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Four decades of transmission of a
multidrug-resistant Mycobacterium tuberculosis
outbreak strain
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The rise of drug-resistant strains is a major challenge to containing the tuberculosis (TB)

pandemic. Yet, little is known about the extent of resistance in early years of chemotherapy

and when transmission of resistant strains on a larger scale became a major public health

issue. Here we reconstruct the timeline of the acquisition of antimicrobial resistance during

a major ongoing outbreak of multidrug-resistant TB in Argentina. We estimate that the

progenitor of the outbreak strain acquired resistance to isoniazid, streptomycin and rifampicin

by around 1973, indicating continuous circulation of a multidrug-resistant TB strain for four

decades. By around 1979 the strain had acquired additional resistance to three more drugs.

Our results indicate that Mycobacterium tuberculosis (Mtb) with extensive resistance profiles

circulated 15 years before the outbreak was detected, and about one decade before the

earliest documented transmission of Mtb strains with such extensive resistance profiles

globally.
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E
volution of antimicrobial resistance has become a global
emergency1. Recently, studies based on whole-genome
sequencing (WGS) of bacterial pathogens have generated

important insights into the evolution and spread of drug
resistance at global2,3, continental4 and local scales5. WGS has
also led to novel insights into the evolution of Mycobacterium
tuberculosis (Mtb) drug resistance. The Mtb Beijing lineage is
causing a global TB epidemic and has repeatedly been found to be
associated with increased levels of drug resistance. WGS has
documented the evolution of extensive drug resistance with no
apparent loss of transmissibility in this lineage6. Interestingly, a
recent study applying Bayesian evolutionary analyses to WGS
data found that public health weaknesses superimposed on a
growing bacterial population rather than selection for
antimicrobial resistance has likely caused the expansion of the
Beijing lineage7.

A number of factors have been suggested to contribute to the
increasing rates of drug-resistant TB observed globally, including
patient noncompliance with chemotherapy, pharmacokinetic
variability and even circulation of counterfeit drugs8. However,
little is known about the extent of historical drug resistance,
and specifically when transmission of resistant strains on
a larger scale became a major public health issue. One reason
why data on historical transmission of drug-resistant TB are
largely missing is the lack of efficient and accurate molecular
epidemiological tools before the introduction of IS6110
restriction fragment length polymorphism (RFLP) typing in the
early 1990s (ref. 9). Molecular genotyping has revolutionized TB
epidemiology by enabling scientists to identify outbreaks and
place clinical isolates in a global phylogenetic context10; however,
neither the current standard Mycobacterial interspersed repetitive
units (MIRU) typing method11 nor IS6110 RFLP12 have sufficient
resolution to unequivocally detect recent transmission13.
WGS represents the optimal tool for analysing pathogen
microevolution, and has shown great promise in in-depth
studies of Mtb outbreaks14,15. However, outbreak analyses are
still deeply reliant on labour-intensive epidemiological sleuthing,
limiting their application in many regions with high burdens of
drug-resistant TB.

To our knowledge, the earliest documented outbreak of
polydrug-resistant TB was a school outbreak of isoniazid
(INH), streptomycin (STR) and para-aminosalicylic acid triple-
resistant TB in 1964–1978 (ref. 16). Outbreaks of multidrug-
resistant TB (MDR-TB), resistant to at least INH and rifampicin
(RIF), were reported in the United States from 1985 and onwards,
often associated with HIV co-infection17. Extensively drug-
resistant tuberculosis (XDR-TB), defined as MDR-TB with
additional resistance to fluoroquinolones (FLQs) and at least
one second-line injectable drug, was first defined in 2006 (ref. 18);
however, the earliest documented XDR-TB outbreak, identified
retrospectively, was actually caused by a strain of M. bovis in
Spain in 1991 (ref. 19).

