but lacking N-terminal seq-
uences including immediately upstream ATPase–helicase and
zinc-finger domains (Fig. 5a). We then used EMSA to examine
the structure and sequence specificity of GST–WRN949–1432.
When comparing various DNA structures without telomeric
sequences (Fig. 1a), GST–WRN949–1432 clearly bound with
highest affinity to basic *3-way jct substrate (Fig. 5b), similar to
full-length WRN (compare Fig. 5c with Fig. 1e–g). A GST-only
control did not detectably bind DNA (Supplementary Fig. 4).
We then compared GST–WRN949–1432 binding to three-way
junction substrates (*3-way jct, *3-way 50G3.5X, *3-way 50C3.5X
and *3-way 50S3.5X) with random, G-rich telomeric, C-rich
telomeric and G-scrambled sequences, respectively, on their
50 flaps (see Fig. 3c). This analysis (Fig. 5d,e) showed, across all
concentrations tested, a consistent trend (that reached statistical
significance for most pairwise comparisons) for preferential
binding of GST–WRN949–1432 to *3-way 50G3.5X substrate
containing a G-rich telomeric (Gtelo) sequence on the 50 flap.
When day-to-day variance between experimental repeats
(probably due to differential activity of protein aliquots) was
taken into account, this observed preference of GST–WRN949–1432

was statistically significant when comparing all data points.
Notably, the largest and most significant differences in
GST–WRN949–1432 binding were between substrates containing
G-rich versus C-rich telomeric 50 flap sequences (Fig. 5e), exactly
mirroring helicase and binding results using full-length WRN
(Fig. 3). These results demonstrate that WRN’s C-terminal region
containing the RQC-WH and HRDC DNA-binding domains
contributes substantially to heightened specificity for three-way
junction structures with G-rich telomeric sequences on their 50 flap
(invading) strands, although involvement of other domains
remains possible. Regardless, WRN’s C-terminal region appears
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Figure 5 | Structure and sequence preferences are conferred by WRN’s

C-terminal region. (a) Diagram of key domains in full-length WRN and

GST–WRN949–1432 proteins, showing approximate positions of

exonuclease, ATPase/helicase, Zn-finger (Zn), RecQ-conserved-winged

helix (RQC-WH), helicase and RNase D-conserved (HRDC) and nuclear

localization signal (NLS) domains. (b) EMSA performed in 100mM NaCl

without ATPgS on GST–WRN949–1432 (0–3.2 nM) incubated for 15min at

37 �C with *3-way jct, *Right Fork, *Left Fork, *30 Flap or *50 Flap substrate

(0.1 nM each) as indicated. After adding one-sixth volume of 30% glycerol

containing 0.05% BPB, samples were run on native PAGE at 25 �C.
(c) Percent substrate (*3-way jct, closed circles; *Right Fork, closed

triangles; *Left Fork, open triangles; *50 Flap, open squares; *30 Flap, open

diamonds) bound (mean±s.e.m. of three or four experiments, as in b)

plotted versus GST–WRN949–1432 concentration. Asterisks below data

points denote significant differences (Po0.001, determined by a two-tailed

unpaired Student’s t-test) compared with analogous data points from

all other substrates. (d) Binding reactions in 100mM NaCl with

GST–WRN949–1432 (0–0.8 nM) incubated for 10min at 4 �C with *3-way jct

(Random), *3-way 50G3.5X (Gtelo), *3-way 50C3.5X (Ctelo) or *3-way

50S3.5X (Gscr) substrates (0.1 nM each) as specified were analysed as in b,

except one-sixth volume of 30% glycerol was added before PAGE was

performed at 4 �C. (e) Bar plot of percent substrate bound (mean±s.e.m.

of nine experiments, as in d) for each substrate (Gtelo, black; Ctelo, gray;

Random, diagonal striped; Gscr, horizontal striped) at each WRN

concentration. Statistical significance (P values calculated using two-tailed

unpaired Student’s t-tests) between data points demarcated by brackets is

provided. Multiple protein–DNA complexes and variations in their patterns

may be due to binding of multiple molecules of GST–WRN949–1432 and to

differences in their stability under differing electrophoresis conditions.
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to provide considerable structure and sequence specificity to
WRN’s helicase activity and to its role in telomere metabolism.

