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Three-terminal heterojunction bipolar transistor
solar cell for high-efficiency photovoltaic
conversion
A. Martı́1 & A. Luque1

Here we propose, for the first time, a solar cell characterized by a semiconductor transistor

structure (n/p/n or p/n/p) where the base–emitter junction is made of a high-bandgap

semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its

detailed-balance efficiency limit and prove that it is the same one than that of a double-

junction solar cell. The practical importance of this result relies on the simplicity of the

structure that reduces the number of layers that are required to match the limiting efficiency

of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a

three-terminal solar cell and can also be used as building block of multijunction solar cells

with an increased number of junctions.

DOI: 10.1038/ncomms7902 OPEN
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T
he use of several semiconductors of different bandgaps to
make a better use of the solar spectrum for photovoltaic
energy conversion was first proposed by Jackson1 in 1958.

Wolf2, in 1960, pointed out the difficulty in using tandem solar
cells based on (p/n)–(p/n) semiconductor junctions to take to
practice this approach because of the impossibility of having
electrical current circulating across a p/n junction biased in
reverse. The problem could be solved thanks to tunnel diodes
(a highly doped pþþ–nþþ junction), invented by Esaki3 and
nowadays incorporated to multijunction solar cells4–6. More
recently, a ‘wafer bonding’ scheme has been developed7 to attach
different solar cells each one consisting of a (p/n) junction.

In this work we propose the use of p/n/p (or n/p/n) structures
instead, that exhibit the same limiting efficiency that a dual-
junction solar cell, but without the need of using tunnel junctions
or wafer bonding schemes for interconnecting the cells. The
proposed solar cell structure has three-terminals. Three- or more-
terminal solar cell structures have been proposed in the past, but
consisted either in a mechanical stack of single-gap solar cells8 or
included a doped semiconductor layer to interconnect the solar
cells in a (n/p)–p–(n/p)9 or (n/p)–p–(p/n)10 configuration.

The structure we propose looks similar to the one of a bipolar
junction transistor11 (BJT). The performance of a BJT is
described in terms of its ‘transport factor’ (aT) and ‘emitter
injection efficiency’ (g). In order a BJT to approach its ideal
performance, aT-1 and g-1. However, as we shall see, for the
ideal performance of the solar cell structure we propose g-0.

Results
Description of the structure. Figure 1 shows the basic structure
and simplified bandgap diagram of the three-terminal hetero-
junction bipolar transistor solar cell (HBTSC) that we propose.
We will assume an npn structure but the same analysis trivially
applies to a pnp structure by swapping the role of electrons
and holes. Arrows indicating the direction that electron and
hole current densities have through the base–emitter and base–
collector junctions (when assumed positive) are also indicated.
Anticipating final results, the directions of the currents have been
chosen in a way that they will all become positive under normal
cell operation. The base–emitter junction, which is the first facing
the sun, is made of a high-bandgap semiconductor (designated as
EH), and the collector is made of a low-bandgap semiconductor
(designated as EL). The base–emitter and the base–collector
junction area will be assumed equal and equal to area of the cell,
A. Once the theory presented here is understood, it can be easily
modified for accounting for differences in these areas.

Model and limiting efficiency. To apply Shockley–Queisser
detailed-balance12 theory to the study of the limiting efficiency of
this solar cell, we will assume that carrier generation-
recombination processes only occur through the absorption and
emission of photons (radiative recombination). For
simplification, the sun will be assumed as a black body at the
temperature TS¼ 6,000K and the cell at the ambient temperature
TC¼ 300K. Assuming the sun as a black body at 6,000K has
become de facto a standard for calculating the limiting efficiency
of new proposed devices, because it allows comparing easily the
efficiency limit of one proposal against another.

As it is characteristic of an ideal transistor structure13, the
carrier transport factor through the base will be assumed one
(aT¼ 1). For the moment, readers can exemplify this feature by
assuming the base of the transistor as being very short so that the
total generation and recombination of carriers in this region
becomes negligible. In the plot in Fig. 1 this will imply that the

electron recombination current Jr will be assumed zero. We will
later lift this restriction.