A major TB outbreak was first detected in Buenos Aires,
Argentina, as a steep upsurge of HIV-related MDR-TB in the
early 1990s. Matching IS6110-RFLP patterns documented
transmission among HIV-infected patients hospitalized in a
referral treatment centre for infectious diseases, in 1992–1995
(ref. 20). Soon, the outbreak strain (the M strain) became the
most prevalent MDR Mtb genotype countrywide and caused
secondary HIV-related transmission in hospitals in nearby
districts. The M strain was later found to be responsible for the
emergence of MDR-TB in HIV-negative patients with no
previous TB treatment21, many of whom were health-care
workers. In a systematic countrywide survey performed in
2003–2009, the M strain showed a declining trend, but still
accounted for 29 and 40% of MDR- and XDR-TB cases,

respectively, and as such still represents the largest ongoing
outbreak of MDR-TB in Argentina22.

Here we utilize WGS to reconstruct the trajectory of drug
resistance evolution within the ongoing M outbreak. We
sequenced the genomes of 252 clinical isolates belonging to the
M outbreak collected between 1996 and 2009 and used a Bayesian
phylogenetic approach to date the emergence of resistance-
conferring mutations. We find that the progenitor of the
M outbreak strain acquired resistance to INH, STR and RIF by
around 1973 (95% confidence interval (CI) 1968–1978), thus
indicating the continuous circulation of an MDR-TB strain for
four decades. Additional resistance to ethambutol (EMB),
pyrazinamide (PZA) and kanamycin (KAN) was acquired by
around 1979 (95% CI 1975–1983) qualifying the strain for pre-
XDR status (Mtb resistant to INH and RIF and either FLQs or a
second-line injectable agent23). This outbreak represents by far
the earliest documented transmission of anMtb strain with a pre-
XDR phenotype.

Results
Phylogenetic analyses and dating the evolution of resistance.
Whole-genome sequence reads from 252 clinical isolates
(Supplementary Data 1) were aligned to the H37Rv reference
genome. This collection represents all available isolates belonging
to the M outbreak on the basis of IS6110 RFLP fingerprinting22.
On the basis of available information, we believe our collection
represents B30% of all TB cases caused by the M strain in
Argentina (see Methods). After filtering for various quality
parameters and removal of single-nucleotide polymorphisms
(SNPs) in problematic genomic regions, a total of 509 SNPs were
found to separate the 252 isolates with a mean pairwise SNP
distance between the isolates of 10.9 (Fig. 1). The M strain could
be assigned to sublineage 4.1.2.1 within a recent global Mtb SNP
phylogeny24, as the genomes contained all three characteristic
SNPs unique to this sublineage (Supplementary Table 1).

In order to confirm that the M outbreak forms a single
monophyletic lineage, we downloaded available sequence reads
from isolates belonging to this sublineage, which is widely
distributed with sequenced isolates available from the Nether-
lands, the United Kingdom, Russia, Malawi and Guatemala
(Supplementary Data 2). We identified SNPs and indels and
created a genome-wide SNP-based maximum-likelihood phylo-
geny of the 4.1.2.1 sublineage together with our clinical isolates
(Fig. 1). The M outbreak isolates form a monophyletic clade
separated by at least 80 SNPs from any other 4.1.2.1 isolate
(Supplementary Data 3).

To study the temporal evolution of the outbreak, a robust
phylogeny, divergence times and evolutionary rates were com-
puted on the basis of the 509 SNPs using BEAST 1.7.4 (ref. 25).
The tree was calibrated using sampling dates of the isolates with
dates of collection ranging from October 1996 to December 2009.
We tested the performance of various demographic models that
favoured an exponential growth demographic model. Nucleotide
substitution rates and variation among sites were simulated using
the general time-reversible substitution model of evolution and a
discrete gamma distribution with four rate categories. These
analyses resulted in 0.29 (95% CI 0.24–0.34) mutations per
genome per year, which is consistent with previous mutation rate
estimates for Mtb outbreaks13,14. On the basis of available RFLP
data and MDR-TB incidence, the M strain is likely to have
circulated in low numbers before slipping into the Muñiz Hospital
in Buenos Aires. There it caused a major outbreak among HIV-
infected patients associated with very high mortality in 1994–1995
(ref. 20) that also served as a springboard for its expansion
beyond the hospital. This scenario is supported by modelling
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of past population size (Supplementary Fig. 1), which indicates an
abrupt increase in bacterial population size in the first half of the
1990s.

