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A network of molecular switches controls
the activation of the two-component response
regulator NtrC
Dan K. Vanatta1, Diwakar Shukla1,2,3, Morgan Lawrenz1 & Vijay S. Pande1,2

Recent successes in simulating protein structure and folding dynamics have demonstrated

the power of molecular dynamics to predict the long timescale behaviour of proteins. Here,

we extend and improve these methods to predict molecular switches that characterize

conformational change pathways between the active and inactive state of nitrogen regulatory

protein C (NtrC). By employing unbiased Markov state model-based molecular dynamics

simulations, we construct a dynamic picture of the activation pathways of this key bacterial

signalling protein that is consistent with experimental observations and predicts new mutants

that could be used for validation of the mechanism. Moreover, these results suggest a novel

mechanistic paradigm for conformational switching.
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P
roteins involved in cellular signalling change their con-
formation in response to changes in environment (input
signal), such as ligand binding or chemical modification,

to control downstream cellular processes (output signal)1. The
behaviour of these proteins is controlled by molecular level
interactions between specific sets of residues that relay the signal.
A detailed map of switches that facilitate conformational change
has been obtained for only a few well-studied signalling proteins
such as G-protein-coupled receptors and kinases2,3. We propose
that atomistic simulations can help identify these key structural
elements, and demonstrate this by examining the activation
mechanism of nitrogen regulatory protein C (NtrC). This protein
belongs to the family of two component regulatory systems
ubiquitous in bacteria4, in which a phosphate is transferred
from a sensor kinase (NtrB) to a response regulator (NtrC)5.
This transfer activates the protein by triggering a structural
rearrangement that exposes a hydrophobic surface and allows
the protein to form oligomers essential for ATP hydrolysis6.
Knowledge of the activation pathways and transition states of this
rearrangement would be useful for elucidating new approaches
for treating antibiotic-resistant infections.

NtrC activation occurs when a phosphate is transferred from
NtrB to D54 in NtrC. The active and inactive states are
structurally very similar, with a root-mean-square deviation
(RMSD) of only 2.9 Å (ref. 5). The inactive state is more flexible
than the active state and could be described as a collection of
states that rapidly interconvert7. The significant conformational
change occurs in the region of residues 82–101, which is spatially
removed from the phosphate-binding site at residue 54. The
change involves a shift and slight uncoiling of helix 4 and minor
rearrangement of the loop region between helix a3 and beta-sheet
b3 (ref. 6). Recent nuclear magnetic resonance (NMR) studies
have shown that both active and inactive states are populated in
solution without phosphorylated D54, which demonstrates that
phosphorylation is not required for the conformation change to
occur5. Phosphorylation stabilizes the active state, which results
in population inversion from a 2–10% active state population to
99% (ref. 8).

Molecular simulations have been previously used to study
conformational changes associated with NtrC. However, because
of the large size of the protein and its long activation timescales,
these studies have employed biased techniques such as targeted
molecular dynamics9, separate simulations of the active and
inactive states7,10,11, or simulations with coarse grained
representations of the protein and solvent12–15. These studies
have shed light on various aspects of NtrC activation but have
failed to provide a comprehensive view of the conformational
landscape of NtrC activation. In particular, kinetics of
conformational transitions and detailed molecular description
of NtrC activation pathways have not been reported.

Understanding the activation mechanism of unphosphorylated
NtrC is the focus of this study. We have employed enhanced
sampling algorithms16 coupled with the Folding@home17

distributed computing platform to gather unprecedented
statistics (1.6ms) on NtrC dynamics for an atomistic
description of the complex network of molecular-switches that
drive activation of this key bacterial signalling protein. In this
study, we use extensive MD simulations to build a Markov state
model (MSM) for estimating the thermodynamics and kinetic
properties of NtrC dynamics. MSMs reduce the complex
conformational landscape of a protein to a set of metastable
conformational states and the rates of transition between
them18–20. The MSM of NtrC reveals a network of molecular
switches that control NtrC activation and identifies metastable
states on the NtrC conformational free energy landscape that
could be targeted for inhibitor design.

