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A two-dimensional algebraic quantum liquid
produced by an atomic simulator of the quantum
Lifshitz model
Hoi Chun Po1,2 & Qi Zhou1

Bosons have a natural instinct to condense at zero temperature. It is a long-standing

challenge to create a high-dimensional quantum liquid that does not exhibit long-range order

at the ground state, as either extreme experimental parameters or sophisticated designs of

microscopic Hamiltonians are required for suppressing the condensation. Here we show that

synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices,

provide physicists a simple and practical scheme to produce a two-dimensional algebraic

quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point,

where a two-dimensional quartic dispersion emerges in the momentum space, and many

fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal

simulator of the quantum Lifshitz model allows experimentalists to directly visualize and

explore the deconfinement transition of topological excitations, an intriguing phenomenon

that is difficult to access in other systems.
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B
osons are well-known for preferring to form a
Bose-Einstein condensate at low temperatures. Such is the
case for most bosonic systems in three dimensions. In

lower dimensions, the reduced coordination enhances
quantum fluctuation, and Bose-Einstein condensate is either
absent (one dimension) or confined to strictly zero temperature
(two dimensions). Whereas these textbook results of the
ground state of bosons are intrinsically determined by
the fundamental Bose-Einstein statistics and can be qualitatively
understood in the non-interacting limit, there have been
intensive interests to explore schemes for suppressing
condensation at zero temperature. The success of such an effort
will pave the way for creating novel quantum many-body ground
states without ordering1–10. However, a challenge is that the
currently devised schemes require either extreme experimental
conditions, such as a fast rotation of an atomic cloud at a
frequency extremely close to that of the trapping potential, or
delicate designs of sophisticated Hamiltonian, such as lattice
models containing ring exchange or even more complicated
terms. The lofty goal of experimentally realizing a non-condensed
quantum liquid as the ground state in high dimensions has not
yet been achieved.

Synthetic gauge field is one of the most important topics in
current studies of ultracold atom physics. One scheme
for realizing synthetic gauge fields is to use Raman beams
to couple hyperfine spin states and the motion of the atoms.
Using this scheme, a spin-orbit coupling (SOC) has been
created for neutral atoms in laboratories11–16. The
other scheme is lattice shaking, which produces gauge
fields by dynamically driving the lattice itself without
resorting to extra external fields17–21. The dynamically
induced band hybridization can also be viewed as an effective
SOC, where different bands represent different components of a
pseudospin22.

While the current interest on SOC has been mainly focusing on
topological matters, here we show that synthetic gauge fields,
realized using either the Raman scheme or shaken lattices,
provide one an unprecedented means to suppress the
condensation in two dimensions even at zero temperature and
produce an algebraic quantum liquid as the ground state of
interacting bosons. The algebraic quantum liquid here is induced
by a two-dimensional (2D) quartic dispersion at a Lifshitz point,
where the quadratic term of the spatial gradient vanishes in the
Hamiltonian describing low-energy physics. Surprisingly, this
leads to a natural realization of quantum Lifshitz model, an
important theoretical tool for studying a wide range of exotic
phenomena in modern physics, including the deconfinement
transition in condensed matter physics23–28 and quantum gravity
in high-energy physics29–32. Despite its profound applications in
fundamental physics, such a model has not been realized in a
realistic system before. This is due to the difficulty in suppressing
the quadratic term of the spatial gradient, which is always
dominant in the low-energy effective theories for ordinary
quantum many-body systems. Here we show that the high
controllability of ultracold atoms allows one to create an ideal
simulator of quantum Lifshitz model, which leads to a
controllable scheme to access the Lifshitz point where exotic
quantum phenomena occur. This atomic simulator can be used to
directly probe the intriguing phenomena, including vanishing
Berezinskii–Kosterlitz–Thouless (BKT) transition temperature
and the deconfinement transition of vortices in superfluids.

Results
Quartic dispersion and effective dimension reduction. We
consider a general Hamiltonian for 2D bosons with SOC that may

be produced by the Raman scheme,

K ¼ 1
2m

p̂2x þ p̂2y � 2l sxp̂x þ Zsyp̂y
� �

þ 2lOsz
� �

; ð1Þ

where m is the mass, p̂i¼x;y is the momentum operator, l and
0rZr1 characterize the strength and anisotropy of SOC,
repsectively. ‘ and kB are set to 1 in this study. For Z¼ 0, K
describes the synthetic SOC produced by the Raman scheme,
where O is proportional to Raman frequency. For Z¼ 1, K is
identical to Rashba coupling with a magnetic field along the z
axis. Many theoretical studies have proposed how to produce a
SOC with finite strengths along multiple spatial directions33–35.
Although a fully controllable Hamiltonian in equation (1) has not
been realized in laboratories so far, it is very desirable to perform
a systematic theoretical study on such a general model and to
explore the novel phenomena it engenders.

