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Cytosolic targeting factor AKR2A captures
chloroplast outer membrane-localized client
proteins at the ribosome during translation
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& Inhwan Hwang1,3

In eukaryotic cells, organellar proteome biogenesis is pivotal for cellular function. Chlor-

oplasts contain a complex proteome, the biogenesis of which includes post-translational

import of nuclear-encoded proteins. However, the mechanisms determining when and how

nascent chloroplast-targeted proteins are sorted in the cytosol are unknown. Here, we

establish the timing and mode of interaction between ankyrin repeat-containing protein 2

(AKR2A), the cytosolic targeting factor of chloroplast outer membrane (COM) proteins, and

its interacting partners during translation at the single-molecule level. The targeting signal of

a nascent AKR2A client protein residing in the ribosomal exit tunnel induces AKR2A binding

to ribosomal RPL23A. Subsequently, RPL23A-bound AKR2A binds to the targeting signal

when it becomes exposed from ribosomes. Failure of AKR2A binding to RPL23A in planta

severely disrupts protein targeting to the COM; thus, AKR2A-mediated targeting of COM

proteins is coupled to their translation, which in turn is crucial for biogenesis of the entire

chloroplast proteome.
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C
hloroplast proteome biogenesis involves the import of a
large number of nuclear-encoded proteins from the
cytosol after translation. More than 3,000 proteins are

targeted to chloroplasts from the cytosol by multiple pathways1–3.
The main focus of studies on chloroplast targeting has been to
elucidate the mechanisms that mediate transfer of the transit
peptide-containing precursors across two envelope membranes.
During passage across the membranes, the precursors bind to
surface-localized receptors, such as Toc159, Toc33 and Toc34,
and subsequently translocate through the import channels Toc75
and Tic20 at the outer and inner envelope membranes,
respectively. At the stromal side of the inner membrane,
complexes containing Tic110-Tic40-Hsp93 or cpHsp70 interact
with incoming precursors to mediate the translocation activity4–7.

How nascent chloroplast proteins are specifically recognized in
the cytosol after translation is not completely known. Sorting is
the earliest step in organellar protein targeting. Recent work
identified Arabidopsis ankyrin repeat-containing protein 2
(AKR2), AKR2A and AKR2B as cytosolic targeting factors for
chloroplast outer membrane (COM) proteins8–10. These COM
proteins are involved in chloroplast functions including protein
import and communication between the chloroplast and cytosol;
therefore, AKR2A-mediated protein targeting directly or
indirectly plays a crucial role in all chloroplast activities.

In this study, we investigated when and how AKR2A
specifically recognized its nascent cargo proteins in the cytosol
during protein targeting to chloroplasts. We employed atomic
force microscopy (AFM) and measured the interaction between
corresponding partners at the single-molecule level. AFM force
measurement and mapping have been useful for studying single-
molecule recognition events11–20. We reported previously that the
dendron-modified surface generated sufficient lateral spacing
between immobilized biomolecules, thereby improving
biomolecular detection with a greater tendency to observe force
curves with single-rupture event21–25. The current study presents
evidence that the targeting signal of nascent AKR2A clients
residing in the ribosomal exit tunnel induces AKR2A binding to
ribosomal RPL23A at an early stage of translation, whereas
AKR2A binds simultaneously to RPL23A and the exposed
targeting signal emerging from the exit tunnel at a later stage of
translation. RPL23A artificial microRNA (amiRNA) plants, which
have low RPL23A levels, have an albino phenotype with defective
protein targeting to the COM, stroma and thylakoids.