Results
Simulations reveal molecular switches for NtrC activation.
MSMs for NtrC were built using snapshots along the simulated
trajectories, and a 2,300 state MSM was chosen for analysis due
to the convergence of its implied timescales, an indicator of
Markovian behaviour (see Supplementary Fig. 1 and Methods).
We started simulations from the inactive and active NMR
structures of NtrC (Fig. 1). A comparison of the MSM states
reveals several residues that acquire distinct conformations and
switch between different networks of interactions. In particular,
we have identified four key ‘molecular switches’ that control NtrC
activation as illustrated in Fig. 2a,b. The mechanism includes the
F99 and Y94 switches, in which these residues rotate their side
chains towards the protein core (Fig. 3a,c), the Y101–T82 switch
that breaks its active state hydrogen bond (Fig. 3b) and the
K67–Q96–Q95 (KQQ) switch (Fig. 3d), in which the K67–Q96
hydrogen bond breaks, destabilizing the C-terminal turn of
helix a4, while a new hydrogen bond forms between K67 and
Q95. Histograms of the residue pair distances that characterize
the molecular switches were weighted by the MSM state
equilibrium probability densities (see Methods) and are shown in
Fig. 3a–d. The distributions reveal the bimodal nature of these
switches and the overall activation process of NtrC. Although the
solid line representing the sum of the state probabilities in
Fig. 3a–d shows bimodal behaviour, the tail of the inactive state
distribution extends into the active region due to greater con-
formational diversity in this state. This implies that the position
of the switches alone is not sufficient to define the states and a
kinetic definition of the active and inactive states (described
below) must be used for understanding the activation mechanism.
The probability density distributions also provide evidence
against the commonly accepted theory related to the activation of
response regulators such as NtrC and CheY21. In two-component
systems like these, activation of the response regulator receiver
domains has been proposed to rely on a ‘Y-T coupling’
mechanism22 (Y101 and T82 in NtrC), where the interaction
between this conserved pair of residues is correlated with the
activation of the protein. Figure 3b shows the probability
distributions of Y101–T82 distance in the active, inactive and
entire conformational ensemble of NtrC. The active ensemble
shows two peaks corresponding to conformations with Y-T
coupling formed and broken. This figure provides the evidence
that the Y101–T82 coupling can be either formed or broken
within the active state, but is predominately broken in the inactive
state. This result implies that Y-T coupling is not strictly
correlated with the activation of NtrC and is in agreement with
recent NMR relaxation dispersion experiments10, which found
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Figure 1 | Conformational changes associated with NtrC activation. The

active (blue; cyan) and inactive (red; yellow) crystal structures of NtrCr

with the regions involved in conformational switching highlighted in cyan

(active) and yellow (inactive). The phosphorylation of residue D54 shown

above involves large structural changes in and around helixes 3 and 4.
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the interconversion of the Y101 rotameric state to be faster than
the inactive/active conformational transition. Furthermore, our
results in Fig. 3a,c,d indicate that the conformational preferences
of the three switches identified in this study involving F99,
Y94 and the KQQ residues are more strongly correlated with
activation than Y-T coupling. In particular, the slowest dynamical
process of the MSM (see Methods and Supplementary Figs 2–4)
involves the flipping of the KQQ switch identified in this study,
which underscores its importance in NtrC activation. These
results also show that these couplings or switches could be either

formed or broken within active or inactive ensemble. However,
the probability of toggling of individual switches is dependent on
the overall state of the protein.

