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Phase nucleation in curved space
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Nucleation and growth is the dominant relaxation mechanism driving first-order phase

transitions. In two-dimensional flat systems, nucleation has been applied to a wide range of

problems in physics, chemistry and biology. Here we study nucleation and growth of

two-dimensional phases lying on curved surfaces and show that curvature modifies both

critical sizes of nuclei and paths towards the equilibrium phase. In curved space, nucleation

and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of

positive Gaussian curvature. Substrates of varying shape display complex energy landscapes

with several geometry-induced local minima, where initially propagating nuclei become

stabilized and trapped by the underlying curvature.
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I
n its classical picture, nucleation and growth (NG) starts with
local fluctuations of an initial metastable phase leading to the
formation of a small nucleus of the equilibrium phase1–4.

Such nucleus involves local changes in the free energy of the
system. On one hand, the formation of a nucleus of the
less-energetic phase produces a decrease in the total free-energy
scaling with its volume. On the other hand, it raises the energy by
an amount that scales with the area of the interface separating the
two phases.

In the case of flat two-dimensional (2D) systems, the variation
in the free energy due to the formation of a nucleus of radius R
takes the expression1–4:

DF ¼ 2pRs� pR2Df ; ð1Þ
where s represents the surface tension and Df the difference in
the local free energies of initial and final phases driving the phase
transition. The competition of surface and volume terms
produces the activated dynamics of NG. Only those fluctuating
nuclei whose size overpass the critical value Rc¼s/Df will
propagate. All other nuclei collapse due to surface energy.

On the other hand, phases lying on curved backgrounds5–10

are not only commonly found in nature in systems like viral
capsids, pollen grains, radiolaria and others but also they can be
obtained in the laboratory in the form of soft crystal or
liquid crystal phases by using colloidal particles11–14, block
copolymers15–19, liquid crystals20–23 and other self-assembled
systems. Examples of phase nucleation on curved geometries
in hard-condensed matter may include, among others,
graphene24,25, epitaxial growth of helium26 and Wigner crystals
on rough surfaces27.

In equilibrium, these phases display regular structures strongly
coupled to the underlying geometry that are not only ideal model
systems to study the interplay between order and curvature
but also potential platforms for technological applications such
as soft lithography15,19 or defect functionalization28. Although
experiments and theoretical calculations have contributed to
unveil equilibrium configurations and energetics of topological
defects in curved space, dynamical processes like crystallization
and melting still remain marginally explored29–32.

In this work, we obtain generic features of NG in 2D systems
lying on arbitrary curved backgrounds. Our model is based on a
Ginzburg–Landau free energy functional, which is sufficiently
general, that can be applied to various physical systems and
substrate’s geometries. For nearly-flat surfaces and geometries of
constant curvature, we obtain all the relevant information related
to NG in a closed analytical form. On more complex surfaces of
varying curvature, we explore the effects of the underlying
geometry on NG by using simulations. We show that in general,
the free-energy barrier needed to form a critical nuclei is strongly
dependent on the underlying curvature, being smaller (larger) for
region of positive (negative) curvature. As a consequence, in
geometries of varying curvature NG is an inhomogeneous
process, first starting in regions of positive curvature. Also, due
to the competing effects of positive and negative curvature,
geometries of varying curvature are shown to display complex
relaxation in free-energy landscapes, with several barriers and
local minima, where initially propagating nuclei become
stabilized and trapped by the underlying curvature. Additional
effects coming from system’s thickness and strain contributions
during crystallization are also considered and discussed in view of
recent experimental work.

Results
Model. Here we present a model to study how the underlying
geometry affects the laws of NG in curved space. In general, the
geometry of an oriented surface (that is, separating an ‘internal

region’ from an ‘external region’ of three-dimensional (3D)
space) can be completely characterized by the principal curvature
maps ki(r)¼±1/Ri (i¼ 1, 2), where R1 (R2) is the radius of the
smallest (largest) circle tangent to the surface at r, and the sign is
positive (negative) if the circle is contained in the internal
(external) region. Alternatively one can use the Gaussian
K(r)¼k1(r)k2(r) and mean H(r)¼ (k1(r)þk2(r))/2 curvature33.

The case K¼ 0 and Ha0 represents a plane bent in only one
direction. Since this surface can be flattened preserving the areas
(Minding’s theorem33), nucleation can be mapped to the case of a
planar surface and thus results to be trivial. Non-trivial cases have
non-zero Gaussian curvature but may have zero mean curvature
as in the case k1¼ �k2, which represents a saddle. This clearly
cannot be flattened preserving the areas and thus nucleation has
to be revisited. In other words, the Gaussian represents an
‘intrinsic’ curvature and, as we shall see, results to be most
important in describing physical processes on the surface. Below
we show how the Gaussian curvature influences NG in curved
geometries.