We start from the isotropic limit where Z¼ 1. For fermions,
this model has been extensively studied in the context of
topological matters. For bosons, it has been much less explored
except for the special case with O¼ 0. Including a finite O, the
kinetic energy can be written as

E�k ¼ 1
2m

k2 � 2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 þ k2

p� �
; ð2Þ

where ± corresponds to the upper and lower branch,
respectively, and k¼ |k|. It is straightforward to show that there
exists a critical value O0

c ¼ l. If O4O0
c , E�k has a unique

minimum at k¼ 0. When OoO0
c , the minima for E�k forms an

infinitely degenerate circle with a radius k ¼ k0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 �O2

p
.

This circle shrinks to a single point at k¼ 0 when O ¼ O0
c , and

E�k at small k may be expanded as

E�k ¼ 1
2m

� 2l2 þ 1

4l2
k2x þ k2y

� �2
þO k6

� �� �
; ð3Þ

which becomes quartic instead of the conventional quadratic ones
for ordinary particles, as shown in Fig. 1. If one considers the
identity,

R
dk ¼

R
dENðEÞ, where NðEÞ is the density of states

and E � k4 at small k, one immediately sees that NðEÞ at low
energies E ! 0 becomes NðEÞ � E� 1=2, similar to the one of an
ordinary one-dimensional system. Without physically reducing
the dimension of the system, for instance, by imposing a strong
confinement potential to completely quench the kinetics along
one spatial direction, SOC here partially suppresses the kinetic
energy along all spatial directions through changing the ordinary
quadratic dispersion to a much more flattened one Bk4, and
leads to an effective dimension reduction. As seen from the
density of states, such an effective dimension reduction allows
one to directly conclude that for non-interacting bosons, a
condensate is absent even at zero temperature when O ¼ O0

c .
If one includes interaction effects, as shown later, such a
fully quartic dispersion along all the spatial directions is
the microscopic origin for the rise of a Lifshitz point in the
low-energy effective theory36,37.

Interestingly, a similar quartic dispersion in two dimensions
can be produced in a shaken square lattice with four-fold rotation
symmetry. The potential of such a lattice can be written as
VðrÞ ¼ V0

P
i¼x;y cos

2p
a ri þ f cosotð Þ
� �

, where o and f are the
shaking frequency and amplitude, respectively. In such a
separable lattice, the band gap Eg between the s and p bands is
identical to that between the dxy and p bands. When o is tuned to
be close to the band gap Eg, these four bands are coupled by
the photon-assisted hybridization. Within the rotating
wave approximation, the momentum-space single-particle
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Hamiltonian can be written as

H0 kð Þ ¼

Es C C 0
C� Epx 0 C
C� 0 Epy C
0 C� C� Edxy

0
BB@

1
CCA; ð4Þ

where Es¼ � ts(cos(kxa)þ cos(kya))þ dL, Edxy ¼ tp cos kx að Þþð
cos ky a
� �

Þ� dL, Epx ¼ tpcos kxað Þ� tscos kya
� �

, Epy ¼ � tscos kxað Þ
þ tpcos kya

� �
, ts/2 and tp/2 are the tunnelling amplitudes, dL¼

o�Eg is the detuning, and the interband coupling C is controlled
by f (Supplementary Note 1). Es and Edxy are the energies of the
side bands formed by the s and dxy orbitals through absorbing
and emitting one photon, respectively. At small k, the energy of
the dressed s band can be expanded as

EL ¼ aL0 k2x þ k2y

� �
þbL0 k4x þ k4y

� �
þO k6

� �
; ð5Þ

where aL0 has a simple expression in the limit C5dL,

aL0 ¼
1
2

ts � Cj j2 ts þ tp

ts þ tp � dL
� �2

 !
; ð6Þ

and the expression for bL040 is given in Supplementary Note 1.
From equation (6), one observes that tuning f or dL

could suppress aL0 , similar to tuning O in the Raman
scheme(Supplementary Fig. 1). For instance, there exists a critical
value dL0c , where the energy of one band can be written as

EL ¼ bL0 k4x þ k4y

� �
þO k6

� �
: ð7Þ

Despite the term � 2k2xk
2
y is absent in equation (7), the low-

energy density of states can be still written as N LðEÞ � E� 1=2.
One therefore observes that lattice shaking could also suppress
the condensation at the ground state in two dimensions. Similar
to the Raman scheme, there is a unique energy minimum at k¼ 0
when dL4dLc and four energy minima, related by four-fold
rotation symmetry, when dLodLc . As the system is tuned from the
zero- to the finite-momentum phase across a continuous phase
transition, aL0 will necessarily change sign and hence aL0 also
vanishes at the critical point.