Results
AKR2A binds to ribosomes that translate its client proteins.
The first event in AKR2A-mediated protein targeting to chlor-
oplasts is to sort the client proteins from the pool of nascent
proteins in the cytosol. To gain insight into the sorting
mechanism, we examined when AKR2A binds to its clients. We
hypothesized that the earliest binding occurs during translation
because AKR2A recognizes the hydrophobic transmembrane
domain (TMD) of client proteins, which may require AKR2A
binding to ribosomes. To test this, wheat-germ extracts were
incubated with His:AKR2A, and proteins bound to ribosomes
were precipitated and analysed by western blotting using an anti-
His antibody. His:green fluorescent protein (GFP) was included
as a negative control. His:AKR2A, but not His:GFP, was detected
in the precipitates, indicating that AKR2A binds to ribosomes
(Fig. 1a). This result prompted us to examine whether AKR2A
binds to its clients during translation. Ribosome-nascent chain
complexes (RNCs) of chloroplast outer envelope protein 7
(OEP7), RNC-OEP7, were prepared by translating OEP7 as an
AKR2A client in wheat-germ extracts. The termination codon of
OEP7 was removed to prevent release from ribosomes26. OEP7

was labelled with [35S]methionine and [35S]cysteine. A 7.0 kDa
protein band was detected by autoradiography, confirming OEP7
translation. Next, RNC-OEP7 was precipitated from wheat-germ
extracts by ultracentrifugation, and the presence of His:AKR2A in
the pellet was examined by western blot analysis using an anti-His
antibody. His:AKR2A was detected in the pellet fraction (Fig. 1a).
The amount of His:AKR2A in the pellets was higher with RNC-
OEP7 than with no DNA (Fig. 1a), indicating that OEP7
translation enhances AKR2A binding to RNC-OEP7. In a
reciprocal experiment, the incubation mixtures were subjected
to immunoprecipitation (IP) with an anti-His antibody. To test
for the presence of ribosomes, the immunoprecipitates were
examined for the presence of 18S rRNA using RT-PCR. The 18S
rRNA was detected in precipitates from mixtures that had been
incubated with His:AKR2A, but not in those incubated with
His:GFP (Fig. 1b). This result is consistent with the hypothesis
that AKR2A is recruited to ribosomes for client binding during
translation. In fact, the AKR2A ankyrin repeat domain (ARD) is
sufficient for ribosome binding (Supplementary Fig. 1).

We tested the binding of endogenous AKR2s to RNCs.
Protoplasts were transformed with OEP7:GFP targeted to COM,
or GFP as a control, and RNCs were pelleted from protoplast
extracts by ultracentrifugation. Endogenous AKR2s were detected
in the pellet from extracts of protoplasts expressing OEP7:GFP
but not transformed with GFP (Fig. 1c), thereby confirming that
AKR2s bind to RNCs with OEP7:GFP. Ribosomal enrichment in
the pellet fraction with little contamination from chloroplasts
and soluble proteins was confirmed by western blot analyses
using anti-RPL23A, anti-Toc159 and anti-AALP antibodies,
respectively.

To determine when AKR2A binds to RNCs containing AKR2A
clients, RNCs were prepared with two different polypeptide
lengths; OEP7(36) and OEP7:GFP(104) had 36 and 104 amino-
acid (aa) residues, including the two targeting signal components,
TMD, and C-terminal positively charged flanking region (CPR).
The entire OEP7(36) nascent chain should be located within the
ribosomal exit tunnel, whereas the N-terminal OEP7 moiety of
the OEP7:GFP(104) nascent chain should be exposed from the
ribosomal exit tunnel. Both OEP7(36) and OEP7:GFP(104)
without the termination codon were translated using the wheat-
germ extracts in the presence of His:AKR2A. RNCs were
precipitated by ultracentrifugation and analysed by western
blotting using an anti-His antibody (Fig. 1d,e). For controls,
wheat-germ extracts were incubated with no DNA in the presence
of His:AKR2A or GFP. The amount of His:AKR2A coprecipitated
with RNC-OEP7:GFP(104) was two-fold higher than that of the
vacant ribosomes. The level of His:AKR2A binding to RNC-
OEP7(36) increased to approximately the same level as that
binding to RNC-OEP7:GFP(104). To confirm the strong
binding of His:AKR2A to RNC-OEP7(36), we tested His:AKR2A
binding with another COM protein AtToc6427 and with non-
chloroplast proteins. His:AKR2A showed strong binding to
RNC-AtToc64(36). By contrast, His:AKR2A exhibited slightly
reduced binding (relative to binding to the vacant ribosomes) to
RNCs containing 36 aa non-chloroplast proteins, including
cytosolic GFP(36), geranylgeranyl pyrophosphate synthase 2(36)
[GGPS2(36); endoplasmic reticulum (ER) membrane protein]
and binding protein (36) [BiP(36); ER lumenal protein]
(Fig. 1d,e and Supplementary Fig. 2). These results confirm that
AKR2A specifically binds to RNCs containing chloroplast outer
membrane proteins. Translation of all six constructs was
confirmed by autoradiography (Fig. 1d and Supplementary
Fig. 2).