The mean curvature is not only related with the geometry of
the surface, but also it is tied to the definition of ‘internal’ and
‘external’ regions. For example, while crest have positive mean
curvature and valleys have negative mean curvature, these values
can be inverted by exchanging the definition of ‘internal’ and
‘external’ regions33. As we will see later, mean curvature will
modify NG for 2D systems with thickness.

We study the dynamics of first-order phase transitions through
a scalar and real order parameter c r; tð Þ. Points on the surface are
specified by a system of curvilinear coordinates r¼ (x1,x2).
In these coordinates, an infinitesimal arc length ds is given in
Einstein notation by ds2�|dr|2¼ gabdxadxb, where gab is the
metric tensor. Depending on the physical system considered, the
order parameter is or is not a conserved quantity34. For example,
while conserved order parameters are required to study
nucleation of binary mixtures or solid solutions, non-conserved
order parameters are commonly used in studies of the liquid-to-
crystal transition or in magnetic and spin-related phases.

In general, the free energy of a mixed state in a system lying on
a curved surface can be expanded in terms of the order
parameter:

F
kBT

¼
Z

d2r
ffiffiffi
g

p
f cð Þþ D

2
gab@acðrÞ@bc rð Þ

� �
; ð2Þ

where kB is the Boltzman’s constant, T the temperature and g is
the determinant of the metric tensor33.

In a curved surface the differential of area is d2r
ffiffiffi
g

p �
dx1dx2

ffiffiffi
g

p
so the first term in the free energy represents the

contribution from a local homogeneous situation, where f cð Þ is
the local free-energy areal density of a phase with an order
parameter c. For a two-phase system this term takes the typical
double-well form36–38, with two local minima corresponding
to the initial c ¼ 0ð Þ and final c ¼ 1ð Þ phases, separated
by a local free-energy barrier. This can be written phenomeno-
logically as:

f cð Þ ¼ 1
4
Zc2 c� 1ð Þ2 þ 3e

2
c3

3
� c2

2

� �
; ð3Þ

where Z and e are constants. Here the local free-energy difference
driving the phase transition, typically controlled by temperature,
is given by Df¼ f(0)� f(1). Note that Df�e/4 is proportional
to the degree of supercooling in the system. The second term
of equation 2 is the curved-space generalization of the
gradient square term rcj j2

� �
that penalizes the formation of

interfaces1,2.
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In this Ginzburg–Landau approach the dynamics of the phase
transition can be studied through a relaxational equation of the
form:

t
@c
@t

¼ � iDLBð Þ2n dF
dc

	 

; ð4Þ

where t is a characteristic time scale (for simplicity here we take
t�1), i ¼

ffiffiffiffiffiffiffiffi
� 1

p
, n�0,1 for non-conserved and conserved order

parameters, respectively, and DLB ¼ 1ffiffi
g

p @
@xi gij

ffiffiffi
g

p @
@xj

� �
) is the

Laplace–Beltrami operator, which is the curved-space general-
ization of the Laplacian29,30.

Note that a more complex evolution equation in needed for
conserved order parameters. For simplicity we concentrate on the
time evolution of non-conserved order parameters. However,
most results related to NG on curved geometries can be applied to
both34,35.

Critical nuclei and growth and dissolution laws. We start by
analysing the fate of a nucleus resulting from a spontaneous
fluctuation, whose time evolution follows equation (4).

In the following we make use of geodesic polar coordinates,
which are the curved-space generalization of the polar coordi-
nates33. We start by locating an origin O in the centre of the
nucleus (Fig. 1). Then, a point P located on the surface is
associated to coordinates (r,y). The coordinate r is defined as the
geodesic distance between P and the origin O. Closed lines
of constant geodesic distance r0 are called geodesic circles,
and at any point are orthogonal to the geodesics starting at O.
The coordinate y of the point P is the angle that the
geodesic connecting O and P makes with a reference geodesic
starting in O.

In these coordinates the metric of any surface always take the
simple form ds2¼ dr2þG(r,y)dy2, where the function G(r,y)
depends on the geometry of the surface through the equation
@2

ffiffiffi
G

p

@r2 þK
ffiffiffiffi
G

p
¼ 0, with K the Gaussian curvature of the surface,

and G(0,y)¼ 0 (ref. 33).
When using geodesic polar coordinates, the evolution

equation (4) can be largely simplified to study steady-state
solutions representing the growth or collapse of nuclei during
NG. Here the evolution equation of a steadily propagating
nucleus is decomposed (see Methods) in two equations for the

interface profile (equation 5) and the propagation rate
(equation 6).