A simulator of quantum Lifshitz model. We first consider
interaction effects in the Raman scheme. Ultracold bosons

interact through a contact potential,

U ¼
Z

dr g0 þ
gs
2

� �
n̂2 � gs

2
Ŝ2z

� �
; ð8Þ

where n̂ ¼ n̂" þ n̂# is the total density operator, and Ŝz ¼ n̂" � n̂#.
g0 þ gs

2 and � gs
2 characterize the strength of density-density

interaction and spin-dependent interaction respectively. Mean
field solutions are pursued by minimizing the ground state energy
using the ansatz

C ¼ e
isyp
4

ffiffiffi
r

p
eiy � sinðf=2Þe� iw=2

cosðf=2Þeiw=2
� �

; ð9Þ

where r and y are the density and the phase, respectively. f and w
characterize the spin orientation. A unitary transformation

U ¼ e
isyp
4 is introduced to avoid the ambiguity in defining w at the

north and south poles of the Bloch sphere.
Mean field results show that interaction shifts the critical point

to Oc¼ l� gsmr/l. Oc reduces to O0
c if gs¼ 0. The mean field

value of the phase y0 is 0 and l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�O2=O2

c

q
x for O4Oc and

OoOc, respectively, analogous to the zero-momentum38 and
plane-wave condensate39,40 in three dimensions. While both
states break U(1) symmetry, the latter one also breaks the rotation
symmetry in momentum space, as interaction lifts the infinite
degeneracy on the circle of kinetic energy minimum41. Another
(first-order) transition from the plane-wave phase to a stripe
phase at O0

coOc is not relevant to our discussions here. To
include quantum fluctuations, we introduce r¼r0þ dr,
y¼ y0þ dy, w¼ w0þ dw and f¼f0þ df, where the subscript
0 denotes the mean field values. dr, dw and df, which are massive
due to repulsive interaction and spin-momentum locking induced
by SOC, respectively, are integrated out. The gapless phase
fluctuation dy is incorporated using imaginary time path integral,
Z ¼

R
Ddy exp �

R
dtdxdy LðdyÞ

� �
, where t¼ it, and LðdyÞ is

an effective low-energy Lagrangian. To simplify notation, we
relabel dy as y in the following discussions.

For OZOc, we obtain

L yð Þ ¼ at @tyð Þ2 þ a ryð Þ2 þb r2y
� �2 þ . . . ; ð10Þ

where at ¼ 1
4g0
, a ¼ r0

2m
O�Oc

lþO�Oc
, b ¼ r0

8mðlþO�OcÞ2
, and the ellipsis

represents terms that are higher order in derivative expansion or
contribute to observables only as higher order corrections
(Supplementary Note 2). It is interesting to note that

kx
2

kx
4 kx

2k0
kx

2

kx

ky

� < �c

�k
±

a
� =� c

b
� > �c
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d e f
ky

4 ky
2

ky
4

Figure 1 | Schematics of single-particle dispersions at different Raman frequencies. (a) The minimum of E�k forms a circle if OoOc. E�k is quadratic

and quartic along the radial and tangent direction of the circle, respectively. The plots are coloured only to help visualization. (b) The circle shrinks to a

single point at k¼0 when O¼Oc. At this critical point, E�k becomes quartic at small |k|. (c) If O4Oc, the minimum remains to be a single point in

the momentum space, and E�k becomes quadratic again at small |k|. (d–f) Top view of the single-particle energy minimum, respectively, for (a–c). Blue long

and green short arrows represent the quadratic and quartic dispersions along the kx and ky directions.
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equation (10) describes the Quantum Lifshitz model, an
important tool in both condensed matter and high-energy
physics23–28. Whereas such a model has not been realized in a
realistic system before, synthetic SOC naturally provides
physicists an ideal simulator of it, since all parameters in
equation (10) are well controlled. In particular, it allows one to
access the Lifshitz point, where a(ry)2 vanishes, by tuning O to
Oc. A sequence of exotic phenomena emerges here, such as the
suppression of condensation, the rise of an algebraic bosonic
liquid and the deconfinement of topological excitations. Unlike
other systems where the Quantum Lifshitz model remains a
purely theoretical description, the field y here directly
corresponds to physical observables of ultracold atoms, and all
the above intriguing phenomena can be experimentally probed.