To further test the association of AKR2A with translating
ribosomes, we fractionated the in vitro translation mixtures on a
sucrose gradient and examined the distribution profile of
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Figure 1 | AKR2A is recruited to ribosomes during translation. (a,b) His:AKR2A binding to ribosomes or RNC-OEP7. (a) Wheat-germ extracts were

incubated with OEP7 or without DNA [(� )DNA] in the presence of His:AKR2A or His:GFP. The ribosome fractions were analysed by western blotting.

OEP7 was labelled with [35S]methionine and [35S]cysteine. Lower panel: loading control shows a segment of the Coomassie blue-stained blot. (b) The

presence of 18S rRNA in the immunoprecipitates was detected by RT-PCR using 18S rRNA-specific primers. (c) RNC binding of endogenous AKR2s.

Protoplasts were transformed with OEP7:GFP or GFP. Total extracts and RNC fractions were analysed by western blotting using the indicated antibodies.

R¼ RNC fraction; T¼ total extracts. (d,e) Specific binding of AKR2A to RNCs with chloroplast outer membrane proteins. (d) Wheat-germ extracts were

incubated with the indicated constructs or no DNA in the presence of His:AKR2A or His:GFP, and ribosomes or RNC fractions were analysed by western

blotting. GFP, His:GFP; A2, His:AKR2A; Loading control, a segment of the Coomassie blue-stained blot. (e) To quantify His:AKR2A binding to RNCs, the

His:AKR2A band signal intensity was measured using LAS3000 and software (FUJIFILM). The signal intensity of His:AKR2A is a value (%) relative to that

of (-) DNA. Mean±s.d. are shown (n¼ 3). Asterisks indicate a significant difference from the corresponding control experiment by Student’s t-test

(*Po0.05; **Po0.01; ***Po0.001). (f–h) AKR2A association with translating ribosomes. (f) His:AKR2A together with AtToc64:HA mRNA or no mRNA

were added to the wheat-germ extracts. After ultracentrifugation on a linear sucrose gradient, the fractions were analysed by western blotting using anti-

His, anti-HA and anti-RPL23A antibodies. (-) mRNA¼ no mRNA; FN¼ fraction number; 40S¼40S ribosomes; 60S¼ 60S ribosomes; and 80S¼ 80S

ribosomes. (g) To quantify the amount of His:AKR2A in these fractions, the signal intensity of His:AKR2A bands was measured and presented as a relative

value (%) to that in fraction 2 of (-) mRNA. (h) To confirm translation of AtToc64:HA, 5% of the translation mixture in (f) was analysed by western blotting

