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Allostery through the computational microscope:
cAMP activation of a canonical signalling domain
Robert D. Malmstrom1,2, Alexandr P. Kornev3, Susan S. Taylor1,3 & Rommie E. Amaro1,2

Ligand-induced protein allostery plays a central role in modulating cellular signalling

pathways. Here using the conserved cyclic nucleotide-binding domain of protein kinase

A’s (PKA) regulatory subunit as a prototype signalling unit, we combine long-timescale,

all-atom molecular dynamics simulations with Markov state models to elucidate the

conformational ensembles of PKA’s cyclic nucleotide-binding domain A for the cAMP-free

(apo) and cAMP-bound states. We find that both systems exhibit shallow free-energy

landscapes that link functional states through multiple transition pathways. This observation

suggests conformational selection as the general mechanism of allostery in this canonical

signalling domain. Further, we expose the propagation of the allosteric signal through key

structural motifs in the cyclic nucleotide-binding domain and explore the role of kinetics in its

function. Our approach integrates disparate lines of experimental data into one cohesive

framework to understand structure, dynamics and function in complex biological systems.
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S
ince the introduction of the allosteric effect in L-threonine
deaminase1,2, researchers have sought to understand the
mechanisms of allostery. The classical phenomenological

models proposed by Monod–Wyman–Changeux3 and
(Pauling)–Koshland–Nemethy–Filmer4,5 have been extended
over time to emphasize population shifts or modulations in the
conformational ensemble of the proteins6,7. Fundamentally, it is
the character of the underlying free-energy landscape that
determines the mechanism of allostery6–11.

While experimental and computational approaches provide
insight into allosteric mechanisms12,13, a robust atomic-level
description of the free-energy landscape remains a challenge due
to a variety of methodological limitations. Without an atomic-
level description of the conformational ensemble and its
corresponding free-energy landscape, the details of allostery can
remain hidden within ensemble averages or constrained
perspectives of protein conformation and dynamics.

The objective of our work is to apply cutting-edge computa-
tional approaches to explore the conformational ensemble of a
protein with and without a bound ligand, thereby gaining
insight into how the ensemble gives rise to protein function. This
work focuses on the mechanism of ligand-driven allostery in the
cyclic nucleotide-binding domain of protein kinase A’s (PKA)
regulatory subunit. Despite extensive research conducted on this
system14, questions still remain.

The intercellular activation of PKA by cAMP is a prototypical
example of ligand–protein allostery, which occurs through the
cooperative binding of cAMP to tandem cyclic nucleotide-
binding domains, designated A and B, in each of PKA’s
regulatory subunits14. Crystallographic data show that the
regulatory subunit, isoform Ia, undergoes significant
conformational changes on binding cAMP. It transitions from
an extended holoenzyme conformation that inhibits PKA’s
catalytic subunits to a compact cAMP-bound conformation that
releases and activates PKA’s catalytic subunits15,16. Within the
cyclic nucleotide-binding domain, the inactive holoenzyme and
the active cAMP-bound conformations of the regulatory subunit
are characterized by the conformational changes in three
structural motifs—the N3A motif, the phosphate-binding
cassette (PBC) and the B/C helix17,18, leaving the core b-barrel
subdomain largely unchanged (Fig. 1). These structural motifs
represent the fundamental signal transduction component and
form the binding interface between the cyclic nucleotide-binding
domain and PKA’s catalytic subunit.

The existing crystallographic data provide only two conforma-
tional states for the cyclic nucleotide-binding domains, the
holoenzyme (a.k.a. H or inactive)16,19 and the cAMP-bound
conformation (a.k.a. B or active)15. Nuclear magnetic resonance
(NMR) dynamics data of the minimal functional component
of PKA’s regulatory subunit, the A cyclic nucleotide-binding

domain (a.a. 119–244), indicate the presence of two dominant
conformational states20–22 and suggests conformational selection
as the mechanism of allostery23. On cAMP binding, changes in
NMR chemical shift data implicate the PBC as a major dynamic
element, while few changes are observed in the N3A motif or the
B/C helix.

However, such experiments are limited in their ability to
elucidate details of the full structural ensemble. Instead, they
provide averaged metrics that correlate to dynamic motions.
Achieving an atomistic description of the underlying conforma-
tional ensemble and resolving the corresponding free-energy
landscape will clarify the mechanisms by which cAMP modulates
the function of the cyclic nucleotide-binding domain.

Because the PKA holoenzyme contains four cyclic nucleotide-
binding domains, cAMP-induced activation is a complicated
process. A recent study by Boras et al.24 provided a general
blueprint of the events during activation at the subcellular level,
but the molecular mechanism of activation remains to be
elucidated.

To build a foundation on which to address these questions, we
simulated fully solvated atomistic models of the conformational
ensembles of the A cyclic nucleotide-binding domain (hereafter
referred to as the cyclic nucleotide-binding domain or CBD), with
and without cAMP bound. Extensive molecular dynamics (MD)
simulations were integrated using Markov state model theory
to explore PKA’s conformational space and long-timescale
dynamics. Markov state models depict the interaction dynamics
of discrete interconnected states as a transition probability matrix,
at a fixed lag time, assuming that the transitions between
the states are independent of previous transitions (that is,
Markovian)25–28. By assigning individual frames extracted from
MD trajectories to discrete conformational states, sampling from
many separate trajectories can be integrated into one coherent
framework that captures the kinetics and thermodynamics of the
conformational ensemble at atomic resolution.