Identifying intermediate states of NtrC. We identify several
metastable intermediate states along the activation process
that are characterized by the toggling of individual switches
between their active and inactive conformations. In the active
state of NtrC, hydrophobic residues Y94, F99 and Y101 form a

Y101T82 coupling and Y101F99Y94 packing
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Figure 2 | Molecular switches involved in NtrC activation. (a) Changes in T82–Y101 coupling and changes in hydrophobic packing between residues L63,

L66, Y94, F99 and Y101 during activation. (b) Switching of interaction partner of K67 from Q96 in active state to Q95 in inactive state.
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solvent-exposed hydrophobic surface (Fig. 2a). Breakage of the
Y101–T82 hydrogen bond and rotation of the F99 side chain
triggers collapse of this exposed hydrophobic surface, and these
residues switch to their inactive conformations, directed towards
the protein core. These conformational changes are coupled
to the exchange of K67 interaction partners, from Q96 to
Q95 (Fig. 2b) via switching of the Y94 side chain. The K67–Q96
interaction is disrupted, followed by formation of the K67–Q95
contact and flipping of Y94 towards the protein core. This KQQ
conformational switch motif defines several key intermediate
states, mapped onto the activation landscape in Fig. 4b, and is
enabled by changes in the fold of helix during activation.

Role of transient hydrogen bonds in activation. Our results
reveal a hydrogen bond network exchange that allows partial
unfolding and refolding of helix a4 to accommodate the con-
formational rearrangement of the hydrophobic surface residues.
During activation, the helix a4 C-terminal end gains two
backbone hydrogen bonds (between V91–Q95 and S92–Q96
(Supplementary Fig. 5)) and loses two backbone hydrogen bonds
(between H84–D88 and S85–A89 (Supplementary Fig. 6))
because of the formation of a helix turn at its N-terminal end.
Gardino et al.23 have shown that residues S85 and D86
(Supplementary Fig. 7) at the N-terminal side of helix 4 and
residues Q96 and Y101 at the C-terminal side of helix a4 and
beta-sheet b5, respectively, form transient hydrogen bonds that
compensate for the loss of backbone hydrogen bonds and
lower the energy barrier for activation. The MSM-derived
thermodynamic populations and exchange kinetics between
states with these transient hydrogen bonds reveal that the
S85–D86 hydrogen bonds (Supplementary Figs 8 and 9) are
formed both in the inactive and active state ensemble in our
simulations, not just in the transition state. This indicates that a
more complex mechanism is responsible for slow inter-
conversion rate of S85D and S85G mutants reported by
Gardino et al.24, and fast inter-conversion rate of S85N mutant.
Similarly, the transient Y101–Q96 hydrogen bond is also found to
be well-formed in the inactive state (Supplementary Figs 8 and 9)
becaue of fluctuations of the unfolded, C-terminal half turn of
helix a4. Gardino et al.23 have shown that both the Q96N and the
Y101F mutants of NtrC have a slower inter-conversion rate
between active and inactive states (E3,500 versus 13,300 s� 1 for
wild type). The residues Q96 and Y101 interact with different
hydrogen bond partners forming T82–Y101, K67–Q96 and
Y101–Q96 hydrogen bonds in different conformations
(Fig. 2a,b). The substitutions Y101F and Q96N not only affect
the transition state stability but also the active/inactive states.
Therefore, it is difficult to provide a rational mechanistic

explanation of the slow interconversion rate observed in
experiments and further computational investigations are
needed to obtain an atomistic perspective of the effect of these
substitutions.

Diverse activation pathways due to heterogeneity in basins. The
MSM-weighted two-dimensional contour plots of the simulation
data are plotted in Fig. 4a as the backbone atom RMSD from both
active and inactive states and Fig. 4b as the K67–Q95–Q96 and
L66–F99 switch distances. Both plots clearly show two dominant
basins, reinforcing our view that both states are populated even
without the presence of the activating phosphate group. The plots
show that these limited structural features alone are insufficient
to characterize the inactive and active states. MSM-derived
‘committor’ values and high-flux pathways between the active and
inactive states were computed (see Methods and Supplementary
Fig. 3), and states with intermediate committor values are shown
as white circles in Fig. 4 to represent transition states with similar
probability of transitioning forward to the active state or
backward to the inactive state. These states lie around the edges of
the inactive basins in both plots, yet they have a 20–80%
probability of transitioning into the active basin instead of
returning to the inactive basin.