D
d2c
dX2

þ v
dc
dX

¼ @f cð Þ
@c

ð5Þ

dR
dt

þDkg Rð Þ ¼ v ð6Þ

where the comoving coordinate X is given by X¼ r�R(t), R(t) is
the radius of the nucleus at time t, v �

ffiffiffiffiffiffiffiffiffiffiffi
2Z=D

p
3e a propagation

constant, and the geodesic curvature kg r; gð Þ ¼ @
@r ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G r; yð Þ

p
is

the local curvature of the geodesic circles providing information
about the underlying geometry.

It is interesting to note that for any geometry, the equation for
the interface profile is always the same when written in geodesic
polar coordinates. Its solution is exactly the same as found
by Chan for NG on a plane36–38: c Xð Þ ¼ 1

�
1þð

exp 1
�
2

ffiffiffiffiffiffiffiffiffiffiffi
2Z=D

p
X

� �
.

By contrast, equation (6) shows that the evolution of nuclei’s
sizes is influenced by the underlying geometry through the
geodesic curvature kg. Note that for a planar geometry kg(R)�1/R
gives the classical growth rate for NG on a plane. Although in the
general case this is a complicated nonlinear ordinary differential
equation, it can be solved in closed form for simple geometries, as
shown below.

In general, a nucleus will grow only if its initial radius R0
exceeds the critical value Rc, obtained by setting dR

dt � 0, that is:

kg Rcð Þ ¼ 1
R0
c
; ð7Þ

where R0
c ¼ D=v represents the critical size for NG on a planar

substrate, under the same external conditions.
Thus, equation (7) shows that on a curved substrate, the critical

radius will in general depend on both curvature (through kg) and
supercooling (through R0

c). A characteristic length associated
to the curvature can be defined by RK � 1

� ffiffiffiffiffiffiffi
Kj j

p
. We can

expect different regimes of NG depending on how large the ratio
R0
c

�
RK is.

In the following sections we use equations (4), (6) and (7) to
analyse how the geometry modifies NG on substrates with
different distributions of curvature.

Nucleation on nearly-flat substrates. For cases when the critical
nucleus is very small as compared with curvature R0

c

�
RK � 1

� �
,

equally valid for NG far from the coexistence line or for slightly
curved geometries, the geodesic curvature can be approximated
through a series expansion of the form kg rð Þ ¼ 1

r � 1
3K0rþ � � � ;

where K0 is the Gaussian curvature of the substrate evaluated at
the centre of the nucleus.

Using this expansion in combination with the equation for the
critical nuclei (equation 7), we get a critical radius that can be
written in the form:

Rc ¼ R0
cGK þ � � � ð8Þ

where GK is a geometric factor given by:

GK ¼ 1� 1
3
K0R

02
c ð9Þ

Thus, under same external conditions, the curvature modifies
the process of NG and the critical nucleus will be smaller for
regions of positive curvature, like crests and valleys (K040), and
larger for negative curved regions like saddles (K0o0).

The energy needed to form a small nucleus of radius r on the
curved substrate can be written as DF(r)¼ �A(r)Dfþ P(r)s,
where AðrÞ � pr2 � p

12K0r4 þ � � � and PðrÞ � 2pr� p
3K0r3 þ

� � � represent the area and perimeter of a geodesic circle with a

Metastable
phase

Geodesic
lines Geodesic

circles

Nucleus
P

O

Figure 1 | Geodesic polar coordinates. In this work geodesic polar

coordinates are used to describe the growth or collapse of a nucleus (red

domain) in the sea of the metastable initial phase (blue). Here a point P on

the surface has coordinates (r,y), being r the geodesic distance to the origin

O and y the angle.
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first-order correction due to curvature. The height of the free-
energy barrier for nucleation DFc is obtained by evaluating DF(r)
at the critical size, and can also be written as:

DFc ¼ DF0
cGK þ � � � ð10Þ

where DF0
c ¼ 2psR0

c �pDfR02
c is the energy barrier on a planar

geometry.
This last expression shows how (locally) the height of the

barrier for nucleation is modified by the underlying geometry,
decreasing (increasing) for regions of positive (negative) Gaussian
curvature. The reason for this is simply geometrical. Given a
small nucleus, the ratio between the perimeter and area enclosed
is smaller for surfaces with positive curvature (and larger for
negative curvature). Thus, for positive curvature, the contribution
of the bulk term of the free energy is larger than the interfacial
term, producing a smaller free-energy barrier for nucleation and a
smaller critical size.

Note that the last expression for the free-energy barrier for NG
in a curved geometry resembles the classical result of hetero-
geneous nucleation and growth DFc ¼ DF0

c f ðyÞ, where the free-
energy barrier DF0

c is modified by a function f(y) of the wetting
contact angle y of the nuclei with the underlying substrate1,2.
However, in classical heterogeneous nucleation, the critical size is
not modified by the wetting angle y. This is different from
nucleation on curved space, where the underlying curvature
affects both free-energy barriers and critical sizes.