Similar approaches have been used to study protein folding29,
biased transition pathways between functional states30,31,
identification of cryptic allosteric sites32 and ligand regulation
of G-protein-coupled receptors33. Our work is unique in that it
directly assesses the atomic conformational landscape using initial
unbiased long-timescale MD simulations augmented with
adaptive sampling of one protein in two functional states, as
opposed to only combining many short-timescale simulations or
sampling along a predetermined reaction coordinate.

We find that the conformational ensembles of cAMP-free
(CBD–Apo) and cAMP-bound (CBD–cAMP) functional states
exist within a shallow free-energy landscape that allows access
to both experimentally determined functional conformations,
indicating conformational selection as the principal mechanism
of allostery with the isolated cyclic nucleotide-binding domain.
We find that the addition of cAMP modifies the principal motions
of the cyclic nucleotide-binding domain, which correspond to
transitions between active and inactive states. Furthermore, our
approach exposes the propagation of the allosteric signal through
the cyclic nucleotide-binding domain’s signalling motifs.

Our results complement existing structural15,16 and
dynamical20–23,34 experimental data, and extend our under-
standing of the mechanism of ligand-induced allostery within the
cyclic nucleotide-binding domain. Further, they provide a general
framework for understanding the function of the ancient and
ubiquitous cyclic nucleotide-binding domain35,36 and allosteric
mechanisms more generally.

Results
Modelling the conformational landscape. To explore and map
the conformational landscapes of the cyclic nucleotide-binding
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Figure 1 | Experimentally determined conformational changes in the

cyclic nucleotide-binding domain. (RIa a.a. 119 to 244) in cAMP bound
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domain, we integrated multiple MD simulations with Markov
state models. Explicit solvent MD simulations of the cyclic
nucleotide-binding domain were performed with and without
cAMP-bound systems (CBD–cAMP and CBD–Apo, respectively).

The MD simulations of both systems sampled a totalled 74 ms
(Supplementary Table 1). The simulations were composed of
four long-timescale, B13-ms simulations on the Anton
supercomputer37 (at the Pittsburgh Supercomputing Center)
and multiple parallel short-timescale, 0.5–1ms simulations using
GPU-accelerated AMBER12 (refs 38–40). For both systems,
sampling simulations were initiated from experimentally
determined atomic coordinates of the cyclic nucleotide-binding
domain15,16 in both the inactive and active conformations. Initial
sampling was followed by multiple rounds of directed sampling
(10–15 ns simulations using GPU-accelerated AMBER12 (refs
38–40)) to refine the Markov state models41. Directed sampling
simulations were initiated from intermediate conformations
selected near poorly sampled transitions within the Markov
state model. For both the CBD–cAMP and CBD–Apo systems,
no single simulation sampled a complete transition between
the experimentally determined inactive and active structures.
However, simulations started from either experimental
conformation overlapped in conformational space, based on
alpha carbon root mean squared distance (r.m.s.d.), indicating
that the MD trajectories could be integrated meaningfully into a
single Markov state model (Supplementary Fig. 1).

To build the Markov state models, we needed to define the
conformational space, and then divide the space into discrete
conformational states. As in protein-folding models29, the cyclic
nucleotide-binding domain conformations are defined by the
atomic coordinates of each residue’s alpha carbon. We divided
the sampled conformational space into discrete conformational
states through r.m.s.d. clustering using MSMBuilder2 (ref. 42).
We prealigned the structures to a common reference frame to
calculate r.m.s.d. to capture important translational motions lost
using the standard minimum r.m.s.d. approach, which aligns each
pair of compared structures to each other before determining
r.m.s.d.. Inspection of the individual MD trajectories indicated
that the b-barrel of the cyclic nucleotide-binding domain was
stable relative to the motions of the N3A motif, the PBC and the
B/C helix (Supplementary Fig. 2). Therefore, we used the b-barrel
as our common reference frame.

All conformations sampled from the MD simulations of both
the CBD–Apo and CBD–cAMP systems were clustered together
to create a comprehensive framework of conformational states.
Once the conformation states were identified, Markov state
models were built for each system. This means that the models
were built using the same division of conformational space, but
each model included only states sampled in its respective
simulations. (A comparison between this approach and clustering
conformations from CBD–Apo and CBD–cAMP separately is
discussed below.)

The Markov state models were built by specifying the
maximum distance or cutoff for the clustering algorithm, which
determined how the conformational space was divided, and a lag
time for the model. Model parameters were selected because they
were Markovian, as indicated by implied timescale plots, and
could maximize the number of conformational states. In addition,
consistency between the Markov state models and the MD
simulations were determined by the Chapman–Kolmogorov
test26 (that is, were the models’ generated trajectories similar to
the results from the original MD simulations?; Supplementary
Figs 3–10). An evaluation of several r.m.s.d. cutoffs and lag times
indicated that the best Markov state model utilized a clustering
cutoff of 3.0 Å and a lag time of 9.6 ns (Supplementary Figs 3
and 4).

Graphs of the Markov state models for CBD–Apo and
CBD–cAMP are visualized as a network (Fig. 2). Each node
corresponds to a cluster of similar conformations or a single
conformational state. The diameters of the nodes are proportional
to the log of equilibrium population of the conformational state.
Thus, smaller nodes indicate conformations that are more rarely
sampled. The location of each node is determined by the r.m.s.d.
of the structure of the cluster’s generator, approximately the
centroid of the cluster, to the inactive and active crystallographic
structures. We note that the location of each node gives a general
indication of the conformation of each state relative to the
experimental structures, but node locations are a projection from
a higher-dimensional space. (Separation of the experimentally
determined active node, indicated in Fig. 2, from the bulk of the
other nodes is an artifact of the clustering algorithm in
MSMBuilder2 (ref. 42), which selects the first MD frame (that
is, the equilibrated starting active conformation) as a generator
for the first cluster. Notice that the separation of the active
conformation node from its neighbours is B3Å or the r.m.s.d.
cutoff of the clustering algorithm.)