Our MSM approach allows us to define states by their kinetic
connections and reveal their role in the activation mechanism,
instead of relying on structural differences that can be difficult to
elucidate. We can, however, structurally characterize these kinetic
intermediate states in terms of the previously described molecular
switches and we find that several kinetic intermediate states are
present along the activation pathways. For example, the basins in
the contour plot for the K67–Q95–Q96 and L66–F99 switch
distances (Fig. 4b) are connected by multiple pathways with
different kinetic intermediates depending on which switch is
toggled first12. The highest flux pathway involves the kinetic
intermediate state, where KQQ switch is toggled before the F99
flip (Supplementary Fig. 10). Similarly, kinetic intermediates
along the activation pathways could be identified with differences
in the state of molecular switches. The top three activation
pathways reveal kinetic intermediates with L63-Y94 switch
toggled before KQQ flip (Supplementary Fig. 11) and L63–Y94
switch toggled before the F99 flip.

One of the key debates about the NtrC activation mechanism
centres on the requirement for cracking, which is defined as a
complete unfolding of helix a4 for the activation conformational
transition9,12. Although we have seen an exchange of hydrogen
bond networks involving this helix, as described above, our
activation pathway results do not show a cracked helix a4.
Similarly, ultra-long trajectories generated from a kinetic Monte
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Carlo simulation using the MSM state transition probabilities
(Fig. 5a) show that the Solvent Accessible Surface Area of helix
a4 increases slightly in the inactive state because of the rotation
of the helix, which is also in agreement with previous
NMR results23,24. The increase in the Solvent Accessible Surface
Area would be much higher (B2,600Å2) for the fully unfolded
helix a4.

Kinetics of NtrC activation. The activation and deactivation
timescales (mean first passage time between inactive and active
micro states) are found to be 90 and 110 ms, respectively, which
are in agreement with the experimental interconversion rate of
77 ms (ref. 24). A visual inspection of the kinetic plots (Fig. 5b–e)
suggests that a single thermal fluctuation toggles all the molecular
switches via a concerted mechanism, where molecular switches
are triggered cooperatively. However, the conformational
landscape of molecular switches in Fig. 3 and Supplementary
Figs 10–12 indicate a different, more sequential view of NtrC
activation, where a particular molecular switch is turned on or off
before other switches change their conformation (as described
above). Altogether, these results indicate that several switches are
required to toggle their states before crossing the final barrier to
activation/deactivation and they become locked in that state after
the barrier is crossed. For example, the Y101–T82 switch toggles
between the on and off state in active basin but it is always
broken after crossing the deactivation barrier (Fig. 3b). Similar
observations can be made for the L63–Y94 and KQQ switches
(Supplementary Figs 10–12).

Figure 5c,d shows that the Y101–T82 and L63–Y94 distances
fluctuate between two distinct states but the instantaneous value
of these fluctuations (light colour) overlap with the average values
(dark colour). This means that these switches are not a strong
indicator of state because the instantaneous value of the order
parameter does not give any state information. This gives further
evidence for our hypothesis that ‘Y-T coupling’ is not strictly
correlated with the activation of NtrC. Figure 5b,e shows
agreement between the instantaneous value and the average
value indicating that the KQQ switch distinguishes the active
and inactive states and further implicates this switch as the
rate-limiting step.