These results simply show that the underlying curvature can
break the homogeneity of space, such that NG on a substrate of
varying curvature becomes inherently inhomogeneous. In the
following sections we consider NG for more general cases where
the effects of the underlying geometry are much stronger
R0
c=RK � 1

� �
.

Nucleation on surfaces of constant curvature. For spherical
substrates, the Gaussian curvature is constant and positive
K¼ 1/a2, with a the radius of the sphere. Here the geodesic
curvature is simply written as kg(r)¼ 1/[a tan(r/a)], and the
critical size for NG (equation 7) takes the form:

Rc ¼ a arctan R0
c

�
a

� �
ð11Þ

Thus, the critical size monotonously decreases when decreasing
the radius of the spherical substrate, meaning that for positive
curvature NG is favoured for higher curvatures. The reason for
this is again geometrical: on the surface of spheres, circles have
more enclosed area for a given perimeter (as compared with the
plane), and the ratio surface-perimeter increases when increasing
the curvature.

Given an initial nucleus of size R0, its temporal evolution is
obtained through equation (6), which can be integrated in a
closed form giving the implicit relation R¼R(t):

vt ¼a sin Rc=að Þ cos Rc=að Þ ln sin R�Rcð Þ=að Þ
sin R0 �Rcð Þ=að Þ

� �

þ cos Rc=að Þ2 R�R0ð Þ
ð12Þ

This is the growth (R04Rc) or dissolution law (R0oRc) for NG
on spheres, and reduces to the classical result obtained by Chan
for NG on a flat plane36–38, when taking the Euclidean limit
Rcooa.

To test the accuracy of these analytical predictions, here we
developed numerical simulations of NG on spherical substrates
(see Methods). Figure 2 shows the excellent comparison between
the theoretical prediction equation (11) (line) and simulations
(symbols) for the critical size Rc as a function of the radius a of
the spherical substrate, normalized with the critical size on a
plane R0

c . This plot clearly shows that nucleation is enhanced for

high curvatures (smaller spheres). Note also that as the size of the
sphere increases, the critical size for NG converges to the result
obtained for the flat plane (vanishing curvature).

We can also consider NG on substrates with constant negative
curvature K¼ � 1/a2, surfaces known as pseudospheres33, which
at any point display the same local saddle structure. In this case
the geodesic curvature is simply written as kg(r)¼ 1/[a tanh(r/a)],
and the expression for the critical radius takes the form:

Rc ¼ a arctanh R0
c

�
a

� �
ð13Þ

Note that in general, all the expression for NG on pseudospheres
are identical to the results obtained for spheres, when replacing
the harmonic by hyperbolic functions. Contrary to spheres, here
the critical size for NG monotonously increase when decreasing
the radius a of the pseudosphere.

Figure 3a shows a comparison for the critical size for
nucleation on spheres and pseudospheres, where the critical
radius Rc is written as a function of the Gaussian curvature K of
the substrate Rc ¼ 1

� ffiffiffiffi
K

p
arctan R0

c

ffiffiffiffi
K

p� �
(this expression is valid

for both positive and negative curvature). This plot represents a
universal law of NG on substrates of constant curvature,
generalizing the well-established results for NG on a plane. Here
it is clear that the critical size for nucleation is bigger for
pseudospheres as compared with spheres of the same curvature.
Planar substrates, indicated with a black dot, have critical sizes
between spheres and pseudospheres. Note also that Fig. 3a shows
that the critical size for nucleation Rc deviates from the result on a
planar geometry R0

c for curvatures of the order R0
c

�
RK � 1,

where for this substrates RK�a, as expected.
Figure 3b shows the time evolution of the size R(t) of growing

nuclei on different substrates of positive (curves in the red
region), null (dashed curve) and negative (curves in the blue
region) constant curvature. This plot clearly shows that the
growth of nuclei is faster (slower) for substrates of positive
(negative) curvature, as compared with the plane. From the plot it
is also clear how the evolution law converges to the law of NG on
a plane, as curvature of spheres or pseudospheres decreases
(dashed line).

1.0

0.8

0.6

Simulations
Theory

Rc

a

R
c
/R

c0

0.4

0.2

0.0
0 1 2 3 4

a/Rc
0

5 6

Figure 2 | Critical size for NG on spheres. The plot shows the critical

(geodesic) radius Rc as a function of sphere radius a, both quantities

normalized with the critical size for nucleation on a plane R0c , for simulations

(symbols) and theoretical prediction (line). Note how the critical size

decreases when increasing the curvature (a-0). As the underlying

curvature decreases (a-N) the critical size for NG converges to the value

find for the flat plane R0c .
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In what follows we consider NG on more complex geometries,
where the varying curvature will produce richer free-energy
landscapes and intricate relaxation paths towards equilibrium.