Ligand-meditated changes in the conformational ensemble.
A comparison of the models of the conformational state
ensembles for the CBD–Apo and CBD–cAMP systems allowed us
to assess how the binding of cAMP modifies the overall
free-energy landscape. We compared the distribution of con-
formational states between the two systems, the overall character
of the free-energy landscape and the kinetics of traversing the
free-energy landscape between functional conformations states.
For this comparison, and throughout this work, we assumed
that the crystallographic structures represent the functional
conformations (active or inactive states) of the cyclic nucleotide-
binding domain. The nodes containing the functional
conformations are indicated in Fig. 2.
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Figure 2 | Overlay of Markov State Models State Graphs for the cyclic

nucleotide-binding domain with (CBD–cAMP, magenta) and without

(CBD–Apo, cyan) cAMP bound. The position of each conformational state

node is the r.m.s.d. of the generator of each cluster relative to the reference

conformations. The diameter of each conformational state node (cyan,

magenta) is proportional to the relative the log of the equilibrium

population. (that is, the lager the node the more probable the state at

equilibrium.) Cyan and magenta nodes are transparent; therefore, dark

purple nodes represent nodes that have occupancy in both CBD–Apo and

CBD–cAMP Markov state models (that is, dark purple nodes overlap).
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When comparing the conformational landscapes of CBD–Apo
and CBD–cAMP, we noticed two striking features—the large
number of shared states (Fig. 2) and the character of the unique
states. The models indicate that the systems share B70% of the
total number of sampled conformational states (Supplementary
Table 2). Notably, the shared conformational states of CBD–Apo
and CBD–cAMP comprise 66 and 38%, respectively, of the total
population for each ensemble.

Many of the unique CBD–Apo conformational states contain
structures in which the cAMP-binding site is formed poorly and,
thus, sterically prevented from occurring when cAMP is bound
(Supplementary Fig. 11). Many of the most populated unique
CBD–cAMP conformational states exhibit structures in which the
C terminus is interacting with cAMP (Supplementary Fig. 12).
These states include the dynamical capping of cAMP’s adenosine
ring by Y244, part of the C-helix, which substitutes the native
capping residue W260 from the ‘B’ CBD in the full regulatory
subunit15,43. These capping interactions with Y244 have been
observed experimentally in the truncated RIa (a.a. 1–259)43 but
not previously observed in simulations. In addition, fluorescent
experiments studying the dynamics of R239 (located on the
C-helix) indicate that the C-helix has a higher propensity to
interact with the core cyclic nucleotide-binding domain in the
presence of cAMP34. The unique CBD–cAMP conformational
states are not sterically excluded from the CBD–Apo
conformation ensemble, and interactions between the C
terminus and the cAMP-binding sites were observed in the
CBD–Apo ensemble. Therefore, the absence of unique states in
the CBD–cAMP ensemble is likely due to the absence of
stabilizing interactions between cAMP and the C terminus.
Importantly, both models sampled the active and inactive states;
yet, neither state is the most populated conformational state in
either system.

Using the most probable conformational state as the reference
state, at physiological conditions, the depth of free-energy
landscape is 6.6 kcalmol� 1 for CBD–Apo and 7.6 kcalmol� 1

for CBD–cAMP. The free energies for the individual conforma-
tional states follow a Gaussian distribution with a mean depth of
the free-energy landscape at 3.1±1.4 kcalmol� 1 for CBD–Apo
and 4.2±1.6 kcalmol� 1 for CBD–cAMP. The transition free
energy out of a conformational state to any of its neighbouring
conformational states (that is, only states that it is connected to)
ranges from 5.8 to 8.6 kcalsmol� 1 for both systems.
(5.8 kcalmol� 1 corresponds to a transition made at approxi-
mately the lag time of the Markov state model and, thus, is the
lowest bound transition free energy calculated from the Markov
state model.) The absolute difference in free energy between the
active and inactive states is 0.1 kcalmol� 1 for CBD–Apo and
0.9 kcalmol� 1 for CBD–cAMP. Overall, the free-energy
landscapes of both systems provide access to both functional
states at physiological conditions, with cAMP binding deepening
the free-energy landscape by B1 kcalmol� 1.

Transition pathway theory44,45 identified the 10 highest flux
paths between the functional conformational states for each
ensemble (Supplementary Fig. 13). The proportion of the highest
flux path relative to the total flux for each functional state
ensemble was striking: For CBD–Apo, the highest flux path was
only 9% of the total flux, and for CBD–cAMP, it was only 4% of
the total flux (Supplementary Table 3). The lack of a dominant
path and the variety of paths identified in the analysis
indicate that there are multiple pathways between functional
conformational states. Inspection of the pathways indicated no
common order of conformational changes or shared features at
the bottlenecks of the pathways.

Therefore, to understand the transition between active and
inactive conformation states across the free-energy landscape,

we needed to look at the transition pathways collectively.
We measured the kinetics of the transition between active and
inactive states using mean first passage times (that is, the fastest
average time it takes for the system to move across the
free-energy landscape from active-to-inactive state, or vice versa;
Table 1). Interestingly, the mean first passage times for the
transition from inactive to active state are similar with or without
cAMP bound: B30ms. However, the addition of cAMP slows the
transition from active-to-inactive state by a factor of five, from 16
to 84 ms.