Finally, the equilibrium population of the active (ractiveB0.16)
and inactive state (rinactiveB0.09) indicate that both states are
populated in solution and interconvert rapidly at the simulation
temperature (340K), with a barrier between intermediate and
inactive states B4 kcalmol� 1 as estimated from the free energy
contour plots (Fig. 4). The predicted barrier height between the
intermediates and inactive state is 4–5 kcalmol� 1, which, when
allowing for temperature change, is close to the reported
6 kcalmol� 1 activation barrier measured experimentally using
NMR at 300K (ref. 23).

Discussion
Our results contribute to the prominent debate about conforma-
tional change mechanisms in general, comparing a sequential
domino brick effect25 or Monod-Wyman-Changeux25–27 type of
concerted action allostery. For NtrC activation, we find that the
molecular switches are all connected (a requirement for the
domino effect) and can induce a sequential triggering of
switches, such as T82-Y101 hydrogen bond breakage preceding
rearrangement of the hydrophobic surface. However, we also
observe that the KQQ motif and Y94 switch their conformations
cooperatively. The sequential flipping of these residues occurs
within the lag time of the model so it appears concerted in the
kinetic plots in Fig. 5. Therefore, the mechanism of global
conformational change associated with NtrC activation lies
between a sequential and cooperative mode of molecular
switching so that the system is ‘functionally concerted’. MSMs
provide a third and more natural framework for understanding
complex conformational changes in proteins. MSMs provide a
probabilistic network-switching model where different molecular
switch conformations are represented by discrete MSM states and
the rate of transition between these states accounts for both the
independent switch probability and the conditional probability of
a switch toggle given the states of other switches. An important
advantage of this discrete probabilistic picture of global
conformational change is that it allows characterization of both
sequential switching and concerted conformational change,
depending on the time resolution needed to understand a
particular mechanism.

Comparing this study to recent work in the Kern
group28 illustrates the robustness of MSMs for interpreting
conformational change. Kern’s work used CHARMM force
field instead of amber99sb, which caused an increase in
conformational heterogeneity, especially in the inactive state.
Also, the Kern study started from several structures along the
activation pathway based on a targeted molecular dynamics
(TMD) trajectory9, whereas the present study used unbiased
molecular dynamics (MD) and adaptive sampling. In general,
string methods allow sampling of long processes with less
computation time than corresponding unbiased methods but
increases the risk of discovering unphysical results. In this case,
the string method of seeding states along the activation pathway
allowed the Kern group to identify an inactive state in better
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agreement with recent NMR, where F99 is correctly facing helix 3.
Despite these notable differences in methodology, the major
conclusions were in agreement with: the inactive is a collection of
states interconverting rapidly, there are multiple activation
pathways connecting the basins, and a kinetic, rather than
structural, state definition is required to differentiate states.
A more complete discussion including comparison figures can be
found in the Kern study28.

In summary, we have obtained a detailed atomistic view of the
conformational transition of the key bacterial signalling protein,
NtrC. The mechanistic insights obtained from this study suggest
newly recognized molecular switches that play a central role in
NtrC activation, such as the KQQ and Y94 switches. These results
also suggest that residues far from the activating phosphorylation
site and output domain play an important role in activation. The
influence of such residues, such as K67, L66 and L63, could be
validated using NMR and other spectroscopic methods. The
results presented here also support a mechanism in which
phosphorylation of D54 would lock the protein in active state,
consistent with other work on this system6. Hydrogen bonding
between phosphate group at D54, which is in proximity to the
hydroxyl group of T82, would stabilize the Y101–T82 switch,
which we observe to fluctuate without the presence of phosphate,
and lock the entire protein in active state.

MSMs have been used extensively to study large-scale
conformational changes involved in protein folding as well as
more subtle changes involved in receptor activation and ligand
binding29–36. This study further supports the utility of MSMs as a
natural framework for understanding and quantifying changes in
hydrogen bond networks or residue side chain rotations associated
with many protein conformational changes in signalling networks.
Furthermore, these results indicate that in silico approaches20

combined with advances in computer hardwares37 can be used
successfully and routinely for obtaining mechanistic understanding
of cellular signalling phenomena.