Nucleation on surfaces of varying curvature. In general, for
substrates of non-constant curvature K, it can be difficult to
obtain closed analytical expressions for the polar coordinates,
needed to describe NG. In addition, for complicated geometries,
we can expect the geodesic curvature to be not only function of
the geodesic radius r but also of the polar angle y, kg¼kg(r,y).
In such cases the breaking of the radial symmetry makes the
simplification of the evolution equation (4) much harder, and in
general, other parameters related to shape in addition to size
would be needed to describe the nuclei’s evolution.

Given that the critical radius is strongly dependent on
curvature (Fig. 3a), complicated geometries may induce

complexities in the free-energy landscape for NG. Also, for
substrates of varying curvature, we can expect that the opposite
effects of positive and negative curvature will induce the
acceleration or deceleration of interphases travelling through
different regions (Fig. 3b), adding complexity to the relaxation
paths towards the equilibrium phase.

To unveil the dynamics of NG on more complex geometries,
we developed numerical simulations (see Methods) for geome-
tries in which the surface height at position (x,y) is given by Z¼A
cos(2px/L) cos(2py/L) (see the the surface in Fig. 4a–e), where the
curvature is symmetrically distributed into positive and negative
curved regions.

Figure 4f shows the free-energy landscape for nuclei initially
seeded on the top of a bump (local positive curvature) for
different degrees of supercooling 1=E. Here hRi acts as a collective
coordinate and is defined as the geodesic distance between the
interface and the centre of the seed averaged along the perimeter,
and Rq is the root mean squared distributions of heights, being a
parameter representing the substrate’s roughness. Figure 4a–e
shows shape and sizes of nuclei inducing distinctive points in the
free-energy landscapes for NG.

Figure 4f shows that for high supercoolings 1=E � 100� 150ð Þ
the system displays a single barrier for NG, as found for systems
of constant curvature (plane, spheres or pseudospheres). The
inset in Fig. 4f shows the expected enlargement of this barrier as
the supercooling decrease.

Remarkably, for low degrees of supercoolings, multiple barriers
appear with local minima in between. Starting from low
supercooling, a change of slope occurs around hRi/RqB2.5,
which gives a local minima for 1=E4170. This hRi corresponds to
the region in which the interface of the nuclei starts to approach
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Figure 3 | NG in surfaces of constant curvature. (a) Critical size for

nucleation Rc as a function of Gaussian curvature K for substrates of

constant Gaussian curvature, normalized with the critical size on a plane R0c .

The plot shows that the critical size for NG is larger for pseudospheres

(Ko0, blue line) as compared with spheres (K40, red line) of the same

curvature. Planar substrates (K¼0), indicated with the black dot, have

critical sizes between spheres and pseudospheres. (b) Time evolution of

growing nuclei R(t) on substrates of positive (curves in the red region) and

negative (curves in the blue region) constant curvature. Here R and t are

normalized with the critical size Rc and t0¼ Rc/v. Lines in the red (blue)

zone represents the growth of nuclei in spheres (pseudospheres).

Continuous lines of the same colour represent substrates on the same

curvature (in absolute value), and the dashed line represents the growth

law on a planar geometry. The growth of nuclei is faster (slower) for

substrates of positive (negative) curvature. Note how the evolution

converges to the growth law of NG on a plane as the curvature of spheres

or pseudospheres decreases.
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Figure 4 | NG in a sinusoidal geometry. (a–e) show snapshots of the

simulation of growing nuclei seeded at a bump, which display characteristic

features in the free-energy landscape for NG. (f) Free-energy barriers for

NG on a fixed geometry and different degrees of supercoolings 1=Eð Þ.
Rq represents a measure of the roughness of the substrate. For high

supercoolings 1=Eo150ð Þ the free energy display a single barrier. The inset

shows the evolution of this barrier with the different supercoolings. The

presence of negative curvature induces the formation of local minima an

extra barrier for smaller supercoolings 1=E � 150� 200ð Þ. Closer to
coexistence 1=E4250ð Þ a new minima and barrier appear as a consequence

of the negative curvature of the next nearest saddles.
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the first neighbouring saddles (see Fig. 4b for a nucleus of this
size). Clearly, this is a geometrical effect coming from an increase
of surface energy of nuclei due to the approach to a negative
curved region. Thus, initially propagating nuclei become
equilibrated and trapped by the negative curvature of the saddles.
The escape from these regions requires the overcoming of
an extra barrier associated with a much larger critical size
hRi/RqB3.5 (Fig. 4c).