These results indicate that CBD–Apo favours the inactive state,
which inhibits PKA’s catalytic subunit, whereas CBD–cAMP
favours the state that activates PKA’s catalytic subunit. Thus, the
dynamics of the cyclic nucleotide-binding domain derived from
the Markov state models are consistent with the function of the
regulatory subunit in PKA.

Taken together, our results indicate conformational selection as
the governing mechanism of allostery in the cyclic nucleotide-
binding domain. The weakest evidence for this mechanism is the
number of shared states between both models because it is largely
a function of the clustering algorithm. However, when the
conformations for each system are clustered separately, the results
are the same. In fact, the joint clustering approach better captures
the principal motions of the CBD at a 3.0-Å clustering cutoff, as
determined by implied timescale plots (Supplementary Fig. 14).

The stronger evidence supporting conformational selection is
the change in the free-energy landscape and the corresponding
transition kinetics. Weinkam et al.8 classified allosteric
mechanisms based on the difference between the change in free
energy of two functional states and the binding free energy of the
ligand. Although the current Markov state models do not allow
determination of the free energy of cAMP binding, and there has
been no direct experimental measurements of cAMP binding in
our construct, we can estimate the binding free energy of cAMP
through previous work on the isolated A cyclic nucleotide-
binding domain46. The free energy of binding of cAMP to the
isolated A cyclic nucleotide-binding domain is B� 3 kcalmol� 1

(ref. 46). This value is greater than the difference in free energy
between the active and inactive states, B� 1 kcalmol� 1,
supporting conformational selection as the general mechanism
of allostery. In addition, the on-rate for cAMP to the A cyclic
nucleotide-binding domain of R, B4.8� 104 s� 1 (ref. 46), is
faster than the transition times between active and inactive states
in the CBD–cAMP system. And the fact that the transition rates
between inactive and active conformations are independent of
ligand binding indicate conformational selection as described
by Zhou9. Experimental results23,47 support conformational
selection as the mechanism of ligand-induced allostery, thus
complementing the interpretations of our Markov state model
presented here.

One limitation of our model is the potential bias towards
conformational selection because the simulations were initiated at
both experimentally determined active and inactive states, which

Table 1 | Mean first passage time between active and
inactive conformations.

System Without cAMP With cAMP

A-I (ls) A’I (ls) A-I (ls) A’I (ls)

CBD 16.1 34.0 83.7 30.3
PBC 2.9 0.9 4.9 0.2
B/C Helix 8.2 13.4 24.3 10.6
N3A 1.3 2.9 2.2 1.6

cAMP, cyclic AMP; CBD, cyclic nucleotide-binding domain; PBC, phosphate-binding cassette.
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were included in and connected through the Markov state
models. However, nothing sterically hinders cAMP from binding
either functional conformational state in the absence of the
catalytic subunit, and no restraints were required to keep cAMP
bound during the simulations. Thus, all four systems used to
initiate the simulations are potential members of the conforma-
tional ensemble. Starting the simulations in each experimental
conformation does not predispose them to becoming members of
highly populated or networked states or bias the transition
kinetics between active and inactive states.

Details of the allosteric mechanism. While our results indicate
conformational selection as the general mechanism of allostery
for the CBD, this finding is not wholly novel due to previous
experimental work23,47. However, our work provides a
foundation to delve further into the mechanisms of allostery at
an atomic scale in ways inaccessible to current experimental
methods: we can explore structural characteristics of the
equilibrium conformational space, and the principal motions of
the CBD and its functional macrostates.

To understand the structural characteristics of the conforma-
tional landscapes, we built stationary probability density volumes
of the positions of the alpha carbons. In other words, we sought
to determine the probability of finding the mass of the alpha
carbons in a given volume of space at equilibrium. The volumes
were determined by dividing the space in 0.1 Å voxels and
calculating the probability of finding an alpha carbon within 3Å
(the r.m.s.d. cutoff for the Markov state model) of the voxel for
each conformational state. By summing over all states, we
obtained a map of the stationary probability density, which
provides a visual representation of the conformational ensembles.

Fig. 3 shows the probability of density surfaces at 66, 95 and
99.9%. The volume enclosed by each surface has a probability
greater than the cutoff of being occupied by an alpha carbon. This
figure shows the wide range of motion sampled by the a-helical
structural subdomain at equilibrium; this range of motion is
similar for the CBD–Apo and CBD–cAMP systems. Similar to the
graphical representation of the Markov state model, the
stationary probability density volumes indicate the similarity of
the conformations sampled by CBD–Apo and CBD–cAMP.

However, the differences between the stationary probability
density volumes give us new structural insight into the
mechanisms of allostery within the CBD. The first notable
difference is the unique density formed by the B/C helix proximal
to cAMP in the CBD–cAMP ensemble (Fig. 4a). This density
corresponds to the interactions between the C terminus and the
adenosine ring of cAMP discussed above. A second difference is
the higher probability that the N3A motif extends over the B/C
helix in the CBD–Apo ensemble (Fig. 4b). This density
corresponds with the experimentally determined binding
interface between PKA’s catalytic and regulatory subunits16.
Interestingly, the CBD–Apo system only increased density by
about 10% in forming the interface. This small variation shows
how seemingly small changes in a conformation ensemble give
rise to inhibitory function of the CBD–Apo system by increasing
the probability of formation of the binding interface between
PKA’s catalytic and regulatory subunits.

To determine the principal motions of the CBD, we built
kinetic coarse-grained models from the Markov state models of
each system to identify metastable states or the principal motions
of CBD arising from the conformational ensemble. These
models were generated by complementarily employing principal
component and Markov clustering analysis25,28,32,42,48,49.