Suppressed condensation and algebraic quantum liquid. Con-

densate density is provided by n0m¼ 0 and n0# ¼ n0 ¼ r0e
� y2h i.

As y2
	 


¼ Z� 1
R
Dy y2 exp �

R
dtdxdy

�
LðyÞÞ, we have

n0 ¼ r0 exp � 1
4p

ffiffiffiffiffi
at

p
Z

dq
q

aq2 þ bq4ð Þ
1
2

 !
: ð11Þ

When a¼ 0, the sound velocity vanishes and the low-lying
excitation spectrum becomes oq ¼

ffiffiffiffiffiffiffiffiffiffi
b=at

p
q2. Such an

unconventional collective excitation spectrum fundamentally
changes thermodynamic properties of the system. For instance, it
leads to a linear-specific heat at low temperatures

Cv ¼
p
12

ffiffiffiffiffiffiffiffiffiffiffi
2ml2

r0g0

s
T; ð12Þ

different from the conventional T2 behavior in ordinary 2D
bosons. More importantly, one notes an infrared divergenceR
dq q� 1 in equation (11), which usually occurs in one dimension

for ground states of ordinary bosons. Such a divergence here
destroys the 2D condensation of interacting bosons at T¼ 0. This
is a purely quantum effect, different from thermal fluctuation
suppressed condensation in either two or three dimensions42,43.
The characteristic long-range order at the ground state
of ordinary 2D systems is then replaced by an algebraic

one. The one-body correlation function Ĉy
# ðrÞĈ#ð0Þ

D E
¼

r0e
� ðyð0Þ� yðrÞÞ2h i=2 becomes power-law like,

Ĉy
# ðrÞĈ#ð0Þ

D E
¼ r0e

� g� ln2
2Kc

rj j
x

� �� 1
2Kc

ð13Þ

where g is the Euler-Mascheroni constant, and x¼ (2mr0g0)� 1/2

is the healing length. Kc ¼ p
ffiffiffiffiffiffiffiffiffiffiffi

r0
2g0ml2

q
is an effective Luttinger

liquid parameter characterizing this algebraic quantum liquid.
While we focus on infinite systems in this study, it is worth

mentioning how the finite size of a system affects the physics at
the Liftshitz point. In a finite system with linear size R, the
momentum-space integrals are regularized in the infrared by
R� 1, and hence the infrared divergence in the integral in
equation (11) is removed even when a¼ 0. As with an ordinary
one-dimensional finite system, this produces a finite-size effect
induced condensation with condensate fraction

n0 ¼ r0
x
R

� � l
pr0x

; ð14Þ

which shows that n0 decreases as a power-law function of the
linear size of the system and eventually vanishes in the
thermodynamic limit.

Near the critical point, although n0 becomes finite, its
amplitude is strongly suppressed due to the smallness of a. We
define q* by aq*2¼bq*4. As the quadratic and quartic terms are
relatively more important in the Lagrangian for qoq* and q4q*,
respectively, the integral in equation (11) may be approximated

by a� 1
2
Rq�
0
dq þ b� 1

2
RL
q� dq q

� 1, where L¼ x� 1 is a large

momentum cutoff. Within this approximation, we obtain the
scaling form for the condensate density near the critical point,

n0 ¼ r0e
� 1
K 4 O�Ocð Þ lþO�Ocð Þx2
� � 1

2K � d
1

2Kc ; ð15Þ

where K¼ lKc/(lþO�Oc) and d¼ (O�Oc)/Oc40. This result
shows that synthetic SOC provides one a unique tool to control
the condensation at the ground state without sophisticated
designs of the microscopic Hamiltonian. equation (15) is verified
by an numerically evaluating equation (11).