We calculate first the hole current density crossing the base–
emitter junction, Jh(0). For that, by applying the continuity
equation to holes in the emitter, we find:

1
e
dJh
dx

¼ g� r ) Jhð0Þ ¼ e
Z0

�WE

g� rð Þdx ¼

X
Xmax

eF EH;1;TS; 0ð Þþ 1� X
Xmax

� �
eF EH;1;TC; 0ð Þ

� eF EH;1;TC; eVBEð Þ� n2eF EH;1;TC; eVBEð Þ
þ n2eF EH;1;TC; eVBCð Þ;

ð1Þ

where: g and r are the electron-hole generation and recombina-
tion rates, respectively; e is the electron charge; X is the
concentration of solar light; Xmax¼ 46,050 is the maximum
concentration when the cell is surrounded by air; and
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Figure 1 | Structure of the three-terminal heterojunction bipolar

transistor solar cell. Simplified layer structure showing also electron (blue)

and hole (red) current densities with sign criterion that current densities are

positive when flowing in the direction indicated by the arrow (a). Simplified

bandgap diagram in equilibrium (b). Simplified diagram under conditions in

which the cell is delivering electrical power (c). EFe and EFh are the electron

and hole quasi-Fermi levels.
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being h the Planck’s constant, c the speed of light in vacuum and
k the Boltzman’s constant14. From a physical point of view, F
corresponds to a photon flux, characterized by the temperature T
and chemical potential m, and with energy in between e1 and e2.

In the calculations leading to the results in equation (1) we
have assumed that: (a) the emitter has an absorptivity that equals
one for photons with energy higher than EH; (b) the front face of
the emitter, located at WE, is passivated so that Jh(�WE)¼ 0; (c)
carrier mobility is large so that the split of electron and hole
quasi-Fermi levels is constant through the emitter and equal to
the voltage applied to the base–emitter junction, VBE (in eV units)
and; (d) the front of the cell is surrounded by air (refraction index
one) and all the semiconductors involved in the structure have a
refraction index n; e) the cell is illuminated through the emitter
by the sun and the ambient and a back reflector prevents
luminescent radiation from escaping through the rear side. With
these hypotheses, equation (1) has been obtained following the
same method described in ref. 15. In the last line of equation (1),
X

Xmax
eF EH;1;TS; 0ð Þ corresponds to the photons absorbed from

the sun (represented by arrow number 1 in Fig. 2). X¼ sin2y/
sin2yS (being y the semiangle of the solar disc seen from Earth
after a concentrator system is used and ySE0.267� being the same
angle when no concentrator is used) represents the solar
concentration. Xmax¼ 46,050 represents the maximum theoretical
concentration when the media surrounding the cell is air and is
obtained for y¼p/2. TS is the temperature of the sun (assumed as
6,000K).

The term 1� X
Xmax

� �
eF EH;1;TC; 0ð Þ corresponds to the

photons absorbed from the thermal surroundings (represented
by arrow number 2 in Fig. 2) being TC¼ 300K the ambient
temperature.

The term eF(EH, N, TC, eVBE) corresponds to the electro-
luminescent photons emitted by the emitter through its front
surface (represented by arrow number 8 in Fig. 2).

The term n2eF(EH, N, TC, eVBE) corresponds to the photons
emitted by the emitter through its back surface. Since the base is
short, photons emitted through the emitter back surface will
entirely reach the collector (represented by arrow number 5 in
Fig. 2).

The term n2eF(EH, N, TC, eVBC) corresponds to photons
absorbed at the emitter due to the electroluminescent emission
from the collector (represented by arrow number 6 in Fig. 2). Due
to a short base, photons emitted by the collector with energy
higher than EH are absorbed at the emitter.

The collector will be assumed to have also absorptivity equal to
one, so none of the photons that reach the collector due to the
emitter electroluminescence return to the emitter. Notice that, in
equilibrium, TS¼TC and Jh(0)¼ 0 as expected.

The total current density through the emitter–base junction
and, therefore, the total current density through the emitter
terminal will be then:

JE ¼ Jh 0ð Þ� Je 0ð Þ ¼ Jh 0ð Þ� Je WBð Þ� Jr
¼ Jh 0ð Þ� Je WBð Þ ð3Þ

where the hole current density, Jh(0), is given by equation (1) (Jr
being assumed zero) and the electron current density Je(WB)
remains to be calculated.