The CBD–Apo implied timescale plots (Supplementary Fig. 3)
suggest at least one dominant slow motion followed by numerous

secondary faster motions. The dominant slow motion of the
CBD–Apo ensemble is between conformations similar to the
active and conformations similar to the inactive conformational
states (Fig. 5). Of note, the second most dominant motion is
integration of the unfolded N-helix (the N3A motif) into the core
b-barrel (Supplementary Fig. 15). These conformations are only
observed in the CBD–Apo ensemble as they deform the cAMP-
binding site, sterically excluding cAMP. Integration of the
unfolded N-helix requires partial unfolding of the core b-barrel,
which was observed in previous NMR work21. We recognize that
these conformations may be an artifact of the truncated CBD and,
therefore, may not be part of the mechanisms of allostery for
the regulatory subunit in vivo. Still, the consistency between the
results of the simulations and the NMR work indicates that the
models are able to replicate structural events seen experimentally.

Like the CBD–Apo system, the implied timescale plot for the
CBD–cAMP system indicates one dominant slow motion
followed by a number of faster motions (Supplementary Fig. 4).
Although the dominant motion is structurally similar to that of
CBD–Apo (that is, it is also the transition between active
and inactive conformations (Fig. 5)), it is slower than that of
CBD–Apo (compare Supplementary Figs 3 and 4). Interestingly,
the second slowest motion within the CBD–cAMP system
corresponds to those states where the C terminus is interacting
with cAMP.
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To strengthen the relationship between motions of the CBD
and its function, we generated a functional coarse-grained model
of the conformational ensembles. The model identifies which
conformational stats have a higher probability of transitioning to
either the active of inactive state, thus indicating the role of
each conformational state in the function of the system. Using
committer analysis from transition pathway theory44,45, the
ensembles were divided into two functional macrostates. Each
macrostate was composed of conformational states with a 450%
probability of transitioning to the active or inactive state. In other
words, the functional coarse-grain model can be conceptualized
as the ‘continental divide’ of the free-energy landscape, indicating
to which functional state (active or inactive) an individual
conformational state is connected to most strongly.

The functional coarse-grain model of CBD–Apo (Fig. 4)
contains similar populations for the active and inactive macro-
states, with a preference for the inactive macrostate. CBD–cAMP
(Fig. 4), however, prefers the active macrostate (Table 2). These
results agree with NMR studies that show similar inactive and
active conformational populations at very-low-cAMP concentra-
tion and domination of the active macrostate at high-cAMP
concentrations21. In addition, the relationship of the half-life of
either functional macrostate is similar to the mean first passage
time between functional conformational states in that transitions
from inactive to active states have similar kinetics in both
systems, whereas the presence of cAMP slows the transition from
active to inactive state (Table 2).

The functional coarse-grain model and the kinetic coarse-grain
model closely correlate with each other as determined by

conformational state membership in the functional or kinetic
macrostates. Correlation between the two coarse-grained models
is expected as they both depend on the transition kinetics of the
Markov state models; however, which motion corresponded to
the change in functional states is not clear a priori. This
correlation indicates that the functional macrostates determined
by transition pathway theory correspond to the slowest motion of
the cyclic nucleotide-binding domain (Fig. 4). It also supports the
assumption that the crystallographic conformations represent the
active and inactive states of the cyclic nucleotide-binding domain
and that its slowest motion is the transition between active and
inactive states.

The coarse-grained models combined with observations of the
change in stationary probability densities for the two systems
support a general explanation that the modification of the
transition kinetics by cAMP gives rise to function. In CBD–Apo,
transitions between states occur with a tendency towards the
inactive conformation, which increases the likelihood of generat-
ing the interface that allows for the regulatory subunit to bind the
catalytic subunit leading to inactivation of PKA. With cAMP
bound, the transition between inactive and active states is slower,
which is likely the result of interactions formed between the C
terminus and cAMP. The preference for the active-like con-
formations in the CBD–cAMP system decreases the probability of
forming the binding interface and allowing activation of PKA.

Motions of the signalling motifs. To gather more detail on
the allosteric mechanism, we examined the propagation of an
allosteric signal through the helical signalling motifs of the cyclic
nucleotide-binding domain by building new Markov state models
for the three principal signalling motifs using the same MD
trajectories (apo and cAMP-bound). While the motions of the
signalling motifs are captured in the Markov state models of
the full CBD, as discussed above, individual models elucidate the
conformational ensembles of focused structural elements and
provide an unobstructed view of their modulation by cAMP. The
Markov state models for the individual motifs were developed
and analysed using the same methods for the full system
(Supplementary Figs 5–10). They indicate conformational selec-
tion as the general mechanism of allostery, due to well-connected
active and inactive conformational states (Fig. 6) with multiple
pathways across the free-energy landscape for each of the three
key motifs (Supplementary Table 3).

When we compared the conformational state distribution
between the apo and cAMP-bound systems, we observed that
the N3A motif and the B/C helix share a majority of their
conformational states (Fig. 6 and Supplementary Table 2), similar
to the full cyclic nucleotide-binding domain. The B/C helix
generally explores the conformational space between the
experimentally determined active and inactive structures
(Fig. 6a). However, the N3A motif explores conformations
dissimilar to either experimental conformation (Fig. 6c). These
models are consistent with the observed motions of these
domains (Supplementary Fig. 2), particularly with the unfolding
of the N-helix (Supplementary Fig. 11).