When OoOc, a becomes negative, and the phase gradient
becomes finite. The low energy effective Lagrangian is reformu-
lated around the new class of mean field solutions, and we obtain

L0 yð Þ ¼~at @tyð Þ2 þ ax @xyð Þ2 þ bx @2
xy

� �2
þby @2

yy
� �2

þbxy @x@yy
� �2 þ . . . ;

ð16Þ

where the lengthy expressions for the coefficients are given in the
Supplementary Note 2. When O¼Oc, L0ðyÞ and LðyÞ become
identical. If OoOc, L0ðyÞ has only one quartic mode along the y
direction. This feature is inherited from the single-particle
picture, in which E�k has an infinite degeneracy on the circle
k¼ k0, similar to the case with O¼ 0 (refs 42,44). A single quartic
mode in two dimensions is not sufficient to destroy the long-
range order at T¼ 0, and the condensate fraction becomes finite

again when O decreases from Oc, that is, n0 � Oc �O
Oc

� � 1
2Kc .

The algebraic bosonic liquid at O¼Oc and the strong
suppression of condensation near this Lifshitz point can
be directly probed by measuring the single-particle correlation
function in the real space using a Ramsey-like method, in
which the in situ inteference fringes of two copies of the
bosonic sample is measured45. It can also be extracted from the
measurement of the momentum distribution46. When O¼Oc,

nsðqÞ ¼
R
dr eiq�rhĈy

sðrÞĈsð0Þi � q
1

2Kc
� 2

. Such a power-law
singularity signifies the algebraic order. In the vicinity of Oc,
the power-law like feature readily emerges in an intermediate
momentum scale q*oqox� 1, in which the quartic term in
equation (10) dominates. This can be easily understood from the
real-space correlation function. In the region xo|r|o1/q*,

Ĉy
sðrÞĈsð0Þ

D E
is a power-law function, and approaches a

constant n0s when |r|c1/q*, as shown by the numerical results

in Fig. 2. At the critical point, 1/q* diverges and Ĉy
sðrÞĈsð0Þ

D E
remains algebraic at arbitrarily large distances. Expressions for
the correlation function at different length scales are given in the
Supplementary Note 2.

In typical ultracold atom experiments, a harmonic trap is
present and it is useful to discuss the impact of the inhomogeneity
on the single-particle correlation function discussed in this
study. It is known that for weakly interacting bosons, the
phase fluctuations dominate the low-energy physics even in a
trap. The single-particle correlation function can be written as

ĈyðrÞĈðr0Þ
D E

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðrÞrðr0Þ

p
e� ðyðrÞ� yðr0ÞÞ2h i=2, where r(r) is the

density distribution in the trap47. By measuring r(r),
the distortion of the single-particle correlation function due to
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the inhomogenous density distribution in the harmonic trap can
be singled out, and the phase fluctuation in a large-enough trap is
known to remain qualitatively the same as that of a homogenous
system.

The inhomogeneity issue can even be eliminated in a flat box
potential, which has been realized in recent experiments48.
Such a box potential has the unique advantage of allowing a
direct comparison between experimental results and theoretical
calculations, since the latter are usually carried out for
homogenous systems. In particular, a much more accurate
momentum distribution can be obtained in the Time-Of-Flight
experiment, since averaging over an inhomogeneous harmonic
trap is no longer necessary. From the details of the momentum
distribution, one can distinguish between different quantum
many-body phases that exhibit different correlation functions,
such as the long range, algebraic or the exponential order.

Deconfinement transition and vanishing TBKT. We now turn to
the deconfinement transition. For conventional 2D bosons,
vortices are the characteristic topological excitations and
are confined by a logarithmic force Uv¼ 2prs

R
drdr0m(r)

ln|(r� r0)|m(r0), analogous to the Coulomb force in 2D
electrons49. m(r) is the density of vortices at r and rs is the
superfluid stiffness. A direct consequence of the confinement is a
finite BKT transition temperature TBKT, below which free vortices
are prohibited due to the binding of vortex and anti-vortex50.
Synthetic SOC changes this fundamental property of 2D bosons.