Here we note that for small supercooling on a periodically
curved substrate it is possible to obtain a microemulsion state as a
metastable thermodynamic phase. These geometries are such that
practically all nucleation events will take place in regions of high
positive curvature and the nuclei will be unable to invade regions
of negative curvature. Thus, at low supercooling, the system will
remain arrested in a metastable microemulsion state that share
characteristics of both phases with interesting perspective for
applications. The formation of emulsion phases are typical of
systems with a conserved order parameter, like the familiar
patterns obtained in oil–water mixtures39. These are non-
equilibrium states that evolve in time according to a self-similar
mechanism. However, on flat geometries, emulsions cannot be
obtained for non-conserved order parameters, like crystallization,
because once a nucleus overcomes the critical size it freely
propagates throughout the system.

As the coexistence line is approached, the critical nuclei grow
in size, feeling the presence of other curved regions of the
substrate. For 1=E � 250� 350 a new local minimum arises for
nuclei of sizes around hRi/RqB5. This minimum corresponds to
the trapping of nuclei by the negative curvature of the next
nearest saddle points (Fig. 4d), producing the formation of an
extra barrier associated to a larger critical size hRi/RqB6.

It is interesting to note here that this second geometry-induced
barrier has a much lower height as compared with the previous.
This is just a consequence of how the curvature is distributed on
these sinusoidal substrates. For the second barrier, the negative
curvature of the next nearest saddles is in part compensated by the
positive curvature of the nearest positive-curved bumps, such that
a lower activation is required to escape from these regions. Thus,
close to coexistence, the energy landscape displays a ‘ratchet-like’
form, where the system relaxes by exploring subsequent metastable
states of bigger size and smaller activation energy.

Figure 5 shows the evolution of the critical size Rc for NG as a
function of the degree of supercooling 1=Eð Þ. As expected, the
critical size decreases with supercooling. However, the formation
of new minima and extra barriers as supercooling is varied,
originate abrupt jumps in the critical size for nucleation.

Note that in complex geometries, it is also possible that the
spatial location where the critical nuclei reside, could change as

supercooling is varied, originating thus not only jumps in critical
sizes but also sudden changes in the surface locations where
critical nuclei develop.

Effect of the mean curvature. Up to now we have considered the
effects of the Gaussian curvature K on NG. This is the only
curvature that modifies the laws of NG in 2D systems of negli-
gible thickness. Here we consider physical systems where the
thickness d of nuclei cannot be neglected, but where the NG
process can still be considered as fundamentally 2D (d5Rc). In
such cases, a system with thickness can be modelled by two
parallel surfaces displaced by ~d ¼ d~n40,41, where ~n is the normal
to the surface (see an scheme of the system in Fig. 6a). As shown
below, in such cases not only the Gaussian curvature K but also
the mean curvature H plays an important role in NG.

The effects of finite thickness can be studied by considering the
energy of formation of a nucleus:

DFðrÞ ¼ �VDf þAs; ð14Þ
where the volume V and surface area A can be calculated by
considering the nucleus as composed of different layers. On each
of these layers the section of the nucleus is (approximately) a
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geodesic circle, but due to the presence of curvature, the radius of
these circles will be in general, a function of the thickness. Then,
the volume and area can obtained by integrating the area and
perimeter of the geodesic circles in the thickness of the system
(see Methods).

In the limit of small thickness (dooR) and small curvatures
R0
c

�
RK � 1

� �
, the energy of formation of nuclei can be expanded

leading to a simple expression for the critical size for NG (see
Methods):

Rc ¼ R0
cGKH þ � � � ; ð15Þ

where again GKH represents a geometric factor, but now this
factor is a function of both curvatures and thickness:

GKH ¼ 1� 1
3
K0R

02
c � 1

2
H0d ð16Þ

Thus, as previously found for the Gaussian curvature K0, in
general, the presence of non-zero mean curvature H0 and finite
thickness d will contribute to the formation of critical nuclei
during NG. Note however that as the mean curvature is related to
the way the surface is embedded in 3D Euclidean space,
the critical size for NG will be very different if the process
develops on the external or internal surface of the substrate.
For example, for the case of cylindrical substrates, it will be
much easier to nucleate in the external surface of the
cylinder GKH � 1� 1

2H0d
� �

than on its internal face
GKH � 1þ 1

2H0d
� �

. A similar behaviour was previously
observed by using Monte Carlo simulations of NG dynamics in
colloidal suspensions42.

Figure 6b shows the good agreement between the theoretical
expression equation (15) and numerical simulations for NG on
spheres for nuclei of different thickness d. Note how the critical
size decrease with d for NG on the external surface of the sphere,
but increase with d on an internal surface.

Effect of elastic frustration. In general, when a crystal is forced
to reside on a curved surface, some lattice bonds necessarily
compress or stretch, giving rise to an increase of the strain energy,
geometrically frustrating the formation of crystal bonds5–9. In
some cases, such elastic distortions can be released by introducing
topological defects in the lattice on particular regions of the
substrate.