These results support and help explain why there is no
observed change in chemical shifts in NMR experiments21 for
the N3A motif or the B/C helix despite the changes in the
crystallographic structures (Fig. 1). Simply put, in solution the
conformational space explored by the N3A motif and the B/C
helix is largely independent of cAMP, though cAMP does
modulate the relative populations of the conformational states
and their kinetics.

In contrast, the PBC showed significant changes in chemical
shifts on binding cAMP21. While these changes appear to be

a

b

Figure 4 | Selected difference surfaces between equilibrium probability

densities of CBD–Apo and CBD–cAMP. (a) The difference surface for

10% or more density for the N3A Motif of CBD–Apo over CDB–cAMP.

Arrows indicate interface between PKA’s catalytic and regulatory subunits

(b) The different surface for 1% or more density for the B/C Helix of

CBD–Apo over CDB–cAMP.
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driven by interaction with cAMP, the Markov state model of the
PBC illuminates another aspect of these changes: that, on binding
of cAMP, the PBC loses about half of its conformational
states, representing a significant loss in conformational entropy
(Fig. 6b, Supplementary Table 2). In addition, the kinetic and
functional coarse-grain models of the PBC show significant
changes between apo and cAMP systems (Supplementary Fig. 17
and Supplementary Table 5) unlike the other signalling motifs
(Supplementary Figs 16 and 18 and Supplementary Tables 4,6).
Without cAMP, the PBC has a shallow free-energy landscape
with quick transition between metastable macrostates (Table 1,
Supplementary Fig. 17, and Supplementary Table 5). With cAMP
bound, there is one dominant (slow) transition between two
metastable macrostates (Table 1, Supplementary Fig. 17 and
Supplementary Table 5; also compare implied timescale plots in
Supplementary Figs 7 and 8). Unlike the other models (Fig. 5
and Supplementary Figs 16 and 18), the conformational states
that comprise these metastable macrostates do not correspond to
the division of microstates seen in the functional coarse-grain
model (Supplementary Fig. 17). Instead the functional coarse-
grain model indicates a strong propensity of the PBC to assume a
cAMP-binding conformation or active conformation even in the
absence of cAMP (Supplementary Fig. 17 and Supplementary
Table 5). Overall, the model shows that, without cAMP bound,

the PBC explores a variety of conformations, but the binding site
has a tendency to assume the active cAMP-bound conformation.
cAMP binding selects the active conformation while allowing
transition between active and inactive state but significantly slows
the transition between these states (Table 1, Supplementary
Table 5).

The spatial arrangement of the helical signalling motifs suggests
that the propagation of the allosteric signal would be from the
PBC to the B/C helix to the N3A motif (Fig. 1). Even the natures
of the conformation ensembles, described by the Markov state
models, suggest propagation of the allosteric signal from a switch
like the PBC out to the conformationally diverse N3A motif.

However, the kinetics of the signalling motifs suggest another
mechanism. The mean first passage times between active and
inactive states suggest that the movement of the B/C helix is the
rate-limiting step for the functional transition because it has the
slowest transitions between active and inactive states (Table 1).
Like the full CBD, the B/C helix has similar transition times
between active and inactive states whether or not cAMP is bound.
However, cAMP significantly decreases the rate of the active-to-
inactive transition (Table 1). This rate reduction is due to
the stabilization of the active conformation by cAMP through
interactions between the C helix and cAMP (Fig. 4), as observed
and discussed above.
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Figure 5 | Comparison of conformational state assignment for kinetic and functional coarse-grain models. Conformational state metastable states for

the first/slowed motions in the kinetic coarse-grain Markov state model graph are coloured below according to macrostate membership (red, white).

Functional coarse-grain models are coloured either white or maroon, depending on whether the state ‘would go’ to the active or inactive conformations,

respectively.

Table 2 | Population and half-life for CBD–Apo and CBD–cAMP coarse-grain functional states.

Macrostate CBD–Apo population (%) t1/2 mean (s.d.; ls) Macrostate CBD–cAMP population (%) t1/2 mean (s.d.; ls)

Active 36 2.29 (0.09) Active 77 36.59 (1.12)
Inactive 64 8.62 (0.41) Inactive 23 7.41 (0.45)

cAMP, cyclic AMP; CBD, cyclic nucleotide-binding domain.
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In PKA and other proteins, the experimental free energy of
binding of cAMP to the cyclic nucleotide-binding domain is
dominated by enthalpic contributions50–52, suggesting that the
contacts between cAMP and the PBC and B/H helix are drivers
for this phenomenon. Our model indicates that the binding of
cAMP near the PBC dampens the dynamics of that signalling
motif, greatly increasing its propensity to adopt an active-like
conformation, and that the motions of the B/C helix are the rate-
limiting step in this transition.

Discussion
Overall, we find that the prototype cyclic nucleotide-binding
domain is a highly dynamic system and that cAMP modulates its
function by modifying the dynamics of the signalling motifs. By
comparing CBD–Apo and CBD–cAMP ensembles, we see that
the free-energy landscape allows access to both active and inactive
states through an ensemble of transition pathways (that is, there
is no one dominant pathway between states). Collectively, our
analysis supports conformational selection as the general
mechanism of allostery in this system. The addition of cAMP
modulates the transition rates between the functional states but
only between active-to-inactive states and not vice versa. This
modulation of rates occurs by slowing motion in the CBD–cAMP
ensemble, which is caused by interactions with cAMP. Finally,
our work indicates that the change in dynamics of the B/C helix is
the rate-limiting step in adopting a fully active conformation.
Furthermore, the motion of the B/C helix is essential for signal
propagation to the N3A motif and formation of the interface
with the catalytic subunit. This mechanism could be tested
experimentally though NMR by observing shifts in the relative
populations of active and inactive ensembles caused by mutations
in the C terminus, specifically, mutations of residue 244, which
should modify interactions with cAMP.