Methods
Simulation details. The starting structures for these simulations are the end result
of a series of modelling procedures applied to the NMR structures 1DC7 and 1DC8
(ref. 5). In addition to the refinement described by Lei et al.9, helix 3 was completed
and helix 4 was extended by two residues in order to match dihedral and distance
constraints. The isomeric state of P104 has also been corrected. The structures were
then parameterized using CHARM27 (ref. 38) with cross-term energy correction
map (CMAP) correction39, solvated in TIP3P water40, and neutralized with sodium
ions. Nanoscale molecular dynamics (NAMD)41 was used to minimize the
structure with a series of conjugate gradients, gradually releasing constraints from
the protein. Heating was performed in the NVT (canonical) ensemble, gradually
increasing the temperature from 50 to 300 K in increments of 25 K and simulating
each step for 50 ps with a time step of 1 fs. Hydrogen atoms were constrained using
SHAKE (Gauss-Seidel method which approximates the solution of the linear
system of equations)42, and a non-bonded cutoff of 14 Å was used. The simulation
was continued at 300 K in the NPT ensemble using Langevin dynamics with a time
step of 2 fs, a damping coefficient of 5 per ps and a non-bonded cutoff of 12Å.
Pressure was controlled with a Nose-Hoover43 piston with a 200-fs period of
oscillation and a damping time of 100 fs. Electrostatics were computed using
PME10 with a grid size of 72� 72� 72Å3, a direct space tolerance of 10� 6 and an
interpolation order of 6.

The two initial structures were placed in a dodecahedron box with radius 10 Å
from the proteins (edge length 75Å) and solvated in 8,000 TIP3P water molecules.
The system was then relaxed using a steepest decent algorithm using the
Amber99SB44 forcefield in the simulation package GROMACS 4.5 (ref. 45) for 500
steps with step size 1 fs. Next, the structures were equilibrated with restrained
all protein atom positions for 100 ns with all bonds constrained using linear
constraint solver (LINCs)46. The equilibration used Berendsen pressure coupling
with time constant of 1 ps, compressibility 4.5� 10� 5 and reference pressure 1 bar
and the v-rescale temperature coupling to 300K. Note that in GROMACS, the
v-rescale option is velocity rescaling with a stochastic term, which ensures a
canonical ensemble47. The two equilibrated structures were used to start 30,000
parallel simulations on the distributed computing network Folding@home. These
simulations used a 2-fs time step and a grid-based neighbour list was updated every
10 steps with a 10-Å cutoff. All bonds were again constrained using LINCS46 with
two iterations to fourth order. Production runs were done in the NVT ensemble

using v-rescale47 to maintain system temperature of 300K. Coulombic and van der
Waals interactions were switched off between 8 and 8.4 Å. Linear centre of mass
motion was removed every step. Random initial velocities were drawn from a
Maxwell-Boltzmann distribution at 300 K.

After collecting 250 ms of aggregate data, the data from each conformation were
clustered at an RMSD cutoff of 1.25Å to generate a 6,838 state model for the active
state and a 14,232 state model for the inactive state for a round of adaptive
sampling16. Conformations representing the state centres were used to start
additional simulations. In addition to the adaptive sampling, 15,000 new
simulations were started from the active and the inactive conformations at a
slightly increased temperature of 340 K in order to more quickly sample
conformational space. In total, 7,917,355 snapshots were stored in increments of
0.2 ns totaling 1,582ms of data.

All protein structures were rendered in visual molecular dynamics (VMD)48

and figures created using Matplotlib49 with the Numpy50 scientific computing
package.