In a recent experiment, the effects of this elastic frustration on
NG has been explored by following the dynamics of 2D growing
colloidal crystals on spherical substrates32. Here the colloidal
particles were constrained to reside on the curved interface of
water droplets dispersed in oil. This study revealed the presence
of an elastic instability as a main consequence of the high
geometric frustration in the crystallites. Due to the rapid increase
of the strain energy with size, the nuclei tend to grow in ramified
fractal-like form on spheres rather than in the typical compact
structure observed in planar geometries.

The effects of curvature and frustration on crystallization has
also been recently studied in experiments of 3D heterogeneous
nucleation on the surface of curved substrates43,44. Here foreign
particles are located inside colloidal suspensions, acting as seeds
for crystallization, giving rise to a heterogeneous nucleation
process, which starts on the surface of a curved hard wall (the
surface of the foreign particles)45. Such studies have also shown
how curvature and geometric frustration can modify NG. It was
found that although critical nuclei still form on the surface of the
substrates, they tend to detach when growing, mainly because the
curvature produce strains in the crystal lattices (some crystal’s
bonds would need to stretch or compress in order to adjust to the
surface geometry), which largely increases the elastic free energy
of growing nuclei. Although such NG processes are mainly 3D,

and then in principle different to the 2D processes considered
here, some similarities are found. For example, due to the effects
of mean curvature H0 and thickness d the NG is found to be
different if the process develops on the outer or inner surface of
the substrates.

The effects of elastic frustration can be incorporated in our
model by adding the corresponding elastic free energy to the
functional in equation 2. In general, the elastic energy of a curved
crystalline monolayer on a curved substrate can be written as:

Fstrain ¼ 1
2Y

Z
d2r

ffiffiffi
g

p
DLBwð Þ2; ð17Þ

where Y is the Young modulus of the crystal and w is the Airy
stress function, which is dependent of both underlying curvature
K and presence and location of topological defects in the crystal.

In the case of spherical substrates of radius a, and for small
nuclei of size R containing no defects, the elastic free energy
results in Fstrain � Yp

384
R6

a4 (ref. 32). Figure 7 shows free-energy
barriers for NG on spherical substrates, for defect-free crystal
nuclei of different Young modulus. Here in addition to the
thermal barrier (red dot), the fast increase in the strain of the
nuclei with R produces an absolute minimum in the energy
landscape (black dots), such that a growing nuclei would reach an
equilibrium size, being unable to propagate throughout the
system. One way to escape from this energy minimum is by
distorting the nuclei shape in less-compact structures, as observed
in the experiments of Meng et al.32

Note that for cases where the lattice structure is very soft
(where topological defects have low core energies), it is
conceivable that the system would rapidly relax the strain energy
through the formation of topological defects. In such cases, we
can expect that the strain-free energy contribution do not play a
major role in the nucleation dynamics and therefore we can
expect similar results for NG on curved geometries as in previous
sections.

Discussion
In this work we have studied NG on curved geometries in systems
where the imbalance of volume and surface free energies of nuclei
directs the phase transition. It is precisely the change of this
imbalance with supercooling and local curvature that makes NG a
rich and complex phenomena in curved space.

In general, the critical size and propagation rate of nuclei are
both strongly dependent on the underlying geometry. For large
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curvatures, the critical sizes can be severely modified (Fig. 3a). For
example, for cases where the radius of curvature of the substrate
is of the order of the critical size for nucleation on the plane
R0
c

�
RK � 1

� �
, the critical size for nucleation is reduced in 35%

for positive underlying curvature. Note, however, that for the
same thermodynamic conditions the critical size becomes about
250% larger for negative underlying curvature.

Because of this effect, substrates of varying curvature impose
complex relaxation paths for NG, with several geometry-induced
local minima, with interesting applications for phases deposited
on substrates of controlled roughness. In general, the character-
istic time tm that a system spends in a given metastable state
roughly scales with its activation energy: tm � exp DF=kBTð Þ
(refs 1,2). Contrary to NG of two-phase systems in planar
geometries, here the different local free-energy minima originated
by the varying curvature would give rise to a full spectrum of
relaxation times. Such spectrum, having the main information of
how the relaxation process is developed, is a fingerprint of the
way the curvature is distributed throughout the substrate.

Due to the generality and simplicity of our model, we expect
that the results obtained here could be applied to a variety of
systems in condensed matter, and other fields concerned with the
development of a new phase on a curved surface. Experiments of
colloidal crystallization on curved surfaces could be carried out
on capillary bridges of negative Gaussian curvature and null mean
curvature, used in the studies of 2D curved crystalline structures
and defects in refs 13,14. The combined effects of Gaussian K and
mean H curvatures and thickness d on NG could also be
experimentally addressed by confining block copolymers, liquid
crystals or similar systems into different geometries16, like
corrugated substrates15,19, spherical shells20 or toroidal
droplets23. In all these systems we expect that the interplay
between geometry and phase nucleation will lead novel pattern
formation phenomena that can be controlled to design useful
supramolecular and soft materials.

