Abstract
Friction in an ambient condition involves highly nonlinear interactions of capillary force, induced by the capillarycondensed water nanobridges between contact or noncontact asperities of two sliding surfaces. Since the real contact area of sliding solids is much smaller than the apparent contact area, the nanobridges formed on the distant asperities can contribute significantly to the overall friction. Therefore, it is essential to understand how the water nanobridges mediate the ‘noncontact’ friction, which helps narrow the gap between our knowledge of friction on the microscopic and macroscopic scales. Here we show, by using noncontact dynamic force spectroscopy, the single capillary bridge generates noncontact friction via its shear interaction. The pinning–depinning dynamics of the nanobridge’s contact line produces nonviscous damping, which occurs even without normal load and dominates the capillaryinduced hydrodynamic damping. The novel nanofriction mechanism may provide a deeper microscopic view of macroscopic friction in air where numerous asperities exist.
Introduction
Friction is the force against sliding between two bodies in contact and the phenomenon spans several orders of magnitude from the nanometre scales of biological molecules and atomic contacts^{1,2,3} to the kilometre scales of earthquakes^{4}, having scientific as well as technological importance^{5}. In dry condition, the dominant microscopic mechanism for the contact friction is the nonlinear, thermally activated stickslip dynamics of the contacting asperities, which increases the friction force logarithmically with the sliding velocity^{6,7}. Recent studies have shown that there exists even the minute, noncontact energy dissipation at a nanometric separation due to the fluctuating electromagnetic fields^{8}. Therefore, the contactsliding friction in dry condition seems to be largely a matter of interactions between the objects at the direct contact interface.
In ambient condition, however, there always exists a third object between contact bodies, the capillary–condensed water bridge or meniscus^{9}, which binds two nanoscale asperities and thereby strongly affects friction^{10,11}. Such a humidityassisted friction has been understood as associated with the thermally activated capillary condensation of water vapour into liquid water that occurs between hydrophilic surfaces in air^{12,13,14}. For the contact sliding of a single asperity, the capillarymediated friction decreases logarithmically with the velocity due to the proportionally diminishing bridge size and capillary attraction^{15,16}. On the other hand, the water bridge can be also formed in the nanometric gap between two distant asperities^{17}, with its nanometric height maintained constant, and thus results in the noncontact friction, unlike in dry condition, even in the absence of normal load on the solid–solid contact.
The liquid bridge has been usually considered to add an additional normal load, increasing the microscopic real contact area and thereby enhancing the overall friction^{10,11,18}. However, such an indirect effect does not describe the friction that the bridges may produce directly between contact as well as noncontact nanoasperities. This direct contribution is important, in particular, not only because the distant asperities consist of the large part of the apparent contact area beyond the real contact area (Fig. 1a)^{19,20} but also because the water bridge can be easily formed in the gap of distant asperities with separation less than ∼10 nm in ambient condition^{21} (see also Supplementary Note 1). Although the noncontact friction mediated by a single water bridge is about 10% of contact friction due to a single asperity, as we shall show later, the overall contribution of noncontact asperities can be significant because they usually exist numerously due to the multiasperity feature at the macroscopic contact interface. Therefore, for a better understanding of friction in air, it is critical to address the noncontact sliding friction that the single capillary bridge mediates, which helps the gap in our understanding of the microscopic and macroscopic scale friction.
Here we study theoretically and experimentally the capillary ‘shear’ interaction of a single water nanobridge (Fig. 1b) that produces the noncontact sliding friction, by using a shearmode noncontact atomic force microscope (AFM)^{17,22}. The unique features of our approach include the following. First, the pure effects of the water bridge are measured by noncontact operation. Second, the velocity dependences are studied for the constant bridge volumes. Finally, quantitative description of the noncontact friction is made in terms of shear modulus, which enables quantitative comparison with the contact friction. We show that the bridgemediated noncontact interaction produces the solidlike elasticity, as well as the novel nonviscous damping that originates from the molecularscale pinning–depinning dynamics of the tip–bridge contact line.