Discussion
WRN deficiency results in telomeric abnormalities, premature
cellular senescence and accelerated development of certain ageing
features. Here, we identified a potential role of WRN in
processing recombination intermediates formed during telomeric
HR events and at T-loops. Our results indicate that WRN
unwinds strand invasion intermediates more efficiently than
other related DNA structures. Importantly, WRN also possesses
sequence specificity consistent with its putative role in telomere
maintenance, as its unwinding activity is further enhanced by the
presence of a G-rich telomeric sequence specifically on the
invading strand (50 flap) of strand invasion intermediates,
analogous to G-rich strand orientation within T-loops and
other telomeric HR intermediates. The directionality of WRN
unwinding of these structures favours further strand invasion at
telomeres, suggesting that WRN might promote proper telomeric
HR and potentially assist formation and stabilization of T-loops.
Notably, WRN’s definitive unwinding directionality as well as its
optimal structure and telomeric sequence discrimination occurs
when Naþ concentration is 100–150mM; the effect of ionic
concentration on these activities is particularly relevant, con-
sidering the reported monovalent cation concentration range
(125–250mM) within the nucleus40–42.

In examining WRN’s action on substrates containing random
sequences, unwinding of three-way junction/strand invasion
substrate was clearly enhanced compared with 50 flap, 30 flap
and two distinct two-stranded fork substrates, the latter
previously shown to be excellent WRN substrates35,54.
Importantly, WRN unwinding of three-way junction structures
remained robust at 100mM NaCl and persisted up to 150mM
NaCl, while unwinding of other substrates was drastically
diminished or absent under these conditions. Moreover,
complementarity on 50 flaps (as occurs during HR events)
further enhanced WRN unwinding and its salt resistance on
three-way junction structures. EMSA studies revealed that this
unwinding preference likely reflected enhanced (and perhaps
more stable) DNA binding by WRN. Regarding the directionality
of WRN unwinding on strand invasion intermediates,
displacement of the 30 flap strand increasingly predominated as
NaCl concentration increased. Preferential unwinding of the
30 flap strand was not unexpected, since 30–50 helicases such as
WRN characteristically translocate in a 30–50 manner along
single-stranded DNA to unwind adjacent duplex regions.
However, it was surprising that highly efficient and salt-
resistant displacement of this 30 flap strand required the 50 flap,
revealing the importance of this structural feature for WRN’s
preference for strand invasion intermediates and foreshadowing
our findings with telomeric three-way junction substrates
(discussed below). This indicates that WRN senses other
structural features of DNA substrates besides the strand along
which it translocates; on strand invasion intermediates, the
presence of the 50 flap (invading) strand mediates enhanced and
salt-resistant unwinding by WRN. Together, these results strongly
support the concept that WRN preferentially targets strand
invasion intermediates in vivo, acting to promote additional
strand invasion and exchange.

Prompted by WRN’s putative but unknown function in
telomere metabolism, subsequent experiments revealed WRN’s
striking preference (and highly increased salt tolerance) for
unwinding partly mobile, three-way junction substrates with
single-stranded flaps containing G-rich as opposed to C-rich
telomeric sequences. These results indicated that WRN possessed