using an anti-HA antibody. Loading control, a protein band of the immunoblot stained with Coomassie blue.
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His:AKR2A and ribosomes on the gradient. Here, we used the
64 kDa HA-tagged AtToc64 (AtToc64:HA) as the AKR2A client
because OEP7 is too short to produce polysomes. Wheat-germ
extracts were incubated with AtToc64:HA mRNA or without
mRNA in the presence of His:AKR2A, and fractionated on a
15� 50% linear sucrose gradient by ultracentrifugation. The
gradient fractions were analysed for ribosomes by measuring
absorbance at 254 nm (A254) (Fig. 1f); these results were
confirmed by western blot analysis using an anti-RPL23A
antibody. Without mRNA, the majority of RPL23A was detected
in fraction numbers 8 and 10, which contained monosomes; this
result was consistent with the A254 profile. With AtToc64:HA
mRNA, the majority of RPL23A was detected in the monosome
fractions but at substantially lower levels than that of the
translation mixture without mRNA; concomitantly, the RPL23A
intensity was higher in the polysome fractions. Next, we detected
His:AKR2A in these fractions. Without mRNA, His:AKR2A was
found primarily in the top fraction, with little or no His:AKR2A
visible in the monosome or polysome fractions. With
AtToc64:HA mRNA, the amount of His:AKR2A in the top
fraction decreased, and the amount in monosome and polysome
fractions concomitantly increased (Fig. 1f,g). The distribution of
His:AKR2A closely coincided with that of AtToc64:HA (Fig. 1f).
These results confirm that AKR2A associates with translating
ribosomes. Translation of AtToc64:HA was confirmed by western
blot analysis using an anti-HA antibody (Fig. 1h). Collectively,
these results strongly support the hypothesis that AKR2A
captures its clients at ribosomes during translation.

AKR2A specifically recognizes its clients on the ribosome. We
tested the interaction between AKR2A and RNC-OEP7(36)
at the single-molecule level using AFM. RNC-GGPS2(36) and
RNC-GFP(36) were included as negative controls. To confirm

translation of these constructs, the translation mixtures were
subjected to sodium dodecyl sulfate–PAGE (SDS–PAGE) and
protein bands were detected by autoradiography (Fig. 2a). For
AFM experiments, the third-generation dendron was introduced
onto the probe and the substrate through a self-assembly process
to generate appropriate spacing between proteins on the surface
of the probe and between RNCs on the substrate surface.
Appropriate linkers were employed to provide controlled orien-
tation of both substrate and probe. For AFM experiments, RNCs
were immobilized on the streptavidin-modified substrate using
biotinyl groups incorporated into mRNA. Conversely, AKR2A
was immobilized on the reduced glutathione (GSH)-tethered
AFM tip by fusing the AKR2A N-terminus to glutathione
S-transferase (GST); this fusion site is distant from the AKR2A
ribosome-binding domain (Fig. 2b). Therefore, immobilization of
AKR2A and translating ribosomes to the AFM tip and substrate,
respectively, should not interfere with the interaction between
AKR2A and ribosomes during the AFM force measurements.

Unbinding force histograms were analysed by fitting with a
single Gaussian curve, in which the most probable force value was
34±1 pN (mean±s.e.m.; n¼ 1,040) for RNC-OEP7(36) (Fig. 2c).
By contrast, the force histograms of RNC-GGPS2(36) (n¼ 1,011)
and RNC-GFP(36) (n¼ 1,081) (Fig. 2d,e) did not fit with the
single Gaussian curve, which indicated that the unbinding event
probability was lower than that of RNC-OEP7(36). The
significance of the average force value differences between RNC-
OEP7(36) and RNC-GGPS2(36) and between RNC-OEP7(36) and
RNC-GFP(36) was examined by t-test. The difference was
considered to be statistically significant (Po0.01) for
RNC-OEP7(36) but not for RNC-GGPS2(36) or RNC-GFP(36).
This indicates that AKR2A binds to RNC-OEP7(36) but not to
RNC-GGPS2(36) or RNC-GFP(36). As a control for the RNCs
containing biotinylated mRNA, wheat-germ extracts were
incubated without mRNA before applying to the substrate, and
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Figure 2 | Nascent AKR2A client chain induces AKR2A binding to RNCs before emergence from the exit tunnel. (a) Translation of the indicated cargoes

in wheat-germ extracts. RNCs were precipitated by ultracentrifugation and separated by SDS–PAGE followed by autoradiography. Nascent polypeptides

were labelled with [35S]methionine and [35S]cysteine. (b) Schematic of the experimental set-up. GST-fused AKR2A was immobilized onto the AFM tip, and