Methods
Equations describing the steady propagation of nuclei. After the functional
derivation in equation (4), the evolution equation for a non-conserved order
parameter takes the form:

@c
@t

¼ DDLBc� @f cð Þ
@c

ð18Þ

Upon using geodesic polar coordinates, the Laplace–Beltrami operator can be
written as46:

DLBc ¼ @2c
@r2

þkg r; yð Þ @c
@r

þ 1
r2
@2c
@y2

exp 2
Z r

0
kgðuÞdu

� �
; ð19Þ

where kg r; yð Þ ¼ @
@r ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G r; yð Þ

p
is the local curvature of the geodesic circles. For

general geometries the Laplace–Beltrami operator takes a complex form, being
dependent on both coordinates (r,y). However, for surfaces with radial symmetry
respect to the origin O, the geodesic curvature is only a function of the geodesic
distance kg�kg(r). In such cases we expect the nuclei to have radial symmetry, such
that the Laplace–Beltrami operator takes the much simplified form

DLBc � @2c
@r2 þ kg r; yð Þ @c@r .

We can now describe steady-state solutions representing the growth or collapse
of nuclei during NG. Here the motion of a steadily propagating interface can be
described through a single combined coordinate X¼ r�R(t), where R(t) is the
radius of the nuclei at time t. We assume that the interface is narrow respect to the
nuclei radius R. Then we can take kg(r)�kg(R) and rewrite the evolution equation
in the comoving coordinates X, as the system of coupled equations (6) and (7) in
the Results section.

Simulations. The simulations of NG in curved space performed in this work were
developed by seeding an initial (geodesic) circular nucleus of a prescribed initial
radius R0 on a particular region of the substrate, and studying the temporal
evolution through the numerical resolution of equation (18).

The initial circular nuclei were obtained, for any underlying geometry, through
a fast marching algorithm47. Equation (18) can be accurately solved through a
finite difference scheme, forward in time and centred in space and periodic
boundary conditions29,30. In the case of systems with finite thickness, the

simulations were performed by numerically solving equation (18) through finite
elements, with periodic and null flux boundary conditions.

For different geometries and degrees of supercoolings e, the critical sizes Rc

were obtained by finding the smallest nuclei, which is able to grow in time. The
free-energy landscapes for NG were obtained by inserting the order parameter
distribution cðrÞ, of growing or collapsing nuclei of size R(t), in the free-energy
functional equation (2).

Critical size in systems with thickness. Given a nucleus in a curved system with
thickness, some general conclusions can be drawn in the limit of small width d and
small critical size Rc.

To get the volume V and area A associated to the formation during nucleation
(equation 14), the nucleus is considered as having different layers, where in each
layer the nucleus has a circular shape. Thus, the volume and area can be obtained
by integrating the area and perimeter of the geodesic circles in the thickness of the
system. Here the perimeter Pd and area Ad of these circles can be written in the
approximate form33:

Pd � 2pR dð Þ� p
3
K dð ÞR dð Þ3 ð20Þ

Ad ¼ pR dð Þ2 � p
12

K dð ÞR dð Þ4 ð21Þ

where R(d) and K(d) are the radius and Gaussian curvature in the d-layer, given by:

RðdÞ � 1þH0dð ÞR0 ð22Þ

KðdÞ ¼ K0

1þ 2H0dþK0d
2 � K0

1þ 2H0d
ð23Þ

Here R0, K0 and H0 represent the size of nuclei and the Gaussian and mean
curvatures evaluated on the surface of the substrate (for d�0). The above
expression for the Gaussian curvature is a well-known result that relates the
Gaussian curvature of a surface K with the Gaussian K0 and mean H0 curvatures
of a parallel surface displaced by ~d ¼ d~n, with ~n the normal to the surface40,41.

In this approximation, the area and volume of the nucleus take the simple
forms:

A � 2pR0 �
p
3
K0R

3
0

� 
1þ 1

2
H0d

� �
d ð24Þ

V � pR2
0 �

p
12

K0R
4
0

� 
1þH0dð Þd ð25Þ

The replacement of these expressions in the energy of formation of a nucleus
with thickness (equation 14), straightforwardly leads to the expression of the
critical size for NG (equation 15).
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dynamics on curved surfaces. Phys. Rev. E 88, 012306 (2013).
31. Garcı́a, N. A., Pezzutti, A. D., Register, R. A., Vega, D. A. & Gómez, L. R. Defect
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