Next, we estimated the age of the most recent common
ancestors (MRCAs) of samples carrying resistance mutations that
were widespread within the outbreak. These estimates are
inherently conservative in the sense that we infer dates for the
nodes leading to specific clades harbouring specific resistance
mutations, rather than the time of the acquisition of the mutation
itself (somewhere on the branch leading to this node). CIs of the
inferred dates thus refer to the latest statistically probable
dates for emergence of specific mutations. The MRCA of all the
isolates was found to have evolved by 1970 (95% CI 1966–1975).
Both the katG S315T mutation, conferring INH resistance26

and a gidB V110 frameshift mutation27, are common to
all the isolates. Resistance to STR is primarily associated with
mutations in the three genes rpsL, rrs and gidB28. No rpsL or rrs
mutations were identified in the isolates; however, gidB frameshift
mutations are well-established determinants of STR resistance27.
We thus feel confident that the gidB V110 frameshift
mutation may be responsible for the STR resistance observed
in more than 90% of the isolates, even though we are not aware
that this specific mutation has been described before. STR and

INH were introduced as standard anti-TB drugs in Argentina in
1946 and 1952, respectively29. Our results indicate that the
MRCA of the outbreak was already resistant to these drugs by
1970 (Fig. 2).

EMB was introduced in 1965 followed by RIF in 1968. With
the acquisition of the rpoB S450L mutation by 1973 (95% CI
1968–1978), yielding RIF resistance, the strain qualified for MDR
status. Our results thus indicate that continuous circulation and
transmission of an MDR outbreak strain has taken place for more
than four decades and continues to this date.

EMB resistance (embB G406A (refs 30,31)) was acquired by
1977 (95% CI 1972–1981) followed by PZA (pncA Q10P (ref. 32))
and KAN (rrs 1401A4G (ref. 33)) resistance by 1979 (95% CI
1975–1983), retrospectively qualifying the strain for pre-XDR
status. In Argentina, PZA was introduced in 1961 but was
restricted to retreatment cases until 1979 when the drug was
included in standard short course treatment. Intriguingly, our
estimates suggest that PZA resistance evolved the same year as
the drug was introduced as part of standardized TB treatment
schemes. QLNs were introduced no earlier than 1986 as second-
line anti-TB drug. Our estimates show that FLQ resistance had
evolved by 1993 (95% CI 1990–1996) but only in a small subset of
isolates (Fig. 2), which thus meet the requirements for the XDR
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Figure 1 | Phylogenetic placement of the M outbreak strains. (a) Maximum-likelihood whole-genome SNP phylogeny of sublineage 4.1.2.1 isolates from a

global Mtb collection. Black dots indicate the acquisition of the katG S315T mutation conferring INH resistance. The grey dot indicates the gidB V110
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status. The dated phylogeny also clearly shows that transmission
of FLQ-resistant XDR-TB isolates has occurred.

Correlation between mutations and phenotypic resistance.
There was a good fit between phenotypic drug resistance and
predictions on the basis of the presence of putative or known
resistance mutations for STR, INH, RIF, PZA and KAN (Table 1
and Supplementary Table 2). The situation for these drugs is
fairly simple with a limited number of putative resistance muta-
tions all found in a single gene, and with a single resistance
mutation present in almost all resistant strains. The situation for
FLQ is somewhat more complicated with multiple candidate
mutations in both gyrA and gyrB. Despite this more complex
genetic architecture, the fit between predicted and observed
antibiotic resistance remains excellent. Of eight FLQ-resistant
isolates, seven had mutations in gyrA and/or gyrB (Table 1).