Results
Formation and detection of a nanosized water bridge
The noncontact AFM employs the quartz tuning fork oscillator, with a sharp tip attached, which has high stiffness (∼10^{4} N m^{−1}) and a high quality factor (∼10^{3}). Consequently, the system not only realizes the stable formation of the single capillary nanobridge with controlled height and volume^{17}, avoiding the jumptocontact instability typically experienced in soft cantileverbased AFM, but also allows sensitive measurement^{23} and quantitative analysis^{24} of the associated interactions. When the laterally oscillating tip approaches the mica substrate, a water nanobrdige is produced by capillary condensation in the tip–sample nanometric gap (Methods), causing a change in the measured quantities, the amplitude and phase of the tip oscillation. Once the nanobridge formation is observed, the tip retracts to avoid the tip–substrate hard contact, while the amplitude change and phase shift are recorded until the bridge is ruptured. The measured experimental data are analysed using the dynamic force spectroscopy (DFS) method^{25} to obtain quantitatively the associated bridgemediated interactions.
Nanosized water bridgemediated shear interaction
The quartz tuning forkbased DFS is ideal for our goal, because it allows high measurement sensitivity for the stiff mechanical oscillator and detects simultaneously and separately the conservative F_{k} and nonconservative F_{b} components of the total tip–liquid interaction force F_{int} (=F_{k}+F_{b}). Furthermore, by this technique, a wide slidingvelocity range is possible while the bridge volume is maintained constant. Specifically, this technique allows one to obtain ‘effective’ elastic k_{eff} and damping b_{eff} coefficients. The respective forces are then derived as F_{k}≈−k_{eff}x and , where x is the lateral displacement of the tip and v is the corresponding shear velocity^{22,24}. Figure 1c shows the typically measured elasticity k_{eff} and b_{eff}w (here, w is the angular frequency of tip oscillation), and they exhibit an abrupt jump when the capillary condensation occurrs, which defines the position z=0. The interaction constants k_{eff} and b_{eff}w increase with the relative humidity (RH) or the rupture distance (that is, volume) of the bridge, as shown in Fig. 1d,e. Since v=0 when x=A (and also v=wA when x=0) for the harmonic motion of the tip (with its oscillation amplitude A), we can measure separately two instantaneous peak values of the oscillatory interaction force, F_{k} and F_{b}, at x=A and x=0, respectively; F_{int}=F_{k}≈−k_{eff}A at x=A and F_{int}=F_{b}≈−b_{eff}wA at x=0.
Mechanism of water bridgemediated noncontact friction
Now, let us discuss the microscopic mechanisms of the liquid bridgemediated shear interaction. At first, we show that the measured elastic and damping properties cannot be explained by the hydrodynamic interaction or capillary negative pressure exerted on the tip–bridge interfacial area σ. The hydrodynamic viscous drag causes dissipative damping on the shearing interfacial area under the usual assumption of noslip boundary condition, and the corresponding damping coefficient, when expressed in the same unit of the elasticity, is given by , where μ is the viscosity of water and the bridge height (Fig. 2a). While there have been reports on the substantial enhancement of μ under subnanoconfinement, the present confining height is much longer (>4.5 nm). Therefore, using the bulk viscosity of water^{26,27,28} and the relevant quantities, σ=π(15 nm)^{2} and =6 nm, which can be obtained by using the theoretical formalism and estimation procedure of the tip–sample distance developed in detail in the Supplementary Notes 2 and 3, we obtain , 10^{5} times smaller than the measured value of about 1 N m^{−1}. Moreover, the increased viscous damping that occurs near the contact line alters the contact angle as , where is the dynamically varying contact angle, the equilibrium contact angle, Ca the capillary number and l is a logarithmic factor^{29}. For the highest l∼100, the angle change is at most a few 10^{−3} rad, which is still 10^{4} times less than the measurement (Supplementary Note 4). In addition, since the negative pressure of the bridge exerts an attractive force in normal direction to the tip surface, its lateral shear contribution is also negligible.