While the general mechanism of allostery for the cyclic
nucleotide-binding domain is conformational selection, some
elements of the mechanism appear to behave more like induced
fit. Particularly notable in this regard are the interactions between
the C-helix and cAMP, which generate multiple conformational
states that are not sampled in the apo state, as compared with the
motions of the individual signalling motifs that appear more
similar to entropic mechanisms of allostery. Furthermore, in the
context of activation of the full kinase, these mechanisms may
change, as interaction with the catalytic subunit and the
remaining portions of the regulatory subunit will almost certainly
modulate the conformational ensemble of the cyclic nucleotide-
binding domain. This work suggests that a clearer picture of
the free-energy landscape, achieved through an integrated
experimental and computational approach, is required to fully
understand allosteric behaviour.

Although a number of our conclusions were already observed
experimentally, the power of our computational Markov-state-
model-based approach is that it unifies multiple lines of existing
experimental data into a single, cohesive framework and, thereby,
achieves a more complete understanding of allostery. This
approach builds on an emerging paradigm for understanding
protein function and dynamics based on computational explora-
tion and visualization of protein conformational ensembles
and their underlying functional free-energy landscapes in atomic
detail.

Methods
System preparation. Parameterization of cAMP. We parameterized cAMP for the
MD simulations as a small organic molecule using the generalized amber force
field53 to allow for consistent treatment of ligands in future studies. The
coordinates for cAMP were taken from the 1RGS15 crystal structure. Partial atomic
charges for cAMP were determined by single-point energy calculations using
Schrodinger’s QM module Jaguar (Suite 2012: Jaguar, version 7.9, Schrödinger,
LLC, New York, NY, 2012) using the Hartree–Fock level of theory and 6-311g**
bases. Generalized amber force field atom types were assigned using
antechamber54, and the parameters files were prepared with AMBER’s xleap.

MD System preparation. Using Schrodinger’s Maestro’s (Suite 2012: Maestro,
version 9.3, Schrödinger, LLC, New York, NY, 2012) PDB prep and the Desmond
System Preparer, we prepared four systems for MD simulations, CBD–Apo and
CBD–cAMP in both the active and inactive conformations. The heavy-atom
atomic coordinates for the active and inactive conformations of CBD–Apo were
taken for crystal structures 1RGS15 and 2QCS16 resides 119 to 244, respectively.
We added cAMP to the inactive conformation by aligning the cAMP-binding site
of 1RGS and 2QCS and ‘cutting and pasting’ the coordinates. For the CBD–Apo
active conformation, the coordinates for cAMP were deleted from 1RGS. Within
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Figure 6 | Overlay of Markov State Model Conformational State

Graphs for the SubDomains of cyclic nucleotide-binding Domain with
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Markov state models conformational state graphs use the same

conventions defined in Fig. 2.
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PBD prep, each system was capped to remove terminal charges, the systems
were protonated at pH 7.0 with the pKa titratable residues determined with the
Maestro-integrated PROPKA, and, due to the low resolution of 1RGS, all
crystallographic waters were removed. Using the Desmond System Preparer,
we solvated each system in a cubic water box using TIP3 waters55, counter ions,
and 120mM NaCl. No restraints were placed on cAMP.

MD simulations. System parameterization. System coordinates from Maestro were
converted into an xleap-readable format using in-house Python scripts. Each
system was parameterized in xleap using the Amber99SB56 force field and periodic
boundary conditions were implemented.

GPU-enabled MD simulations. All systems were minimized and equilibrated
using the GPU version of Amber12 (refs 38–40). We minimized the system in four
stages: (1) 500 steps of hydrogen-only minimization, (2) 500 steps of solvent
minimization, (3) 500 steps with only the backbone constrained and (4) 5,000 steps
of full minimization. We equilibrated the system using harmonic equilibration at
310K over four sequential 500-ps runs, decreasing the restraint potential on the
backbone each step. GPU-enabled AMBER12 production runs were carried out as
an NTP ensemble at 310K and 1 bar with a 2-fs time-step and partial mesh Ewald
electrostatic approximation. MD input files are provided as part of the data sharing.

Anton MD simulations. MD simulations on Anton37 were performed on the
same parameterized, minimized and equilibrated systems as GPU-enabled
AMBER12 simulations. The Anton simulation was run in the NTP ensemble, using
Anton’s Berendsen thermostat-barostat, at 310K and 1 bar with a 2-fs time-step
and partial mesh Ewald electrostatic approximation.

Initial and adaptive sampling. We sampled the conformational ensemble from
the equilibrated conformation of each system, starting each run with a different set
of initial velocities. Supplementary Table 1 contains the total sampling time for
each system used in this analysis.

In conjunction with model building, we performed multiple adaptive sampling
runs. These runs were initiated from preliminary Markov state model
conformational states with o3 members. These conformational states
corresponded to clustered regions of the conformational ensemble poorly sampled
by the MD simulations and, therefore, the transitions to and from those states were
poorly sampled. For each under-sampled conformational state, one conformation
was selected. From that conformation, three new 10–15 ns MD simulations were
run, each with a new initial velocity using GPU-enabled AMBER12. The short MD
simulations were sufficient to explore the local conformational landscape and
return to a local energy minimum.