RNCs containing biotinylated mRNA were immobilized onto the dendron-modified surface. RNCs were prepared from wheat-germ extracts by translating

OEP7(36), GGPS2(36) or GFP(36) without the termination codon. (c–e) Force histograms of the specific interaction between AKR2A and RNCs.

Histograms were obtained from the whole set of specific curves for RNC-OEP7(36) (n¼ 1,040) (c), RNC-GGPS2(36) (n¼ 1,011) (d) and RNC-GFP(36)

(n¼ 1,082) (e). The value indicated by an arrow is the probability of no unbinding event. Gaussian fitting gave the most probable unbinding force and

representative force-distance curves were shown for RNC-OEP7(36).
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then subjected to AFM. AKR2A did not interact with this control,
confirming that vacant ribosomes do not bind to the streptavidin-
modified substrate (Supplementary Fig. 3). These results suggest
that AKR2A differentiates its binding ribosomes depending on the
type of nascent chains undergoing translation, even when they are
located in the ribosomal exit tunnel.

AKR2A simultaneously binds to ribosomes and nascent chain.
We examined AKR2A binding to RNCs when its clients were
exposed from ribosomes. A previous study showed that the
AKR2A N-terminal domain binds to OEP78. As a reference, the
unbinding force-distance curves between AKR2A and OEP7 were
recorded using AFM. The OEP7 targeting signal contains two
components, TMD (aa positions 10� 27) and CPR (aa positions
28� 36). We generated four serial deletion mutants designated
OEP7(9), OEP7(27), OEP7(36) and OEP7(50). OEP7(9) did not
contain the targeting signal, OEP7(27) contained only TMD but
lacked CPR, and OEP7(36) and OEP7(50) contained both TMD
and CPR. GST-fused OEP7 deletion constructs and GST:AKR2A
were immobilized onto the GSH-modified substrate and GSH-
tethered tip, respectively (Supplementary Fig. 4a–e). Unbinding
force histograms were analysed by fitting with the single Gaussian
curve. The most probable force values were 40±1 pN
(mean±s.e.m.; n¼ 1,090), 40±1 pN (mean±s.e.m.; n¼ 1,030)
and 32±1 pN (mean±s.e.m.; n¼ 1,008) for the interactions with
AKR2A-OEP7(50), AKR2A-OEP7(36) and AKR2A-OEP7(27),
respectively (Supplementary Fig. 4f–h). AKR2A-OEP7(27) had a
slightly lower interaction force than that of the other two
interactions, which may be due to the absence of CPR in
OEP7(27). By contrast, the unbinding force value of OEP7(9) was
lower than those of the other three deletion mutants and the
histogram did not fit the single Gaussian curve; the specific
unbinding event probability was reduced to 18% (Supplementary
Fig. 4i). These results confirm that both TMD and CPR in the
targeting signal contribute to AKR2A binding OEP7.