As an alternative interaction mechanism, we now demonstrate that the contact line of the tip–bridge interface can generate simultaneously bridge elasticity as well as nonviscous dissipation. First, to derive the elastic component of the capillary shear force, let us consider simply a cylindrical column of water, whose contact line is pinned on the sliding flat tip surface (inset of Fig. 2a) (refer to Supplementary Note 5 for a general round tip). The surface energy U_{l} with respect to the shear displacement x can be exactly solved as, , where is the surface tension of water, the radius of the contact line and is the complete elliptic integral of the second kind (see Supplementary Note 6 for derivation). The energy gradient then gives the maximum value of elastic force at x=A,
and . With the parameters, =15 nm and =6 nm (see Supplementary Notes 2 and 3), we find k_{eff}≈0.6 N m^{−1} in excellent agreement with the experimental results (Fig. 1d).
Besides the pinning of the contact line responsible for the elasticity, however, there can also occur the depinning following each pinning. The pinning–depinning (or stickslip) kinetics of the contact line induces an energy dissipation and is described by the ‘molecular kinetic theory’^{30}. Essentially, the theory provides a relation between the contactline velocity V (relative to the tip surface) and the applied force per unit length on the contact line , given by , where is the dynamic contact angle on the moving contact line. Here this nonlinear pinning–depinning dynamics includes two intrinsic parameters, the length of activated jump λ and the activation energy U of the jump. The scale factor V_{0} is given by V_{0}≡λk_{B}T/h, where k_{B} is the Boltzmann constant and h the Plank constant.
For a given U and λ, we can then derive the shear damping force F_{b} as a function of V by summing up f_{l} around the contact line. The larger tip motion (or higher v=wA) induces the larger contactline force, and the larger imposed force triggers more pinning–depinning processes at the contact line^{30,31}. This microscopic mechanism leads to the overall increase of the velocity V along the direction of the exerted force. We thus conjecture that V→V_{0}exp(–U/k_{B}T)≡V_{i} for A→0 (that is, no external perturbation) and V→wA for A→∞ (that is, infinitely fast and long travel of the contact line) at the tip position x=0 (or at the tip velocity is wA), where the bridge experiences a negligible elastic restoring force (equation (1)). Then, introducing an empirical parameter 0≤α(A)≤1, the degree of slip, we can construct a linear relation between V and A, as V=V_{i}+αwA, where α(A=0)=0 and α(A→∞)=1. With this relation, we then obtain the maximum frictional force F_{b} at x=0 and v>0 as a function of A (Supplementary Note 5),
Here we find F_{b} is proportional to and exhibits the logarithmic dependence on the tip velocity wA. Notice that for v<0, due to the symmetry, resulting in the force hysteresis (Fig. 2b). We also find .
In summary, the total contactlineinduced shear force is analytically given by the sum of the elastic (equation (1)) and damping (equation (2)) forces, which are our main results. They describe how the contact line of the capillary bridge plays the key role in the shear interaction between two noncontact sliding surfaces: whereas the interfacial energy change due to the liquidsurface elongation during the contactline pinning produces the restoring force F_{k} (equation (1)), the microscopic pinning–depinning process of the contact line results in the nonviscous friction F_{b} (equation (2)). For our oscillatory measurement of the interaction forces, , the elastic part F_{k} contributes to the inphase component, while the damping part F_{b} to the outofphase component, which are detected separately by the DFS method. Here we note that the pinning–depinning occurs at the contact line, where water molecules hop microscopically over the pinning sites. However, water molecules inside the contact line do not hop under noslip boundary condition, which is usually assumed between a hydrophilic surface and water. Therefore, because the hydrodynamic viscous damping is 10^{4}∼10^{5} times smaller than the measured damping, as discussed earlier, we can consider the experimentally measured interaction originates from the threephase contact line.
Noncontact friction via threephase contact line
To justify the proposed microscopic mechanism of the bridgemediated noncontact friction, we have investigated the dependence of the interaction force on the shearing amplitude A. The tip first approaches to form the capillary nanobridge and during its subsequent retraction, the tip stops at a given position z=1 nm (or the bridge height ≈5.6 nm) for measurements of k_{eff} and b_{eff}w while varying A (up to 30 nm). Figure 3 presents the behaviours of the force constants k_{eff} and b_{eff}w, and the corresponding forces F_{k} and F_{b}, which are normalized respectively to k_{0} and b_{0}w for convenience (here, k_{0} and b_{0}w are the initial values of k_{eff} and b_{eff}w obtained at A=A_{0}≈0.5 nm). For the damping results, we used three fitting parameters U, λ and α, and our model reproduces excellently the measured b_{eff}w (red curves in Fig. 3). On the other hand, for the elasticity part, we used no adjustable parameters, and the k_{eff} values show qualitative agreement although they are overall slightly larger than the results for the simple column model of the bridge (black curves in Fig. 3).