Building Markov state models. Trajectory preparation. MD trajectories were
processed using CPPTRAJ57 and VMD58. All frames were aligned using Ca of
residues 153 to 199 and 211 to 223, the stable b-barrel, to crystallographic active
conformation. The alignment provided a common reference frame to compare all
conformations while maximizing the difference between conformations. The frame
rate for the trajectories was unified to 120 ps due to different conformational
sampling rates between the GPU-enabled AMBER12 (0.5 ps) and Anton (120 ps)
MD simulations. The trajectories were converted into NAMD’s59 ‘.dcd’ trajectory
format for analysis with MSMBuilder2.

Building the Markov State Model. We used MSMBuilder2 (refs 32,42), release
2.51, to preform cluster analysis, Markov state model building and Markov state
model selection. To have a common set of microstates for both the CBD–Apo and
CBD–cAMP systems, all trajectories were clustered together using the hybrid
k-centres k-medoids clustering algorithm using the custom distance metric
option to calculate r.m.s.d. without first performing an alignment on the atomic
coordinates (an option not available in MSMBuilder2). MSMBuilder2 allows for
refinement of clustering through refinement of frame membership within a cluster
as well as global refinement of cluster generators. For our systems, we found that
any refinement only made the space discretization worse, as determined by implied
timescale plots. Therefore, we didn’t use any refinement options for our clustering.
Markov state models were then built on the CBD–Apo and CBD–cAMP
trajectories separately using cluster generators to assign state membership to each
frame of the trajectories. When the best conformational landscape partition and lag
time were determined (see discussion below), a final Markov state model was built
using the maximal likelihood estimator option in MSMBuilder2.

Model selection. For the Markov state model of the whole systems, we selected
a clustering cutoff distance of 3.0 Å and a lag time of 80 steps or 9.6 ns. For
consistency in comparing models, a lag time of 9.6 ns was used for all.

Markov state model visualization. The Markov state models were visualized
using in-house Python scripts leveraging the publically available NetworkX
module60.

Markov state model analysis. Equilibrium population. The equilibrium
population was determined from the first eigenvalue of the Markov state model’s
transition probability matrix that corresponds to the equilibrium distribution of the
conformational states.

Transition pathway theory analysis. Transition pathway theory analysis was
preformed using MSMBuilder2 transition pathway theory scripts42. Total flux was
calculated as described in Prinz et al.45. Transition pathway theory-based clustering
was preformed using in-house Python scripts leveraging MSMBuilder2 modules.

The script assigned transition pathway theory macrostates to each microstate of the
original Markov state model based on the probability of transitioning to either the
inactive or the active conformation (cutoff 50%). The conformational state
assignments for each frame of the trajectories were reassigned using in-house
Python scripts and a new Markov state model based on the macrostate assignments
was built with MSMBuilder2.

Markov cluster analysis macrostate models. Markov cluster analysis clustered the
states of the Markov state model based on their kinetic relationships within the
Markov state model using a random walk algorithm to determine local sinks in the
Markov state model48. We performed the Markov cluster analysis using in-house
Python scripts that assigned new Markov cluster analysis state assignments to the
original state assignments and built a Markov state model. In addition, we used
MSMBuilders2’s PCCAþ (ref. 42) module to validate the division identified
through Markov clustering.

Mean first passage time. Absolute MFPT between the putative functional
microstates was calculated as described in Singhal et al.61

Half-life. The half-life of coarse-grained microstates was calculated using a kinetic
Monte Carlo scheme on the Markov state model’s transitions matrix as described
in Shukla et al.31 Trajectories were generated by randomly selecting a starting state
within a macrostate, then moving between states based on the transition’s
probability as determined by the Markov state model. The passage time of the
trajectory was the number of steps in the trajectory multiplied by the lag time
(9.6 ns). The half-life was calculated by taking the average of 10 median passage
times from a collection of 1,000 trajectories.

Calculating kinetics and free energies. Assuming that transitioning out of one
conformational state into its neighbouring conformational states can be modelled
as parallel reactions, we can treat the kinetics for the conformational changes
between connected conformational states as first-order reactions. Therefore, we
determined the rate constant using

k ¼ � lnðp1=p0Þ
t

where k in the first-order rate constant, p0 is the probability of starting in a given
state (that is, the starting concentration or 1), p1 is the probability of still being in
that state at a given lag time (that is, the concentration after a give time) and t is
the lag time (9.6 ns). The free energy of transition was calculated using Eyring’s
equation as follows:

DGþ þ ¼ �RT ln
h

kkBT
k

� �

where R is the gas constant, h is Plank’s constant, kB is Boltzmann’s gas constant,
k is the transmission coefficient assumed to be 1, T is temperature (310 K) and k is
the rate constant calculated above.

The free energy of a single microstate was calculated using

DG ¼ �RT ln
pi
pr

� �

where pi is the probability of a given microstate, pr is the probability of the
reference microstate (the most probable microstate in the ensemble), R is the gas
constant (0.0012 kcalmol� 1 K� 1) and T is temperature (310 K)62.

Markov state model signalling motifs. The Markov state models of the signalling
motifs were built and analysed using the same methods described above except we
only used a subset of Ca. The residues used for the analysis of each subdomain
were: 119 to 151 for the N3A motif, 199 to 211 for the PBC and 226 to 244 for the
B/C helix. Markov state models were built with a clustering cutoff of 4.5 Å for the
N3A motif, 1.5 Å for the PBC and 4.5 Å for the B/C helix. The lag time used was
9.6 ns.

Data sharing. MD trajectories, sample MD input scripts and the Markov state model
analysis scripts are available for download at http://dx.doi.org/10.6075/J0Z60KZS.
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