A gyrB A504V (alternatively annotated as A543V) mutation was
shared by a cluster of FLQ-resistant isolates (Fig. 2), all of which
harboured additional mutations in either gyrA or gyrB. The
A504V mutation was shown to increase the minimal inhibitory
concentration (MIC) of ofloxacin moderately from 0.5–1 and
2 mgml� 1 in Mtb strains H37Rv and Erdman, respectively34, and
was recently identified alone or in combination with a gyrA
mutation in FLQ-resistant clinical Mtb isolates35. A decreased
susceptibility to FLQ in isolates harbouring the gyrB A504V thus
seems likely to have bought these isolates enough time to acquire
additional mutations yielding higher levels of FLQ resistance.

Predicting the resistance to ethionamide (ETH) from genetic
data alone is more challenging. Acquisition of mutations in ethA
is the most common route to ETH resistance; however, mutations
in ndh, mshA and the inhA promoter have also been implicated in
resistance36–38. We considered inhA promoter mutations to be
more relevant for ETH resistance than INH resistance as all the
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isolates in the outbreak harbour the widespread katG S315T
mutation conferring high-level INH resistance37. In total, we
identified putative ETH resistance mutations in 34 isolates (Fig. 3,
Supplementary Data 4). Candidate resistance-conferring
mutations were present in all isolates that were resistant to
ETH at 45mgml� 1. However, among isolates characterized by
low-level resistance to ETH (2.5–5mgml� 1), there were some
that did not harbour any obvious candidate resistance mutations.
This either suggests that unidentified mutations that cause
decreased ETH susceptibility are present, or more likely, reflects
the challenges associated with ETH drug susceptibility testing
(DST).

RNA polymerase mutations and fitness compensation. Certain
mutations in the RNA polymerase subunits rpoA and rpoC have
been shown to compensate for the fitness loss associated with
rpoB mutations39. To investigate whether we could find evidence
for such forces at play in the M outbreak, we mapped all
nonsynonymous mutations in all three genes encoding RNA
polymerase subunits (Supplementary Data 5) on the phylogeny
(Fig. 4). In total, 38 of the 241 isolates harbouring the rpoB S450L
mutation had acquired secondary mutations in one of the three
subunits. Interestingly, despite being frequent, there is little

evidence to support an important role of rpoC mutations in
fitness compensation within this outbreak. In fact, 21 unique
rpoC mutations were found among 23 isolates (excluding rpoC
G594E common to all isolates), with only two of these mutations
shared by pairs of related isolates. In addition, the mutation
rpoC P1040S independently evolved in two isolates that do not
cluster phylogenetically. This suggests that these rpoC mutations
do not significantly increase transmission of the isolates
harbouring them. We identified two rpoA mutations, one in a
single isolate, whereas the other (rpoA T187N) was common to
five clustered isolates. Other mutations at the same codon
position were previously identified as high-confidence
compensatory mutations39, and the transmission of isolates
within the M outbreak carrying this mutation would be in line
with a fitness-compensatory role. Interestingly, we identified six
secondary rpoB mutations among the isolates carrying the rpoB
S450L mutation. One of these, rpoB V970A was common to four
clustered isolates and could thus also be involved in fitness
compensation by the same reasoning as above.

Discussion
We reconstructed the past demography and timeline of acquisi-
tion of antimicrobial drug resistance mutations by generating

Table 1 | Correlation between phenotypic drug susceptibility of clinical isolates and identified putative resistance mutations*.

Antibiotic Mutation 1 Mutation 2 Resistant Susceptible Not determined

STR gid V110 fs 215 22 15
No mutation 0 0 0
Total 215 22 15

INH katG S315T 252 0 0
No mutation 0 0 0
Total 252 0 0

RIF rpoB S450L 241 0 0
rpoB Q432K 0 1 0
rpoB D435V 4 0 0
rpoB H445Y 3 0 0
rpoB H445R 1 0 0
No mutation 0 2 0
Total 249 3 0

EMB embB G406A 150 74 16
embB M306I 1 0 0
embB M306V 1 0 0
No mutation 1 9 0
Total 153 83 16