At finite temperatures, the low-energy physics is dominated by
the zero frequency mode o¼ 0 of the Lagrangian in
equation (10). The effective Hamiltonian at Ta0 can be
formulated as

Heff ¼

R
dra ryð Þ2; O4OcR
drb r2yð Þ2; O ¼ OcR

dr ax @xyð Þ2 þ by @2
yy

� �2� �
; OoOc:

8>><
>>: ð17Þ

For O4Oc, the Hamiltonian corresponds to an ordinary XY
model. rs¼ a/2 is controlled by d¼ (O�Oc)/Oc. When a
decreases down to zero, rs becomes zero, and the long range
Coulomb interaction among vortices disappears. As r2y¼m(r),
one obtains Heff¼

R
drb(r2y)2¼b

R
drdr0m(r)d2(r� r0)m(r0) at

O¼Oc, that is, the interaction between vortices becomes a short-
range one25. Once a vortex and anti-vortex pair is created by
thermal excitations, the short-range interaction could not prevent
them from deconfinement. A direct consequence is then a

vanishing TBKT. Near the critical point, TBKT is given by the
ordinary BKT theory,

TBKT ¼ pa � O�Ocð Þ=Oc; O � Oc: ð18Þ
The vanishing TBKT at the critical point can also be understood

from a simple consideration of the free energy cost Fv¼Ev�TSv
for creating a single free vortex excitation. In this picture TBKT is
the characteristic energy scale at which the vortex energy cost is
balanced by its entropy gain. Such a balancing is possible in a
thermodynamically large system only if Ev has the same
logarithmic scaling in system size as does Sv. At the critical
point where a¼ 0, Ev ¼ EcoreðLÞþb

R R
L drðr2yÞ2, where L is a

short-range cutoff proportional to the linear size of the core and
R is the linear size of the system. Outside of the core region,
since r2y¼ 0, the last term vanishes and Ev does not grow as
R increases, unlike an ordinary vortex. Therefore, TSv always
dominates and vortices become free at any finite temperatures,
that is, TBKT¼ 0.

For OoOc, the Hamiltonian can be regarded as an extreme
case of the anisotropic XY modelZ

dr ax @xyð Þ2 þ ay @yy
� �2� �

; ð19Þ

with ay¼ 0. For ay40, one could perform a simple rescaling

along the y direction, and define r0 ¼ ðx0; y0Þ ¼ ðx; ðax=ayÞ
1
2yÞ so

that H0
eff ¼

ffiffiffiffiffiffiffiffiffiaxay
p R

dr0ðrr0yÞ2. This gives TBKT ¼ p ffiffiffiffiffiffiffiffiffiaxay
p

, and
hence TBKT vanishes as ay-0, similar to the special case of O¼ 0
studied before44. H0

eff shows that the logarithmic interaction
between vortices vanishes if ay¼ 0, and vortices are also
deconfined, as a consequence of the vanishing sound velocity
along the y direction.

TBKT can also be calculated for anisotropic SOC, where
0rZo1 and the Hamiltonian is an anisotropic XY model as in
equation (19). The coefficients of the effective Lagrangian are
provided in the Supplementary Note 2. There always exists a
critical point Oc(Z), at which the coefficient of (qxy)2 vanishes.
Due to the presence of (qyy)2 for 0rZo1, the condensate
fraction is finite and has a minimum at Oc(Z). This fact can be
qualitatively understood in the non-interacting limit, where the
single-particle spectrum for small k becomes

E�k 	 1
2m

1

4l2
k4x þ Z4k4y
� �

þ 1� Z2
� �

k2y þ
Z2

2l2
k2xk

2
y

� �
: ð20Þ

At Oc(Z), the density of states becomes NðEÞ � E� 1=4, which
does not lead to divergent quantum depletion at zero
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Figure 2 | Condensate fraction and correlation function. (a) Condensate fraction as a function of d¼ (O�Oc)/Oc evaluated using parameters

r0¼0.125l2, g0¼0.8m� 1, g¼ �0.001g0. At the critical point d¼0, condensate fraction is suppressed down to zero. Near the critical point, it scales as a

power-law function of d on both sides of the critical point. (b) Log–log plot of a, which directly shows the power-law scaling when d-0. (c) Log–log plot of

correlation function at different d evaluated using parameters r0¼ 1.25l2, g0¼0.8m� 1, g¼ �0.001g0. At the critical point, the correlation function is

completely a power-law function. The linear fit provides Kc¼ 2.72(1), close to the analytical result 2.78. Near the critical point, the correlation function

approaches a constant when |x|-N, and the power-law feature emerges in an intermediate length scale. The curves in the log-log plots are vertically

offset for clarity.
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temperature. In contrast, TBKT is still suppressed down to zero at
Oc(Z) due to the vanishing (qxy)2 term in the Hamiltonian, as
shown in Fig. 3, and vortices are deconfined at this point. As
mentioned before, the current Raman scheme corresponds to the
extreme case where Z¼ 0. Experimentalists are readily able to
observe the quenched TBKT in two dimensions.