Next, we examined the mode of AKR2A interaction with RNC-
OEP7:GFP(90), in which the targeting signal of OEP7:GFP(90)
was exposed from ribosomes, and compared it with that of RNC-
OEP7(36), in which the entire nascent chain of OEP7(36) resided
within the ribosomal exit tunnel. AKR2A and RNCs were
immobilized onto the tip and substrate, respectively (Fig. 3a). The
most probable force value and stretching-distance value for
RNC-OEP7(36) were 34±1 pN and 4±1 nm (mean±s.e.m.;
n¼ 1,040), respectively (Fig. 2c and Supplementary Fig. 5a),
whereas for RNC-OEP7:GFP(90) they were 42±1 pN and
10±1 nm (mean±s.e.m.; n¼ 1,121), respectively (Fig. 3b and
Supplementary Fig. 5b). The unbinding force curves show a
double peak with 18 and 38% probability for RNC-OEP7(36) and
RNC-OEP7:GFP(90), respectively (Figs 2c and 3b and
Supplementary Fig. 6). The double peak in the unbinding curves
represents two independent interactions between the two binding
partners, raising the possibility that AKR2A has two interactions
with RNCs. However, a difference in the probability of the
double-peaked events between the two samples suggests that the
nature of the two interactions between AKR2A and RNCs may
not be identical. AKR2A has two binding domains, the
N-terminal domain for binding the targeting signal8 and the
ARD for binding the ribosome (Supplementary Fig. 1). RNC-
OEP7:GFP(90) may also have two binding sites (the OEP7
targeting signal and the ribosome) for AKR2A; thus, for RNC-
OEP7:GFP(90), one interaction may occur between the
N-terminal domain of AKR2A and OEP7:GFP(90)8, and the
other interaction may occur between the ARD and ribosomes. By
contrast, for RNC-OEP7(36), both interactions should occur
between AKR2A and ribosomes.

To gain insight into the interaction that produces the double
peak in the unbinding event, we examined the binding of AKR2A
to RNCs using AFM mapping. Force mapping measures key
parameters including cluster size, stretching distance, unbinding
force value and unbinding probability, and these parameters can
be used to confirm the interaction type28–31. Adhesion force maps
were obtained for a 300 nm� 300 nm area, and the unbinding
force was recorded at 15-min intervals with five measurements at
each pixel. The pixel size was chosen as smaller than the expected
hydrodynamic distance of RNCs attached to the substrate. In this
way, individual RNCs would appear as a cluster in the force map.
The dimension of 80S ribosomes is 30 nm� 31 nm� 20 nm
(height�width� thickness)32, and biotinylated mRNA should
also contribute to the hydrodynamic distance; therefore,
the chosen pixel size (15 nm) should be smaller than the
hydrodynamic diameter. In the force maps, pixels showing the
specific unbinding curve more than twice were included
(Supplementary Fig. 7), whereas pixels showing the specific
unbinding curve only once were discarded (black in the map).
The force level of each pixel in the map was determined by the
average unbinding force value. Specific pixels were categorized
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into three groups: light grey (r 13 pN), yellow (14� 70 pN) and
orange (Z 71 pN). Because the most probable force value for the
interaction between AKR2A and RNC-OEP7:GFP(90) was 42 pN,
and the s.d. was 14 pN, the yellow group ranged from 14
(42–2� 14) pN to 70 (42þ 2� 14) pN. A cluster containing
more than five yellow pixels connected to each other within a
boundary was selected to assign the RNCs in the map.
Four clusters of RNC-OEP7(36) and three clusters of
RNC-OEP7:GFP(90) were evident in representative force maps
(Fig. 4a,b). Within these clusters, double-peaked unbinding
events that were recorded more than once were indicated by an
asterisk. The percentage of pixels marked with an asterisk was
significantly larger with RNC-OEP7:GFP(90) (C1, 62%; C2, 57%;
and C3, 78%) than with RNC-OEP7(36) (C1, 14%; C2, 33%; C3,
0%; and C4, 18%) (Fig. 4c,d).