a heretofore unknown sequence preference within the context of
three-way junction structures that we further defined by placing
different sequences on either the 30 or 50 flaps of static three-way
junction substrates. Surprisingly, nucleotide sequence on the
50 flap clearly influenced WRN unwinding, while different 30 flap
sequences had no effect. Precisely, three-way junction substrates
with at least three G-telomeric repeats ((GGGTTA)3) proximal to
the junction on the 50 flap were optimally unwound when
compared with similar substrates with C-telomeric or non-
telomeric sequences. Notably, these sequence preferences within
the context of three-way junction structures by WRN were
maintained in buffers containing Kþ (data not shown), the more
physiologically abundant monovalent cation55. DNA-binding
studies further showed that WRN has increased affinity
for strand invasion intermediates and single-flap structures
containing G-rich telomeric sequences, strongly supporting
enhanced specificity of WRN alone on G-rich telomeric
sequences, at least in certain structural contexts. While
nucleotide sequence also influences DNA binding of budding
yeast RecQ homologue Sgs1 (ref. 56), WRN’s enhanced specificity
for G-rich telomeric sequences is striking, considering its
proposed role in telomere maintenance. This observed WRN
specificity for substrates with G-rich telomeric sequences
suggested possible involvement of G-quadruplex structures,
particularly since WRN disrupts G-quadruplexes in vitro35,48.
However, our results clearly show otherwise, because (1) ‘optimal’
substrates with three G-rich telomeric repeats do not form these
structures at DNA concentrations used in our assays and
(2) G-quadruplex formation in this structural context within
substrates containing four repeats actually reduces WRN-
mediated unwinding. In the latter case, the four G-rich repeats
form intramolecular G-quadruplexes that likely conceal the
single-stranded 50 flap, resulting in a poorer WRN substrate.
Thus, heightened and optimal WRN unwinding of strand
invasion substrates occurs when the (invading) 50 flap contains
at least three G-rich telomeric repeats proximal to the junction
point and retains its primary (unfolded) structure. Remarkably,
WRN senses this telomeric nucleotide sequence context on the
invading strand of strand invasion intermediates while displacing
the non-invading strand. Furthermore, a C-terminal WRN
fragment lacking the entire ATPase/helicase domain but
containing RQC-WH and HRDC domains possesses DNA-
binding affinities consistent with binding and unwinding
preferences of full-length WRN. This indicates that WRN’s
C-terminal region helps confer heightened specificity for both
strand invasion intermediates and the G-rich telomeric sequence
specifically on the invading strand, although our experiments
cannot exclude involvement of its helicase domain or other
regions. As earlier reports implicated the RQC-WH domain in
binding 50 single-stranded elements within other DNA
structures53,57, this specific domain probably helps mediate
enhanced binding and activity on strand invasion intermediates.

Our findings have major implications for telomere metabolism
and understanding previously reported telomere-related abnorm-
alities caused by WRN deficiency. WRN’s high affinity, salt
resistance and mechanism of action on strand invasion
intermediates with G-rich telomeric sequences specifically on
the invading strand theoretically implicate it in at least two
telomeric HR processes that help maintain telomere stability.
First, WRN may assist in T-loop formation or stabilization.
Second, WRN may be involved in promoting normal HR
processes within telomeric regions, perhaps in re-establishing
replication forks that have collapsed within telomeric regions, via
an HR process analogous to break-induced replication path-
ways58. Both processes require (1) strand invasion by G-rich
strand 30 overhangs that occur naturally at telomeric ends or are
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generated by 50 strand resection associated with HR and then (2)
further exchange of telomeric strands. Importantly, the obligate
positioning of G-rich telomeric strands during these strand
invasion processes places them in the exact context for which we
observe WRN’s most enhanced and salt-resistant activity. The
stochastic telomere losses and aberrant telomeric recombination
phenotypes associated with WRN deficiency19–22,29,30,59,60,
possibly due to inability to properly carry out telomeric HR,
restore telomeric replication or form stable, protected T-loops
that resist nucleolytic degradation, are also consistent with these
roles. Telomere loss primarily associated with lagging-strand
replication in cells lacking WRN function20 might be attributed to
the inability to properly initiate or complete an HR process
necessary to restart telomeric replication after collapse of
lagging-strand replication due to replication blockage occurring
(predominantly) at G-quadruplexes and/or DNA damage
preferentially formed within telomeric G-rich strands. Notably,
telomere-related phenotypes are masked in WRN-deficient cells
and mice that possess sufficient telomerase activity18,29,30,59,
results explained by telomerase-mediated extension of truncated
telomeres to restore their normal structure and function.