In Fig. 3a, we observe two characteristic behaviours of k_{eff} and b_{eff}w. First, they both exhibit maximum values in the limit of small A. Second, the elastic coefficient decays faster than the damping constant with respect to A. These features are expected from the functional forms of equation (1) and equation (2), where both F_{k} and F_{b} initially increase linearly with A, but the force increments are suppressed as A increases. That is, while F_{k}(≈k_{eff}A) converges to a specific value as A→∞, F_{k}() increases logarithmically with A, so that F_{k}/A is expected to decay faster than F_{b}/A. We also notice that b_{eff}w initially increases slightly from A=0.5 nm to below A=10 nm, in which the higher rate of depinning occurs at the larger A. Therefore, α(A) increases up to 1 for A<10 nm, but α(A)=1 remains constant beyond A=10 nm. Indeed, we fit excellently the experimental data b_{eff}w by using α(A) such that α(A) is the linear curve connecting two points, α=0.6 at A=0.5 nm and α=1 at A=10 nm for A≤10 nm, whereas α(A)=1 for A>10 nm (red curves in Fig. 3).
Figure 3b presents the corresponding behaviours of the capillary shear forces versus A (or equivalently the shear velocity wA). Interestingly, the capillary shear friction increases logarithmically with the sliding velocity (see inset), similarly to the stickslip contact friction in dry condition, despite the constant volume of the capillary bridge during measurements (Supplementary Note 7), which is realized due to the fast tip oscillation and the resulting short measurement time (that is, lockin detection at w). This indicates that the logarithmic increase of the noncontact friction, resulting from the pinning–depinning ‘hopping’ processes of the contact line, shares similar physical origins with the stickslip mechanism of contact friction in dry condition. Interestingly, we observe this contactlineinduced friction may account for the recent solid–solid contactsliding experiment on mica, where the logarithmic force increase was observed for constant normal load at low velocity^{32}. In contrast, for sliding contact friction at relatively high velocity in ambient condition^{11}, the force decreases logarithmically with velocity, which is attributed to the reduced friction as a result of the proportionately rapid diminishing of the capillary bridges due to evaporation of the contactsliding meniscus and insufficient nucleation time for a meniscus formation^{15}. Notice that at a farther tip–sample distance of z=5.2 nm, where the evaporation of the water bridge is more favourable so that the bridge becomes smaller, we observe the force starts decreasing soon after initial increase (Supplementary Note 7).
Numerical calculation of the two intrinsic parameters, λ and U, indicates that the pinning–depinning processes of the contact line is associated with the dynamics at the molecular scale. In such a molecular process, λ, the mean distance between neighbouring pinning sites, should be an atomicscale distance (<1 nm). Moreover, it has been argued by Blake and De Coninck that the activation energy per unit area is just the work of adhesion W_{a}^{33}, U/λ^{2}≈W_{a}, where . Indeed, we obtain λ=0.6 nm and U=14.7k_{B}T by fitting equation (2) to the experimental data for A>10 nm, which gives U/λ^{2}=0.19 N m^{−1}≈2γ≈W_{a}, where γ=0.072 N m^{−1} at 20 °C. In addition, when depinning occurs, the force per unit length on the contact line is also expected to be the order of U/λ^{2}, which is supported by equation (2), . Consequently, the friction force F_{b} can be attributed as due to thermal activation of the water molecules at the contact line, being adsorbed and desorbed over the atomic scale λ=0.6 nm on the gold surface of the probe. It is interesting to observe that the sizable nonviscous damping that we observed even at A<1 nm already indicates the existence of the atomicscale pinning–depinning processes (also refer Fig. 4).