To further examine the probability of the double-peaked
unbinding events, seven maps for each sample were obtained, and
thirteen clusters for each RNC were analysed in detail
(Supplementary Tables 1 and 2). For three representative clusters
of RNC-OEP7(36) (C1, C10 and C13), the measured values of the
stretching distance, unbinding force and unbinding probability
were converted to the corresponding contour maps
(Supplementary Fig. 8). Although the overall behaviour matched
with that in a previous study for DNAs31, the shape of the clusters
was far from ellipsoid and the clusters were multi-centred,
indicating complexity in the hydrodynamic movement of the

surface-bound RNCs. For each cluster, the total number of
specific events within the clusters and the number of double-
peaked unbinding events in the pixels with asterisks were
displayed for comparison (Fig. 4e). The probability of pixels
with an asterisk was much higher with RNC-OEP7:GFP(90) than
with RNC-OEP7(36). To confirm this, we compared the
probability of the double-peaked curves with respect to the total
specific curves within the clusters. The probability was 44±19%
and 12±6% for RNC-OEP7:GFP(90) and RNC-OEP7(36),
respectively (Fig. 4f,g, left). When the noncluster-forming pixels
were included in the calculation, the probability of the
double-peaked events was 40±11% and 18±7% for RNC-
OEP7:GFP(90) and RNC-OEP7(36), respectively (Fig. 4f,g, right).
These results show that RNC-OEP7:GFP(90) had a much higher
probability than RNC-OEP7(36) to produce double-peaked
curves in the unbinding events. By contrast, the probability of
specific events was similar for both samples: 53±8% for RNC-
OEP7:GFP(90) and 53±10% for RNC-OEP7(36) (Supplementary
Table 3). One possible explanation for these results is that both of
the two interactions between AKR2A and RNC-OEP7:GFP(90)
are specific, whereas only one of the two interactions between
AKR2A and RNC-OEP7(36) is specific.

AKR2A binds to ribosomal RPL23A. We defined the ribosomal
binding site for AKR2A. RPL23 is located near the exit site of the
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ribosomal tunnel and interacts with various factors such as SRP,
nascent-chain associated complex (NAC) and Trigger factor33–37.
Therefore, RPL23 appears to serve as a general docking site for
cytosolic factors that transiently associate with ribosomes to
mediate protein targeting or folding of nascent polypeptide.
RPL23 is one of the strong candidates for the ribosomal docking
site for AKR2A binding. We examined AKR2A binding to two
isoforms of RPL23A, RPL23aA and RPL23aB, which are
Arabidopsis orthologues of RPL2338. GST:AKR2A was
incubated with His:RPL23aA or His:RPL23aB, and proteins
were precipitated and analysed by western blotting using an anti-
His antibody (Fig. 5a). AKR2A bound to both RPL23aA and
RPL23aB, but with stronger affinity to RPL23aB. The interaction
between AKR2A and RPL23aA or RPL23aB was examined at the
single-molecule level by AFM. The most probable force values
were 32±1 pN (mean±s.e.m.; n¼ 1,130) and 30±1 pN
(mean±s.e.m.; n¼ 1,032), respectively (Supplementary Fig. 9).
The observed probability of an unbinding event for RPL23aB was
higher than that for RPL23aA. In addition, to understand the
dissociation energy landscape and the kinetics, the loading
dependence of the two reference systems [AKR2A-RPL23aB
and AKR2A-OEP7(36)] was studied, which revealed that
single-energy barriers existed for both interactions; the kinetic
off-rate constant (koff) and the energy barrier distance (xb) were
2.01±1.22 s� 1 and 0.92±0.30 nm for the AKR2A-RPL23aB

interaction and 0.53±0.14 s� 1 and 0.86±0.14 nm for the
AKR2A-OEP7(36) interaction, respectively (Supplementary
Fig. 10 and Supplementary Table 4). The values are within the
published ranges of off-rate constants and length scales of other
proteins22,39–41.