We calculate now the hole current density through the base–
collector junction. Applying the continuity equation for holes at
the collector, we find that, with the sign criteria adopted in Fig. 1:

1
e
dJh
dx

¼ g� r ) Jh WBð Þ ¼ e
ZWC

WB

g� rð Þdx ¼

X
Xmax

eF EL; EH;TS; 0ð Þþ 1� X
Xmax

� �
eF EL; EH;TC; 0ð Þ

� eF EL; EH;TC; eVBCð Þþ n2eF EH;1;TC; eVBEð Þ
� n2eF EH;1;TC; eVBCð Þ

ð4Þ

For this calculation we have assumed similar conditions to the
ones we assumed for the emitter: (a) the collector has an
absorptivity that equals one for photons with energy higher than
EL; (b) the rear face of the collector, located at x¼WC, is
passivated so that Jh(WC)¼ 0; (c) carrier mobility is large so that
the split of electron and hole quasi-Fermi levels is constant
through the collector and equal to the voltage applied to the base–
collector junction, VBC; (d) the front of the cell is surrounded by
air (refraction index one) and all the semiconductors involved
have a refraction index n; and (e) the cell has a back reflector so
that there is no luminescent emission through the rear side of
the cell.

In the last line of equation (4), X
Xmax

eF EL; EH;TS; 0ð Þ corre-
sponds to the photons absorbed from the sun at the collector
(represented by arrow number 3 in Fig. 2). The term
ð1� X

Xmax
ÞeF EL; EH;TC; 0ð Þ corresponds to the photons absorbed

from the thermal surroundings at the collector (represented by
arrow number 4 in Fig. 2).

The term eF(EL, EH, TC, eVBC) corresponds to the electro-
luminescent photons emitted by the collector through its front
surface (represented by arrow number 7 in Fig. 2). Notice the
emitter is transparent to these photons because of its higher
bandgap.

The term n2eF(EH, N, TC, eVBE) corresponds to the photons
emitted by the emitter through its back surface and absorbed at
the collector. Since the base is short, photons emitted through the
emitter back surface entirely reach the collector (represented by
arrow number 5 in Fig. 2).

The term n2eF(EH, N, TC, eVBC) corresponds to the photons
absorbed at the emitter due to the electroluminescent emission
from the collector (represented by arrow number 6 in Fig. 2).

The total current density through the base–collector junction
and, therefore, the total current density through the collector
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Figure 2 | Illustration of the photon fluxes involved in the operation of

HBTSC. (a) illustrates the case when the base is short and (b) the case

when the base is long. Black arrows represent photon fluxes from the sun

and red arrows represent electroluminescent photons.
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terminal will be then:

JC ¼ Jh WBð Þþ Je WBð Þ; ð5Þ
where the hole current density, Jh(WB), is given by equation (4)
and, as mentioned, the electron current density Je(WB) remains to
be calculated.

We calculate next the electrical power, P, extracted from the
cell per unit of area. This power is extracted through two resistors
RE and RC attached to the base–emitter and base–collector
terminals:

P ¼ JEVBE þ JHVBC ¼
Jh 0ð ÞVBE þ Jh WBð ÞVBC � Je WBð Þ VBE �VBCð Þ

ð6Þ

The term Je(WB)(VBE–VBC) deserves now our attention. As it will
be proven next, it is always positive so that it represents a power-
loss mechanism. Its physical origin is the entropy rate generated
by the electron current density flowing in the direction of
decreasing slope of the electron-quasi-Fermi level in the base. If,
as plotted in Fig. 1, VBE4VBC, electrons (considered as particles)
will flow from left to right and the electron current density
Je(WB), with the sign criteria adopted in Fig. 1, will be positive
(notice electron current density has opposite sign to the
direction that electrons, as particles, actually flow). If we assume
working conditions in which VBEoVBC, we will also have
Je(WB)(VBE–VBC)40 because then Je(WB)o0. Therefore, even if
we do not calculate Je(WB), it has to be made equal to zero to
maximize the efficiency of the cell. In practice, this will demand
doping the base at a much higher level than the doping of the
emitter for the cases in which VBE4VBC and much higher than
the collector for the cases in which VBEoVBC. Since we anticipate
that, when the cell delivers its maximum power, we will have
VBE4VBC, making the base doping higher than the emitter
doping should play the major role of the design. In bipolar
transistor terminology, this implies that the emitter injection
efficiency (the ratio between the electron and the total emitter
current densities crossing the emitter–base junction) has to be as
close to zero as possible. In this respect, the design of the HBTSC
differs from the design of a conventional bipolar transistor, where
emitter injection efficiencies as close to one as possible are seek.