Notice that water molecules near the contact line undergo incessantly repeating pinning–depinning (that is, adsorption–desorption or stickslip) motion caused by the moving tip, which results in resistive frictional force. Such a friction at the molecular scale is manifested as the continuous and smooth energy dissipation at the macroscopic scale, described by the damping coefficient b_{eff}, and it is responsible for the substantial energy dissipation that cannot be accounted for by usual hydrodynamic dissipation. A similar continuous macroscopic manifestation of the microscopic pinning–depinning processes as the energy dissipation has been shown in a different system that consists of a colloidal particle at the liquid interface^{34}, where enhanced energy dissipation associated with the contact line was also observed beyond the predictions of the hydrodynamic viscous damping.
By varying RH, we observe that the noncontact sliding interaction can be enhanced by an order of magnitude with the increase of RH from 2 to 60%. Because the larger volume of the liquid bridge is formed at higher RH (Fig. 1d,e), the contactline radius increases with RH for a fixed tip–sample distance. Specifically, by the numerical calculation based on the Young–Laplace equation^{35,36}, we find varies from 7 to 32 nm as RH increases from 2 to 60% at z=1 nm or ≈5.6 nm (see Supplementary Fig. 5 for details on a fine control of ). In Fig. 4, we present the interaction coefficients obtained at z=1 nm as a function of , measured for small A (<1 nm), where k_{eff} and b_{eff}w at RH=60% become 5 and 10 times larger than the values at RH=2%, respectively.
Figure 4 shows that k_{eff} and b_{eff}w are linearly proportional to at >15 nm. This linearity is expected because the forces, equations (1) and (2), are linearly dependent on . Notice that the linear behaviour holds above a certain value of , which is because the current model of the bridgeinduced interaction does not take into account the detailed geometry of the water bridge. For example, for the real geometry of a bridge, there exists a critical value R_{0} for the minimum contactline radius, at which the neck diameter of the bridge vanishes and thus F_{k}=F_{b}=0 at =R_{0}, unlike equations (1) and (2) that predict the forces become zero only when =0, which cannot hold below R_{0}. Moreover, the continuum material model of the liquid bridge may break down for <15 nm, where the substantially differing behaviours of k_{eff} and b_{eff}w are observed (Fig. 4), so that the discrete nature of the nanosized matter should be considered (see ref. 37).
Discussion
For a unifying understanding, let us compare the bridgemediated noncontact friction with the solid–solid contact friction, both of which possess the similar mechanism of the pinning–depinning or the stickslip dynamics. The contact friction is characterized by the ‘interfacial shear strength’, which is the friction divided by the real solid–solid contact area and is typically of the order of 10^{8} Pa^{38,39}. For the present noncontact friction, we obtain the complex shear modulus G*, which is defined as the ratio of stress to strain and is represented by the complex sum of the storage modulus G′ and the loss modulus G″, that is, G*=G′+G″. While G′ represents the measure of the bridge resistance to being deformed elastically against the applied shear force, G″ shows the corresponding energy dissipation with respect to the same strain of the bridge. This leads to Pa and Pa, which are similar in magnitude to those of rubber (inset, Fig. 4). Notice that G″ is 10^{4} times larger than the bulk water, a substantial enhancement over the hydrodynamic effects between the tip and bridge. Interestingly, we emphasize that the noncontact shear dissipative modulus of a single bridge is up to 10% of the contact modulus, indicating that the noncontact friction may even dominate the contact friction depending on the conditions such as the number of capillary bridges.
In conclusion, we present the microscopic mechanism of the noncontact friction where the capillary shear interaction plays a key role. In particular, the novel nonviscous damping is attributed to the nonlinear pinning–depinning molecular processes of the tip–bridge contact line, which increases logarithmically with the shear velocity, as similarly observed in the atomicscale ‘stickslip’ friction between solids in contact in dry condition. Notice that although the previous contact friction experiments in humid condition exhibit logarithmic decrease due to the reduced capillaryadhesion effect with velocity^{16}, the present contactlineinduced friction may occur at the initial, lowvelocity stage of the contact sliding where the capillary shear is nonnegligible. Our results offer a new mechanism of the nanotribology in ambient condition, which can be used for better microscopic understanding of both the macroscopic friction where numerous asperities exist and the rheological properties of the nanoscale interfacial fluids, and for designing and controlling the micro/nano electromechanical systems.