PZA pncAQ10P 195 18 21
pncA D129G 0 1 0
No mutation 1 15 1
Total 196 34 22

KAN rrs 1401A4G 174 22 39
No mutation 1 14 2
Total 175 36 41

FLQ gyrB A504V gyrB R446S 0 0 1
gyrB A504V gyrA A90V 2 0 0
gyrB A504V gyrA D94G 1 0 2
gyrB A504V gyrA L105R 1 0 0
gyrA D94N 1 0 0
gyrB D461V 1 0 0
gyrA R292G 1 0 0
gyrB R446C 0 1 0
gyrA A90V 0 0 1
No mutation 1 143 96
Total 8 144 100

EMB, ethambutol; FLQ, fluoroquinolone; INH, isoniazid; KAN, kanamycin; PZA, pyrazinamide; RIF, rifampicin; STR, streptomycin.
Early emergent mutations common to most of the outbreak isolates are highlighted in bold.
*See Fig. 3 for ethionamide resistance mutations.
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whole-genome sequences for 252 clinical isolates collected
from a single large outbreak in Buenos Aires caused by
the M strain. We estimate that the ancestor of the M outbreak
qualified for the MDR status by 1973 (95% CI 1968–1978),
strongly suggesting the continuous circulation and efficient
transmission of a MDR Mtb strain over more than four decades,
during which time the strain evolved resistance to a number of
additional drugs. By 1979 (95% CI 1975–1983) the strain had
evolved resistance to six drugs (INH, STR, RIF, EMB, PZA and
KAN). As QLNs were introduced in Argentina for treating TB
only from 1986, this demonstrates that transmission of Mtb
resistant to the most efficient drugs available at the time occurred
at low rates B15 years before the outbreak took off and was
detected, and about one decade before the earliest documented
transmission ofMtb strains with such extensive resistance profiles
worldwide.

A perfect correlation between identified resistance mutations
and phenotypic in vitro resistance is generally not to be expected.
Such discrepancy can be explained by a series of causes including
within-host bacterial genetic variation, divergent genetic back-
grounds of individual clinical isolates or variability in DST
performance. As all the isolates in the current study were part of
the same outbreak, the genetic diversity is very limited, and
variation in genetic backgrounds is thus probably not an
important variable. All in all, there was a good fit between
identified mutations and resistance phenotype (Table 1).

All ethA mutations acquired within the outbreak were
nonsynonymous, clearly indicating positive selection and suggest-
ing that most of these mutations might be clinically relevant
despite the modest increase in MIC levels associated with some of
the mutations. In addition, despite a moderate effect on FLQ
susceptibility34, the gyrB A504V mutation seems to have been
important for the development of FLQ resistance in a cluster of
XDR-TB isolates within the outbreak (Fig. 2).

We estimated a mutation rate of 0.29 mutations per genome
per year over the entire period of the outbreak. Despite this
relatively modest rate of evolution, the outbreak strain exhibits an
impressive ability to respond to antibiotic challenge by acquiring
resistance-conferring mutations. This ability of Mtb to rapidly
evolving antimicrobial resistance has been observed repeatedly

and is intriguing, given the low mutation rate and absence of
genetic recombination. In our opinion, this apparent paradox
could be best explained by within-host Mtb populations being
very large, at least in a subset of patients under antibiotic therapy.
Such large populations would ensure a constant emergence within
infected hosts of very rare resistant variants, which could rapidly
increase in frequency following exposure to drugs.

It was recently shown that the evolution of the Mtb Beijing
lineage in Russia was largely driven by antimicrobial therapy40. In
the M outbreak, the rrs 1401A4G and pncA Q10P mutations are
the only mutations unique to the large pre-XDR clade and
common to all the isolates within it (Supplementary Table 3). We
also find that most resistance mutations in individual isolates are
descendants of mutations that emerged in the 70s. Together, these
findings suggest that antimicrobial resistance has been a major
determinant for the successful expansion of the M outbreak
strain. We also identified putative fitness-compensatory
mutations in genes encoding the RNA polymerase subunits
rpoB, rpoC and rpoA. The majority of these were localized in
rpoC; however, we find little evidence to suggest that these rpoC
mutations result in increased transmission of the isolates
harbouring them.