In regards to its telomeric role, WRN conspicuously interacts
physically and functionally with TRF2 and perhaps other
telomeric factors22–24,26–28. TRF2-mediated recruitment of
WRN to telomeres likely influences its function and specificity,
the latter by essentially eliminating competition from non-
telomeric sequences thereby enhancing WRN action upon strand
invasion intermediates (or perhaps other structures) with single-
stranded G-rich compared with C-rich telomeric sequences.
Thus, we speculate that our observed WRN sequence and
structure specificity dictates its mechanism of action in telomeric
HR and/or T-loop dynamics, aided by its recruitment to
telomeres or specific telomeric structures by TRF2 alone or in
association with other shelterin components. These concepts are
strongly supported by our earlier finding that TRF2 and WRN
cooperate to catalyse strand exchange specifically between
telomeric DNAs28. During such strand-exchange reactions,
TRF2- and WRN-generated strand invasion intermediates are
processed further by the latter’s helicase activity, actions
presumably enhanced through WRN’s structure and telomeric
sequence preferences shown here. Importantly, TRF2 is an essen-
tial factor in telomeric end protection7,61–63, putatively through
its involvement in T-loop formation and stabilization10–12 and its
preferential binding at the junction between telomeric duplexes
and G-rich 30 overhangs11. Fittingly, WRN also readily acts on
four-stranded strand invasion intermediates containing a
telomeric duplex sequence specifically on the invading arm,
even in the presence of a 10-fold molar excess of TRF2
(Supplementary Fig. 5). Together, this evidence strongly
supports the concept that WRN acts (with TRF2) in T-loop
dynamics and/or other telomeric HR processes, although
additional research is needed to clarify this further. Regardless,
our findings bolster the concept that telomere dysfunction is
involved in manifestation of ageing phenotypes, at least in WS if
not also in normal ageing.

Methods
Enzymes. WRN-E84A has a point mutation that eliminates its exonuclease
activity32 but preserves its 30–50 helicase and annealing activities. WRN-K577M
contains a point mutation that eliminates its ATPase and helicase activities31,43.
Using appropriate WRN cDNA sequences cloned into baculoviral constructs,
WRN-E84A and WRN-K577M were overexpressed in Sf9 insect cells and purified
after cell lysis by consecutive DEAE-Sepharose, Q-Sepharose and NiNTA Agarose
liquid chromatography steps performed at 4 �C (ref. 64) with inclusion of 0.1%
Nonidet P40 in all liquid chromatography buffers. Protein aliquots were collected,
supplemented with 100mgml� 1 bovine serum albumin, flash frozen and stored
at � 80 �C until use. Using standard methods (GE Healthcare), pGEX plasmids

carrying GST and GST–WRN949–1432 fragments were independently transformed
into competent Escherichia coli (BLR strain); the corresponding proteins were
overexpressed by growth for 8 h at 24 �C after induction using
isopropylthiogalactose (1mM) and purified after lysis using Glutathione Sepharose
4B affinity resin. DNase I, and T4 polynucleotide kinase were purchased from New
England Biolabs (Ipswich, MA).

DNA substrates. All oligonucleotides (see Supplementary Table 1 for nucleotide
sequences) were purchased from Integrated DNA Technologies (Coralville, IA)
and PAGE-purified. The oligos 62-base, 83-Mobile3-G3.5X, 52-50flap21G3.5X or
22-G4X were 50 radiolabelled using T4 polynucleotide kinase and 32P-g-ATP,
and reactions were passed through Mini Quick Spin Oligo Columns (Roche,
Indianapolis, IN) to remove unincorporated ATP; elsewhere, labelled strands and
substrates are indicated by asterisks. To form most three-way junction, single-flap
and two-stranded fork substrates, excess amounts of appropriate unlabelled
oligonucleotides (50-flap and/or 30-flap strand variations, or Mobile three-way
junction oligos) were annealed to *62-base or *83-Mobile3-G3.5X (see
Supplementary Table 2 for substrate names and oligo composition) in 50mM
Tris (pH 8.0) and 10mM MgCl2 by heating to 90 �C followed by step-wise slow
cooling (decreasing temperature in 5 �C increments, held for 5min each). In
contrast, three-way junction substrates with partly complementary flaps, *3-way
50comp or *3-way 30comp, were generated by first annealing an excess of
52-30flap21S3.5X or 52-50flap21R, respectively, to *62-base as described above,
followed by annealing a slight excess of 52-50flap21Rcomp or 52-30flap21Rcomp to
the respective fork at 25 �C overnight. Native PAGE (6%) in 1� TBE (45mM Tris
pH 8.0, 45mM boric acid and 1mM EDTA) was employed to separate unannealed
strands from labelled substrates that were then excised and eluted by passive
diffusion into 10mM Tris (pH 8.0) and 10mM NaCl.