By taking images of atomic densities, the distribution of
vortices, including their locations and separations, have been
measured51,52. Moreover, TBKT has been measured using a variety
of schemes45,53,54. This allows a direct visualization of the
deconfinement transition in the system, and a vanishing TBKT
serves as a signature of such deconfinement. It is worth
mentioning that near the Lifshitz point, TBKT is strongly
suppressed, and both the quantum and thermal fluctuations are
important. Similar to other quantum critical phenomena, the
scaling form of TBKT as shown in equation (18) allows
experimentalists to locate the deconfinement transition point,
without tuning O exactly at Oc, using finite temperature
measurement. For typical current experiments, SOC energy
scale (l2/m) dominates over that of the spin-dependent
interaction (gsr0)11, and one has TBKT 	 T0

BKT d=ð1þ dÞ, where
T0
BKT ¼ pr0=ð2mÞ is the BKT transition temperature for an

ordinary 2D Bose gas. Since T0
BKT is typically a few hundred nK

(refs 45,53,54), the suppression of TBKT can be readily observed in
the currently available temperature scale. In addition, the scaling
regime TBKTBd, which is valid when d51, can be reached when
the temperature is about a few or a few tens of nK. The
proliferation of vortices and other intriguing phenomena in the
proximity of the Lifshitz point can therefore be observed in such
temperature regime by experimentally varying d, which can be
precisely controlled by tuning the Raman frequency.

Discussion
We have presented a systematic analysis of the Raman scheme
generated SOC for a wide range of Raman frequencies (O) and
SOC anisotropy (Z). A key observation is that the number of
quartic modes in the low-energy effective theory determines the
condensate fraction at the ground state and the BKT transition
temperature TBKT. While one single quartic mode is sufficient to
suppress TBKT down to zero, two quartic modes are required to
destroy the condensate at T¼ 0. All these discussions can be

directly generalized to shaken lattices, since the microscopic
origins of the quartic modes do not affect the low-energy physics.
For non-interacting particles, we have seen that one can also
suppress condensation through lattice shaking. Although the
rotation symmetry is lowered into a discrete one in a shaken
lattice, the long-wavelength behavior of the system is qualitatively
unchanged. This can be intuitively understood by noting that in
effective Lagrangians like equation (10), the symmetry constraint
on the quadratic piece a(ry)2, which governs the leading order
scaling behavior of physical quantities, is identical for four-fold
and continuous rotation symmetry (as long as the symmetry is
unbroken). Hence, the qualitative behaviours of physical
quantities in the zero-momentum phase and at the critical point
are unaffected by the reduction to four-fold rotation symmetry,
unless they depend crucially on the anisotropy of the quartic
terms. Both the condensate fraction and TBKT are insensitive to
such detail. In the finite-momentum phase, however, the
reduction in rotation symmetry is already manifest in the leading
quadratic order, as we will discuss below.

More quantitatively, we analyse the shaken lattice model in
equation (4), choosing the ansatz

WL ¼

cs
cpx
cpy
cdxy

0
BB@

1
CCA ¼ ffiffiffi

r
p

eiy

cos w cos n
sin w cos jþ p=4ð Þeiðfþ xÞ

sin w sin jþp=4ð Þeiðf� xÞ

cos w sin n eiðfþ zÞ

0
BB@

1
CCA:

ð21Þ
where r represent the total particle number density, and the
angles w, n and j parameterize the relative particle numbers in the
different bands. y, f, x and z parametrize the four independent
phases of WL. We carry out a thorough microscopic calculation,
taking into account the inter- and intra-band interactions in
lattices and integrating out massive modes, including the
fluctuations of the densities and relative phases, and the results
are presented in Supplementary Note 3. At a critical value dLc , the
low energy effective Lagrangian can be formulated as

LL yð Þ ¼ aLt @tyð Þ2 þ bL r2y
� �2 þ bLxy @x@yy

� �2
. . . ; ð22Þ

where the superscript L represents the results for shaken lattices.
In particular, the microscopic calculation show that 4bL þ bLxy40,
which indicates the system is stable. The only difference with the
Raman scheme is the last term in equation (22), which reflects the
underlying discrete four-fold symmetry. While such a term
modifies the Quantum Lifshitz model, it does not change all
qualitative results discussed before. For instance, the condensate
fraction at the critical point is given by

nL0 ¼ r0 exp � 1

8p2
ffiffiffiffiffiffiffiffiffi
atb

L
p Z

dqdy
1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u sin2 2yð Þ

p
 !