Methods
Experimental details
We used an etched gold tip and mica substrate in AFM operation, and they were prepared as follows: the gold tip was made by electrochemical etching in a 3.5M HCl solution, which typically produced a tip diameter of 400∼500 nm. The tip was attached to one of two prongs of the quartz tuning fork. For the mica substrate, freshly cleaved mica was rinsed using dilute acid 5% (acetic acid) and then using deionized water. The tip and sample were placed in a homebuilt airtight humiditycontrolled metallic chamber at RH=2%, where they were dried for several hours before making measurements. The metallic chamber is equipped with two inlets for dry and H_{2}Osaturated nitrogen gases and with one outlet connected to a vacuum pump. By varying the gas flows through the inlets, we control the relative humidity in the chamber. In addition, we also performed the experiment using a cantilever Si tip with a smaller radius of curvature, which produced a correspondingly smaller bridge and smaller force constants were measured. Further, when we used a hydrophobic, highly ordered pyrolytic graphite (HOPG) substrate instead of hydrophilic mica, the capillarycondensed water bridge was not produced, so that there is no bridgemediated contribution to friction.
Additional information
How to cite this article: Lee, M. et al. Noncontact friction via capillary shear interaction at nanoscale. Nat. Commun. 6:7359 doi: 10.1038/ncomms8359 (2015).
References
Vanossi, A., Manini, N., Urbakh, M., Zapperi, S. & Tosatti, E. Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. Colloquium 85, 529–552 (2013).
Urbakh, M., Klafter, J., Gourdon, D. & Israelachvili, J. N. The nonlinear nature of friction. Nature 430, 525–528 (2004).
Bormuth, V., Varga, V., Howard, J. & Schaffer, E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325, 870–873 (2009).
Scholz, C. H. Earthquakes and friction laws. Nature 391, 37–42 (1998).
Urbakh, M. & Meyer, E. Nanotribology: the renaissance of friction. Nat. Mater. 9, 8–10 (2010).
Gnecco, E. et al. Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000).
Bouhacina, T. et al. Tribological behavior of a polymer grafted on silanized silica probed with a nanotip. Phys. Rev. B 56, 7694–7703 (1997).
Volokitin, A. I. & Persson, B. N. J. Nearfield radiative heat transfer and noncontact friction. Rev. Mod. Phys. 79, 1291–1329 (2007).
Israelachvili, J. N. Intermolecular and Surface Forces Academic Press (2003).
Persson, B. N. J. Sliding Friction: Physical Principles and Applications Springer (2000).
Riedo, E., Levy, F. & Brune, H. Kinetics of capillary condensation in nanoscopic sliding friction. Phys. Rev. Lett. 88, 185505 (2002).
Bocquet, L., Charlaix, E., Ciliberto, S. & Crassous, J. Moistureinduced ageing in granular media and the kinetics of capillary condensation. Nature 396, 735–737 (1998).
Restagno, F., Bocquet, L. & Biben, T. Metastability and nucleation in capillary condensation. Phys. Rev. Lett. 84, 2433–2436 (2000).
Jang, J., Schatz, G. C. & Ratner, M. A. How narrow can a meniscus be? Phys. Rev. Lett. 92, 085504 (2004).
Szoszkiewicz, R. & Riedo, E. Nucleation time of nanoscale water bridges. Phys. Rev. Lett. 95, 135502 (2005).
Noel, O., Mazeran, P.E. & Nasrallah, H. Sliding velocity dependence of adhesion in a nanometersized contact. Phys. Rev. Lett. 108, 015503 (2012).
Choe, H. et al. Formation, manipulation, and elasticity measurement of a nanometric column of water molecules. Phys. Rev. Lett. 95, 187801 (2005).
Sirghi, L. Effect of capillarycondensed water on the dynamic friction force at nanoasperity contacts. Appl. Phys. Lett. 82, 3755–3757 (2003).
Rubinstein, S. M., Cohen, G. & Fineberg, J. Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004).
Mo, Y., Turner, K. T. & Szlufarska, I. Friction laws at the nanoscale. Nature 457, 1116–1119 (2009).