Markov state models. MSMs use discrete time master equations models to
map out molecular conformational space33,51. Atomistic molecular dynamics
simulations are first clustered based on geometric similarity, then kinetic
information is used to group conformations that interconvert rapidly into
metastable states. MSMs allow more automated simulation analysis that relies less
on human intuition, an advancement over previous techniques. MSMs have been
used to make direct connections from simulations to experiments, such as ab initio
structure prediction for the villin headpiece and characterization of its
conformational dynamics52–54. The MSMbuilder 2.5 package55 was used to
construct a microstate model with 2,314 states. The microstate model was
generated by clustering conformations at 2 ns intervals using the RMSD of all
backbone heavy atoms as a metric and the k-centres clustering algorithm, followed
by ten iterations of the local k-medoids algorithm, with a 2.25-Å RMSD cutoff.
The remaining 90% of the data were then assigned to these clusters and used to
construct a transition probability matrix. A second clustering based on 25% of the
data gave a very similar state decomposition, which suggests the system is well
sampled. Maximum Likelihood Estimator18 was used to generate a transition
probability matrix Tij, which maps out the probability of transitioning from state i
at time t to state j at time tþ t, where t is the lag time of the model. The Markov
lag time is the time interval with demonstrated Markovian behaviour and can be
determined by plotting the implied time scales (k) from eigenvalues m of the
transition probability matrix at varied lag times t as k¼ � t/ln(m). The implied
timescales should converge to an unchanged rate when Markovian behaviour is
achieved, which corresponds to 4 ns for NtrC (Supplementary Fig. 1)56. The first
and second eigenvectors of the transition probability matrix Tij provide,
respectively, the equilibrium conformational state populations and the slowest
dynamical process on the conformational landscape. MSM-weighted probability
distributions, both one- and two-dimensional, are obtained by binning the raw data
within each MSM state and weighting it by the MSM equilibrium state population.
High-flux pathways between active and inactive states and MSM state committor
values are also calculated from Tij using the transition matrix definition of
transition path theory57,58. Committor values measure the probability of reaching
the active state (at values near one) before returning to the inactive state (at values
near zero). Intermediate committor values near 0.5 represent transition states
capable of transitioning either back to inactive state or forward to the active state.
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11. Damjanović, A., Garca-Moreno, E. B. & Brooks, B. R. Self-guided Langevin
dynamics study of regulatory interactions in NtrC. Proteins Struct. Funct.
Bioinf. 76, 1007–1019 (2009).

12. Lätzer, J., Shen, T. & Wolynes, P. G. Conformational switching upon
phosphorylation: a predictive framework based on energy landscape principles.
Biochemistry 47, 2110–2122 (2008).

13. Pan, A., Sezer, D. & Roux, B. Finding transition pathways using the string
method with swarms of trajectories. J. Phys. Chem. B 112, 3432–3440 (2008).

14. Khalili, M. & Wales, D. J. Pathways for conformational change in nitrogen
regulatory protein C from discrete path sampling. J. Phys. Chem. B 112,
2456–2465 (2008).

15. Liu, M. S. et al. Coarse-grained dynamics of the receiver domain of NtrC:
Fluctuations, correlations and implications for allosteric cooperativity. Proteins
Struct. Funct. Bioinf. 73, 218–227 (2008).

16. Weber, J. & Pande, V. Characterization and rapid sampling of protein folding
Markov State Model topologies. J. Chem. Theo. Comput. 7, 3405–3411 (2011).

17. Shirts, M. & Pande, V. Screen savers of the world unite! Science 290, 1903–1904
(2000).

18. Prinz, J.-H. et al. Markov models of molecular kinetics: Generation and
validation. J. Chem. Phys. 134, 174105 (2011).

19. Bowman, G. R., Pande, V. S. & Noe, F. An Introduction to Markov State Models
and their Application to Long-Timescale Molecular Simulation (Springer, 2014).

20. Shukla, D., Hernndez, C. X., Weber, J. K. & Pande, V. S. Markov state models
provide insights into dynamic modulation of protein function. Acc. Chem. Res.
48, 414–422 (2015).