:

ð23Þ
where u ¼ bLxy=ð4b

LÞ. While equation (23) reduces to
equation (11) (with a¼ 0 at O¼Oc) when u¼ 0, the
integral over y for any finite u4� 1 does not affect the
infrared divergence. The condensate fraction therefore
vanishes. Moreover, the correlation function decays algebraically,
similar to the Raman scheme where bLxy is absent (Supplementary
Figs 2 and 3). The conclusion TBKT¼ 0 also remains
unchanged. The energy of a single vortex becomes
Ev ¼ EcoreðLÞþ bLxy

R
drð@x@yyÞ2. The last term can be written

as bLxy
R
r dr dj cos2ð2jÞ=r4 � bLxyð1=L2 � 1=R2Þ, where j is the

azimuth angle. The term depending on R decreases as R
grows but entropy still grows logarithmically, and so in the
thermodynamic limit TSvBT ln(R/L) dominates over Ev at any
finite temperatures, the same as the case for bLxy ¼ 0.

δ

TBKT/T
0
BKT

0.

0.1

0.2

0.3

0.4

0.5

0.6 0.6

0.4

0.2

–0.2

–0.1

0

0.1

0.2
1

0.8

0.6

0.4

0.2

�

Figure 3 | Suppression of BKT transition temperature. d and Z
respectively parameterize deviation from Oc and the anisotropy of SOC.
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BKT is the BKT transition temperature in the absence of SOC. Black curves

represent TBKT at different fixed values of Z. Red lines represent where TBKT
vanishes. For any values of Zo1, TBKT is suppressed down to zero at one
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Away from the critical point dLc , the quadratic terms
dominate in the low-energy Lagrangian LLðyÞ ¼ aLt ð@tyÞ

2 þ
aLxð@xyÞ

2 þ aLy ð@yyÞ
2. Unlike the isotropic Raman scheme with

Z¼ 1 in the continuum, where a quartic mode still survive in the
finite-momentum phase as shown in equation (16), the
underlying lattice potential breaks continuous rotation symmetry
and both aLx and aLy are finite away from dLc . As a consequence,
both the condensate fraction at the ground state and TBKT
increase from zero on both sides of the transition.

Another important feature of shaken lattices is that the shaking
itself can be made anisotropic, that is, different shaking amplitude
along the x and y directions. If fxafy, the quartic dispersions
along the x and y directions cannot be simultaneously achieved,
and there will be at most one quartic mode in the system, similar
to the anisotropic Raman scheme with Za1. The difference in
shaking amplitude, df¼ fx� fy, plays the role of the anisotropy
parameter Z in the Raman scheme. When dfa0, the condensate
fraction remains finite at T¼ 0 but TBKT still vanishes whenever
there is a quartic mode emerging along any direction.

It is useful to mention possible heating effects in shaken
lattices. In the current experiments20, there is only a loose
confinement due to the harmonic trap along the transverse
direction so that the 2D pancake could compensate possible
heating effects in this one-dimensional shaken lattice. If the
transverse direction is also tightly confined, a quantitative analysis
is absent so far. A recent theoretical study indicates that by
engineering the band structure, one should be able to suppress the
two-body inter-band scattering. This reduces the undesirable
occupation of the higher bands and hence the heating due to the
decay can be, at least partially, suppressed55. Since it is unclear at
this stage whether any other mechanisms, such as collective
excitations induced by shaking, may also lead to considerable
heating, a systematic study of the heating effect is desirable.

The study on 2D bosons has been a long-term important effort
in the field of ultracold atom physics45,53,54. Although the
presence of a condensate as the ground state and a finite BKT
transition temperature have been familiar to physicists, we have
shown that a synthetic SOC offers a simple and practical scheme
to defeat these standard textbook results by suppressing the
typical quadratic dispersion. Moreover, it leads to the realization
of an ideal simulator of the quantum Lifshitz model for accessing
intriguing phenomena that are important in many other fields,
such as deconfinement transitions of topological excitations. As it
is of fundamental interest in condensed matter physics
community to explore quantum phases without ordering at the
ground state, we hope that our work will stimulate more studies
on using the highly controllable synthetic SOC for taming the
ordering in many-body states of ultracold atoms and for
exploring novel quantum phenomena that are not accessible in
solids. We also hope that this atomic simulator of the quantum
Lifshitz model may be useful for high-energy physics community
on the topic of quantum gravity in the future.
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