If Je(WB)¼ 0, it can be easily checked that the model describing
JE and JC is exactly the same one than that of dual-junction solar
cell independently connected16, where JE would describe the
current–voltage characteristic of the top cell and JC would
describe the current–voltage characteristic of the bottom cell. The
only conceptual difference is that, in the work in ref. 16, the
media coupling the cells was air or none—if a selective mirror was
inserted in between the cells—while here the cells are optically
coupled through the semiconductor refraction index. Therefore,
the HBTSC and the dual-junction solar cell share the same
limiting efficiency.

Impact of the bandgaps and injection efficiency. In Fig. 3 we
plot the limiting efficiency of the cell as a function of the top and
bottom bandgaps. Maximum efficiency (54.7%) is obtained for
EL¼ 0.8 eV and EH¼ 1.76 eV.

We include plots also for the cases in which Je(WB)a0. For a
short base, the minority carrier excess in the base can be
approached by a linear function and, assuming low-injection
conditions in the base:

Je WBð Þ ¼ e
n2iBDeB

NBWB
exp

eVEB

kT
� exp

eVBC

kT

� �
ð7Þ

where niB2 is the intrinsic concentration of the base semiconduc-
tor, NB is the base doping and DeB is the diffusion constant of the
electrons at the base. The plots are then represented for several

values of the base–emitter injection efficiency, defined (as in a
bipolar transistor) as:

g ¼
en2i De

NBWB

en2i De

NBWB
þ e n2 þ 1ð ÞF EH;1;TC; 0ð Þ

ð8Þ

where e(n2þ 1)F(EH, N, TC, 0) represents the reverse saturation
current of the holes crossing the base–emitter junction.
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Figure 3 | Efficiency limit of the three-terminal heterojunction bipolar

solar cell. Contour plots showing the limiting efficiency of the HBTSC as a

function of the top and bottom bandgaps when operated at maximum

concentration and for several injection efficiencies: (a) g¼0, (b) g¼0.5

and (c) g¼0.9.
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As anticipated, the impact of ga0 is to reduce the limiting
efficiency of the cell. However, limiting efficiencies above 50% are
preserved for base–emitter injection efficiencies as high as 0.9.
Keeping injection efficiencies much lower than this value should
not imply any technological challenge by increasing the base
doping (what justifies also our initial hypothesis of a base
operating in low-injection regimen). On the other hand, there is
no apparent shift of the optimum gaps as g is increased.

Current–voltage characteristics. To gain further insight into the
solar cell operation, Fig. 4 plots the current density–voltage
characteristic of the solar cell (both for the emitter and the
collector currents), for optimum bandgaps and maximum solar
concentration case and several working conditions. The com-
parison between the plots corresponding to the cases g¼ 0 and
g¼ 0.9, for example, allows visualizing in the curves the impact of
g as loss factor. On the other hand, comparison of the collector
current between the cases JC(g¼ 0.9, VBE¼ 0) and JC(g¼ 0.9,
VBE¼ 1.67V) reveal an increment in the collector short-circuit
photocurrent as VBE increases due to the luminescent coupling
between collector and emitter (the emitter shines more light into
the collector when VBE¼ 1.67V than when VBE¼ 0V). This
increment in the short-circuit current is also present in the
emitter current (cases JE(g¼ 0.9, VBC¼ 0) and JC(g¼ 0.9,
VBC¼ 0.7967V)) but is barely perceived in the plot.