Helicase assays. Helicase assays were carried out for 0–15min at 37 �C with
WRN-E84A (0.1–3.4 nM) or WRN-K577M (0.2–0.9 nM) in 10 ml WRN reaction
buffer (40mM Tris-HCl (pH 8.0), 1mM MgCl2, 5mM dithiothreitol, 100 mgml� 1

bovine serum albumin, 0.1% NP40 and 250mM ATP, unless otherwise indicated)
with labelled substrate (0.2 nM) and 0–300mM NaCl (as specified in Results).
Reactions were stopped by adding 0–0.16% SDS and 4mM EDTA and treated with
0.4mgml� 1 proteinase K at 37 �C for 10min. After adding one-sixth volume of
loading dyes (30% glycerol, 50mM EDTA, 0.25% BPB and 0.25% XC), DNA
species were separated by native PAGE (6–8%, specified in figure legends) in
1� TBE. After gel drying, labelled products were visualized and quantified using a
Storm 860 Phosphoimager and ImageQuant software (GE Healthcare). Helicase
activity (% unwound) was quantified by comparing the signal of unwinding
products to total radioactivity in each lane. Where indicated, significance in
helicase and EMSA experiments was calculated using two-tailed unpaired Student’s
t-tests. Uncropped images of key helicase and EMSA experiments are presented in
Supplementary Figs 6 and 7.

Electrophoretic mobility shift assay (EMSA). To examine protein–DNA
binding, EMSA was performed in 20 ml WRN reaction buffer, except ATP was
substituted with 250 mM ATPgS (unless otherwise indicated), along with
50–100mM NaCl, labelled substrate (0.1–0.2 nM) and WRN-E84A (0.03–3.4 nM),
GST–WRN949–1432 (0.4–3.2 nM) or GST (0.1–100 nM), incubated at 4 or 37 �C for
10–15min. Either 1/6 volume of glycerol (30%) or loading dyes as specified was
added to these binding reactions and protein–DNA complexes were resolved from
unbound substrate by native PAGE (3.5%, 37.5:1) run at 4 �C or 25 �C in
0.5� TBE without NaCl. Conditions for experiments are specified in the Results
and/or the figure legends. Labelled DNA and DNA–protein complexes were
visualized by phosporimaging and quantified (using ImageQuant software), with
% bound equal to shifted DNA/total DNA radioactivity (� 100) for each lane.

DNase I footprinting. DNase I footprinting was performed in 10 ml WRN reaction
buffer without NaCl. Radiolabelled *3-way jct substrate (2.1 nM) was pre-incubated
with WRN-E84A (0–5.8 nM) at 4 �C for 5min, DNase I (1Uml� 1) was added for
10min at 25 �C and reactions were stopped by adding 10 ml of formamide loading
buffer (95% formamide, 20mM EDTA, 0.05% XC and 0.05% BPB). DNA products
were heat-denatured at 90 �C for 5min and separated by denaturing PAGE (12%).
After gel drying, labelled products were visualized by phosphorimaging.

DMS protection assay. Oligonucleotide *52–50flap21G3.5X (0.2 nM) in WRN
reaction buffer containing 0–200mM NaCl was treated with 0.5% DMS at 25 �C for
10min, and reactions were stopped by adding 750mM b-mercaptoethanol and
1.125M sodium acetate (pH 7.0). As a control for G-quadruplex formation,
*22-G4X was treated as above but in 0 or 75mM KCl. After adding yeast transfer
RNA (10mg) as carrier, DNA from each sample was collected using ethanol
precipitation. Resulting pellets were resuspended in 10% piperidine, then incubated
at 90 �C for 30min and liquid was removed using vacuum evaporation. These
samples were dissolved in 10mM Tris (pH 8.0) and an equal volume of formamide
loading buffer was added. To facilitate comparison between samples, equal
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amounts of radioactivity in individual samples were heat-denatured and analysed
by denaturing PAGE (14%) with phosphorimaging.
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