21. Cho, H. S. et al. NMR structure of activated CheY. J. Mol. Bio 297, 543–551
(2000).

22. Zhu, X., Rebello, J., Matsumura, P. & Volz, K. Crystal structures of CheY
mutants Y106W and T87I/Y106W CheY activation correlates with movement
of residue 106. J. Biol. Chem. 272, 5000–5006 (1997).

23. Gardino, A. K. & Kern, D. Functional dynamics of response regulators using
NMR relaxation techniques. Methods Enzymol. 423, 149–165 (2007).

24. Gardino, A. K. et al. Transient non-native hydrogen bonds promote activation
of a signaling protein. Cell 139, 1109–1118 (2009).

25. Koshland, Jr D., Nemethy, G. & Filmer, D. Comparison of experimental
binding data and theoretical models in proteins containing subunits.
Biochemistry 5, 365–385 (1966).

26. Kenakin, T. Principles: receptor theory in pharmacology. Trends Pharmacol.
Sci. 25, 186–192 (2004).

27. Changeux, J.-P. & Edelstein, S. J. Allosteric mechanisms of signal transduction.
Science 308, 1424–1428 (2005).

28. Pontiggia, F. et al. Free energy landscape of activation in a signaling protein at
atomic resolution. Nat. Commun. 6, 7284 (2015).

29. Lane, T. J., Shukla, D., Beauchamp, K. A. & Pande, V. S. To milliseconds and
beyond: challenges in the simulation of protein folding. Curr. Opin. Struc. Bio.
23, 58–65 (2013).

30. Kohlhoff, K. et al. Cloud-based simulations on Google Exacycle reveal ligand
modulation of GPCR activation pathways. Nat. Chem. 6, 15–21 (2014).

31. Shukla, D., Meng, Y., Roux, B. & Pande, V. S. Activation pathway of Src kinase
reveals intermediate states as targets for drug design. Nat. Commun. 5, 3397
(2014).

32. Pan, A. C. & Roux, B. Building markov state models along pathways to
determine free energies and rates of transitions. J. Chem. Phys. 129, 064107
(2008).

33. Noé, F. & Fischer, S. Transition networks for modeling the kinetics of
conformational change in macromolecules. Curr. Opin. Struc. Biol. 18, 154–162
(2008).

34. Lawrenz, M., Shukla, D. & Pande, V. S. Cloud computing approaches for
prediction of ligand binding poses and pathways. Scientific Reports 5, 7918
(2015).

35. Lapidus, L. J. et al. Complex pathways in folding of protein g explored by
simulation and experiment. Biophys. J. 107, 947–955 (2014).

36. Harrigan, M. P., Shukla, D. & Pande, V. S. Conserve water: A method for
the analysis of solvent in molecular dynamics. J. Chem. Theo. Comput. 11,
1094–1101 (2015).

37. Eastman, P. et al. Openmm 4: a reusable, extensible, hardware independent
library for high performance molecular simulation. Journal of chemical theory
and computation 9, 461–469 (2012).

38. Brooks, B. et al. CHARMM: A program for macromolecular energy,
minimization, and dynamics calculations. J. Comp. Chem. 4, 187–217 (2004).

39. MacKerell, A. D., Feig, M. & Brooks, C. L. Extending the treatment of backbone
energetics in protein force fields: Limitations of gas-phase quantum mechanics
in reproducing protein conformational distributions in molecular dynamics
simulations. J. Comp. Chem. 25, 1400–1415 (2004).

40. Jorgensen, W., Chandrasekhar, J., Madura, J., Impey, R. & Klein, M.
Comparison of simple potential functions for simulating liquid water. J. Chem.
Phys. 79, 926 (1983).

41. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comp. Chem.
26, 1781–1802 (2005).

42. Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. Numerical integration of the
cartesian equations of motion of a system with constraints: molecular dynamics
of n-alkanes. J. Comp. Phys. 23, 327–341 (1977).
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