Sirghi, L., Szoszkiewicz, R. & Riedo, E. Volume of a nanoscale water bridge. Langmuir 22, 1093–1098 (2006).
Lee, M., Sung, B., Hashemi, N. & Jhe, W. Study of a nanoscale water cluster by atomic force microscopy. Faraday Discuss. 141, 415–421 (2009).
Lee, M., Jahng, J., Kim, K. & Jhe, W. Quantitative atomic force measurement with a quartz tuning fork. Appl. Phys. Lett. 91, 023117 (2007).
Lee, M. & Jhe, W. General theory of amplitudemodulation atomic force microscopy. Phys. Rev. Lett. 97, 036104 (2006).
Garca, R. & Pérez, R. Dynamic atomic force microscopy method. Surf. Sci. Rep. 47, 197–301 (2002).
Raviv, U. & Klein, J. Fluidity of bound hydration layers. Science 297, 1540–1542 (2002).
Raviv, U., Laurat, P. & Klein, J. Fluidity of water confined to subnanometre films. Nature 413, 51–53 (2001).
Leng, Y. & Cummings, P. T. Fluidity of hydration layers nanoconfined between mica surfaces. Phys. Rev. Lett. 94, 026101 (2005).
Cox, R. G. The dynamics of the spreading of liquids on a solid surface. J. Fluid Mech. 168, 169–194 (1986).
Blake, T. D. & Haynes, J. M. Kinetics of liquid/liquid displacement. J. Colloid Interface Sci. 30, 421–423 (1969).
Gao, P. & Feng, J. J. Enhanced slip on a patterned substrate due to depinning of contact line. Phys. Fluids 21, 102102 (2009).
Nasrallah, H. Capillary Adhesion and Friction: an Approach With the AFM Circular Mode PhD thesis, Univ. Maine (2011).
Blake, T. D. & De Coninck, J. The influence of solidliquid interactions on dynamic wetting. Adv. Colloid Interface Sci. 96, 21–36 (2002).
Kaz, D. M., McGorty, R., Mani, M., Brenner, M. P. & Manoharan, V. N. Physical ageing of the contact line on colloidal particles at liquid interfaces. Nat. Mater. 11, 138–142 (2012).
Stifter, T., Marti, O. & Bhushan, B. Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy. Phys. Rev. B 62, 13667–13673 (2000).
Willett, C. D., Adams, M. J., Johnson, S. A. & Seville, J. P. K. Capillary bridges between two spherical bodies. Langmuir 16, 9396–9405 (2000).
Jang, J., Ratner, M. A. & Schatz, G. C. J. Atomicscale roughness effect on capillary force in atomic force microscopy. Phys. Chem. B 110, 659–662 (2006).
Carpick, R. W., Agrait, Ogletree, N. D. F. & Salmeron, M. Variation of the interfacial shear strength and adhesion of a nanometersized contact. Langmuir 12, 3334–3340 (1996).
Carpick, R. W., Ogletree, D. F. & Salmseron, M. Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70, 1548–1550 (1997).
Acknowledgements
We are grateful to Gunsang Geon and Corey Stambaugh for invaluable discussions. This work was supported in part by the National Research Foundation of Korea grant funded by the Korea government (MSIP) (No. 20090083512).
Author information
Authors and Affiliations
Contributions
M.L. developed the noncontact AFM and theoretical tool. M.L., B.K. and J.K. carried out experiments. W.J. designed and directed the research. M.L. and W.J. analysed and interpreted the data, and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Figures 15, Supplementary Notes 17 and Supplementary References (PDF 692 kb)
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Lee, M., Kim, B., Kim, J. et al. Noncontact friction via capillary shear interaction at nanoscale. Nat Commun 6, 7359 (2015). https://doi.org/10.1038/ncomms8359
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/ncomms8359
This article is cited by

Interfacial friction at action: Interactions, regulation, and applications
Friction (2023)

Liquid Bridge Modulated Friction: From Millimeter to Nanometer
Tribology Letters (2023)

Transient High Friction Dominated by High Shear Strength Residual Water Film
Tribology Letters (2022)

Capillary gripinduced stickslip motion
Nano Research (2022)

Oscillating friction of nanoscale capillary bridge
Friction (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.