The efficient transmission and spread of a pre-extensively
resistant strain of Mtb from 1979 until today in a country
with a reasonably well-functioning health system serves as a
sombre reminder of the dangers of drug-resistant TB. Although
the annual number of cases in this particular outbreak is
decreasing41, the M outbreak highlights the challenges faced by
regions experiencing an increasing burden of drug resistance and
the importance of keeping HIV morbidity in check. The patient
in which an Mtb clone evolved the pncA Q10P mutation around
1979 was infected by a strain already resistant to INH, RIF and
EMB and was thus probably on a functional PZA monotherapy if
the standard first-line drug scheme was followed. We can
speculate that the aminoglycoside KAN was administered as a
second-line drug following treatment failure, again probably as a
functional monotherapy and resulting in the selection of a KAN-
resistant rrs 1401A4G mutant. This clone became the ancestor
of a massive ongoing outbreak of pre-XDR TB. To prevent
history from repeating itself over and over again with the
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evolution and transmission of new clones of drug-resistant TB,
the development and implementation of methods for rapid and
accurate identification of resistance mutations are dearly needed
for appropriate treatment of TB patients, optimally from day one
following diagnosis.

Methods
Isolate collection. All available isolates belonging to the M outbreak as assessed by
IS6110 RFLP were included in the study (see Supplementary Data 1 for a complete
list of isolates and their sources). The exact number of lost isolates is not known.
No IS6110 RFLP data are available for isolates from before 1992; a freezer accident
also contributed significantly to sample loss.

Genomic analyses. Genomic DNA from clinical Mtb isolates was isolated using
the CTAB method9. Genomic libraries were constructed as described in ref. 42.
Briefly, 100–500 ng genomic DNA was used to generate sequencing libraries. DNA
was fragmented with NEBNext dsDNA fragmentase for 40min according to the
supplied protocol. Fragmented DNA was purified with Agencourt AMPure beads
and Illumina sequencing libraries generated with the High Throughput Library
Preparation Kit (KAPA) following the manufacturer’s protocol. Individual libraries
were indexed with 48-plex NEXTflex barcodes (Bioo Scientific) and sequenced
either on the Illumina HiSeq in 100-bp paired-end run mode (244 isolates) or on
the MiSeq in 150-bp paired-end mode (eight isolates). Sequencing reads from a
global Mtb collection and identified as belonging to sublineage 4.1.2.1 were
downloaded from the European Nucleotide Archive (accessed 1 February 2015;
Supplementary Data 2). Sequencing reads were aligned to the H37Rv genome with
SeqMan NGen (DNASTAR). For all isolates, the reads covered 499% of the
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Figure 4 | Mutations in RNA polymerase subunits rpoB, rpoC and rpoA. The rpoB S450L mutation common to 241 (light-blue-shaded background) of the

252 isolates is indicated by the dark green dot close to the root of the phylogeny. Other mutations in RNA polymerase subunits are indicated with coloured

dots (rpoB: blue; rpoC: magenta; rpoA:pink). Mutations common to two or more closely related isolates, indicative of transmission, are indicated by shaded

background following the same colour scheme. The amino-acid change caused by each mutation is annotated along the periphery of the phylogeny.
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H37Rv reference genome with a median depth of 108� coverage. The lowest
depth of coverage for any isolate was 47� . Only SNPs that were sequenced at a
depth of at least 8 and present in at least 70% of the reads were included for
phylogenetic analyses. SNPs in or within 50 bp distance of regions annotated as
PE/PPE genes, mobile elements or repeat regions were excluded from all analyses.
SNPs within 10 bp distance from each other were excluded from phylogenetic
analyses but were included in analyses of resistance mutations. A maximum-
likelihood phylogeny was created in Seaview using a general time reversible (GTR)
model with four rate classes43. Trees were visualized and edited in Figtree v1.4.2
(http://tree.bio.ed.ac.uk/software/figtree).