Long base case. Although results above have been obtained under
the approximation of a ‘short’ base, the results are equally valid in
the radiative limit for a ‘long’ base. This is due to the photon-
recycling phenomena that takes place in the base, that makes
radiative total recombination independent on the base thickness
since a photon that is emitted is likely recycled in a long base17

and therefore, its recombination will not count. In effect, when
the base is ‘long’, the photons emitted by the emitter by its rear
side are fully absorbed in the base and do not reach the collector.
Equally, the emitter receives through its base the photons emitted
by the base and not by the collector (that are absorbed now
instead in the base. The results in equation (1) must be modified
obtaining instead (notice that, in the last term in equation (1),

VBC has been substituted now by VBE).

1
e
dJh
dx

¼ g� r ) Jh;long baseð0Þ ¼ e
Z0

�WE

g� rð Þdx

¼ X
Xmax

eF EH;1;TS; 0ð Þþ 1� X
Xmax

� �
eF EH;1;TC; 0ð Þ

� eF EH;1;TC; eVBEð Þ� n2eF EH;1;TC; eVBEð Þ
þ n2eF EH;1;TC; eVBEð Þ

¼ X
Xmax

eF EH;1;TS; 0ð Þþ 1� X
Xmax

� �
eF EH;1;TC; 0ð Þ

� eF EH;1;TC; eVBEð Þ
ð9Þ

However, since the base is ‘long’ we cannot assume now Jr¼ 0. If,
as a worst case scenario (because recombination in the base
reaches its maximum) at the time that a simplifying assumption,
we assume that the electron and hole quasi-Fermi level split in the
base equals eVBE (the highest value) all along the base thickness, Jr
can be calculated as:

Jr ¼ Je 0ð Þ� Je WBð Þ ¼ �
ZWB

0

1
e
dJe
dx

dx ¼ �
ZWB

0

g� rð Þdx

¼ � en2F EH;1;TC; eVBEð Þþ n2eF EH;1;TC; eVBEð Þ
� n2eF EH;1;TC; eVBCð Þ
þ n2eF EH;1;TC; eVBEð Þ ¼ � n2eF EH;1;TC; eVBCð Þ
þ n2eF EH;1;TC; eVBEð Þ

ð10Þ
The emitter current now will be given by:

JE ¼ Jh;long base 0ð Þ� Jr � Je WBð Þ ð11Þ
which taking into account equations (9) and (10) result equal to
equation (3) obtained for the case the base was considered short.
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Therefore, the calculations made in the previous section remain
the same.

Discussion
In a more general case, our model of the HBTSC can be visualized
by the bipolar transistor Ebers–Moll model13 represented in
Fig. 5a where aF and aR are the forward and reverse emitter and
collector current gains in common base operation mode. The
Ebers–Moll model has been modified to take into account for the
current photogenerated by the junctions. In this respect, ILE and
ILC correspond to the emitter and collector photogenerated
currents, respectively, when the base–emitter and the base–
collector junctions are short-circuited. If properly designed,
photons with energy higher than the gap EH will mostly
contribute to ILE while photons with energy higher than EL will
contribute only to ILC. If the transistor current gains aF(R) are
made zero, the model transforms into the model plotted in
Fig. 5b. As it can be seen, in this model the emitter current, IE,
and collector current IC, correspond now to the current–voltage
characteristics of two independent solar cells. In agreement with
the discussion involved in the detailed-balance limit above, aF(R)
will approach zero as the injection efficiency g approaches zero.

In summary, we have proven that the detailed-balance limit of
the HBTSC is the same than that of a dual-junction solar cell.
Although the design of the cell reminds an heterojunction bipolar
transistor18,19 there are conceptually important differences. First, in
a heterojuntion bipolar transistor, the emitter injection efficiency g
has to be maximized (made equal to one); on the contrary, in our
HBTSC, is has to be made equal to zero. Second, to approach g to
one, in the heterojunction bipolar transistor just the bandgap of the
emitter is increased and not the bandgap of the base; in the HBTSC
both the emitter and base are the regions with large bandgap.

Finally, we point out that the HBTSC can be considered as
building block of more complex multiterminal multijunction
solar. Hence, a four junction HBTSC could be built by piling up
two HBTSCs, and so on. A tunnel junction between the two of
these HBTSC would still not be required since there would not be
current flow between one HBTSC and the next.

Methods
Calculations in this work have been performed in Mathematica 5.0. Contour plots
have been calculated with GnuPlot.
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