Phylogenetic evolutionary inferences. Divergence times and evolutionary rates
were computed on the basis of an alignment of 509 SNPs from each of the 252 Mtb
isolates using BEAST 1.7.4 (ref. 25). The XML-input file was manually modified to
specify the number of invariant sites.

Testing for tip-based calibration. As we aimed to calibrate the tree using the
dated genomes of Mtb only, we started by performing date randomization test to
determine whether the temporal and genetic information contained in our data set
was sufficient for accurate molecular dating. Ages of the genomes were randomly
shuffled 10 times and date-randomized data sets were analysed with BEAST. If the
mean estimate of the evolutionary rate or of the time to MRCA (TMRCA) between
all isolates obtained from the real data set is not included in any of the 95% highest
posterior density intervals of estimates from the date-randomized replicates, then
the data set can be considered to have sufficient temporal structure and spread44

(Supplementary Note 1, Supplementary Fig. 2). We also investigated the
relationship between the ages of the isolates and root-to-tip distances. Branch
lengths were estimated using the maximum likelihood algorithm implemented in
PhyML45 without specifying the age of the isolates and the linear regression of
root-to-tip distances against dates of isolation was performed using the Path-O-
Gen software (available at http://tree.bio.ed.ac.uk/software/ pathogen/).

Molecular dating. In BEAST, rates were modelled using the GTR substitution
model of evolution and variation among sites was simulated using a discrete
gamma distribution with four rate categories. This choice was on the basis of the
Bayesian information criteria scores obtained using ModelGenerator v0.85
(ref. 46). We further assumed a lognormal relaxed clock to allow variation in rates
among branches in the tree. The tree was calibrated using tip dates only with
sample time span ranging from October 1996 to December 2009. Tip dates for each
Mtb genome were specified in years before the present, with 0 being the youngest
sampled strains. We defined flat (that is, uniform) prior distributions for all the
nodes in the tree, including the TMRCA of all Mtb strains (13–2,000 years old) as
well as for the substitution rates (1� 10� 11–1� 10� 5 substitutions per site per
year). We compared the performance of the constant size, logistic growth,
expansion growth and exponential growth demographic models based on the Bayes
factors calculated from the marginal likelihoods, as recently recommended47

(Supplementary Note 2). In addition, to estimate the demographic history of the
epidemic without conditioning on a single coalescent model, we independently
used the extended Bayesian skyline plot approach integrated in BEAST
(Supplementary Fig. 1).

Posterior distributions of parameters, including divergence times and
substitution rates, were estimated using Markov chain Monte Carlo (MCMC)
sampling. For each analysis we ran four independent chains in which samples were
drawn every 5,000 MCMC steps from a total of 50,000,000 steps, after a discarded
burn-in of 5,000,000 steps. Convergence to the stationary distribution and
sufficient sampling and mixing were checked by inspection of posterior samples
(effective sample size 4200). Parameter estimation was based on the samples
combined from the different chains. The best supported tree was estimated from
the combined samples using the maximum clade credibility method implemented
in TreeAnnotator.

Drug susceptibility testing. DST to first-line drugs (INH, RIF, STR, EMB and
PZA) was performed in 19 TB network laboratories under regular proficiency
testing, according to World Health Organization (WHO) standards48. The
supranational reference laboratory at the Instituto Nacional de Enfermedades
Infecciosas (INEI) ANLIS carried out external quality control, confirmed resistance
to first-line drugs and tested susceptibility to second-line drugs (KAN, ETH,
amikacin, capreomycin and ofloxacin) following WHO guidelines49. For second-
line drugs, susceptibility was routinely tested by both the proportion method and
MIC. Congruent results classified isolates as either resistant or susceptible, whereas
incongruent results were denoted as noninterpretable.

Ethics statement. This research has been approved by the INEI ANLIS research
review board. Microbiological records were handled anonymously so that informed
consent was waived.
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