We performed chemical crosslinking experiments to examine
whether AKR2A binds to RPL23A assembled into ribosomes.
His:AKR2A was incubated with RNC-OEP7(36), and then treated
with the chemical crosslinker BS(PEG)9. Proteins were analysed
by western blotting using anti-His and anti-RPL23A antibodies
(Fig. 5b). Without BS(PEG)9 treatment, AKR2A and RPL23A
were detected at the 40 and 20 kDa positions, respectively. After
BS(PEG)9 treatment, the amount of AKR2A was decreased from
the 40 kDa position and instead was detected near the 60 kDa
position. This AKR2A-positive 60 kDa band also reacted with an
anti-RPL23A antibody, indicating that AKR2A binds to RPL23A
assembled into the ribosome. To test the specificity of the
interaction, we examined AKR2A binding to RNC-OEP7(36) in
the presence of 0.5 mM His:RPL23aB as a competitor. A previous
study showed that purified RPL23 specifically interacts with
Trigger factor in vitro34. The probability of the unbinding event
was reduced from 39 to 5% (Fig. 5c, left). By contrast, when
0.5 mM His:RPL32A was used as a negative control, the
probability of the unbinding event did not decrease (Fig. 5c,
right), confirming that AKR2A specifically binds to RPL23A on
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the ribosome. The observed most probable force values (36±1
pN (mean±s.e.m.; n¼ 688) and 31±1 pN (mean±s.e.m.;
n¼ 697 or n¼ 646)) were approximately equal to that of the
interaction between AKR2A and RPL23aB.

Targeting of COM proteins is impaired in knockdown plants.
The physiological significance of AKR2A binding to RPL23A was
examined in planta. The rpl23aB mutant plants did not show any
noticeable phenotype, but knockdown of both RPL23aA and
RPL23aB isoforms results in a lethal phenotype42,43. To suppress
both isoforms, we generated inducible RPL23A-amiRNA
transgenic plants by placing RPL23A-amiRNA under the
control of a dexamethasone (Dex)-inducible promoter
(Supplementary Fig. 11a). The transcript levels of both RPL23A
isoforms were significantly reduced in RPL23A-amiRNA plants
when treated with 2 mM Dex (Supplementary Fig. 11b). Dex-
treated RPL23A-amiRNA plants displayed albino or yellow-leaf
phenotypes with growth defects (Fig. 6a) and abnormal
chloroplasts lacking thylakoids and grana stacks (Fig. 6b–g). In
addition, cells in Dex-treated RPL23A-amiRNA plants appeared
to be smaller overall than those in Dex-untreated RPL23A-
amiRNA plants. However, other organelles, such as mitochondria
and peroxisomes, did not show any obvious visible morphological
alterations at the ultrastructural level in Dex-treated RPL23A-
amiRNA plants. These results indicate that RPL23A is pivotal for
chloroplast biogenesis.

We examined AKR2A binding to ribosomes in Dex-treated
RPL23A-amiRNA plants. Cell extracts from control and RPL23A-
amiRNA plants that had been treated with or without Dex were
incubated with His:AKR2A. Ribosomes were pelleted and
analysed by immunoblotting using an anti-His antibody. The
amount of His:AKR2A was significantly lower in samples of
Dex-treated RPL23A-amiRNA plants than in samples of

Dex-treated control or Dex-untreated RPL23A-amiRNA plants
(Fig. 7a). The levels of COM proteins Toc34, Toc75 and Toc159,
a stromal protein RbcS and a thylakoid protein Lhcb4 were all
lower in Dex-treated RPL23A-amiRNA plants than in the Dex-
treated control or Dex-untreated RPL23A-amiRNA plants
(Fig. 7b,c). The levels of the signal recognition particle (SRP)
clients BiP, VSR and PIP2, cytosolic proteins Hsp70 and actin,
and mitochondrial protein VDAC1 were not affected (Fig. 7b,c).
The peroxisomal catalase level was reduced, although the reason
for this was not clearly understood. These results strongly suggest
that RPL23A plays a pivotal role in COM protein biogenesis,
which, in turn, is crucial for stromal and thylakoid protein
biogenesis.

The levels of ER and plasma membrane proteins were not
significantly affected in Dex-treated RPL23A-amiRNA plants. To
corroborate this, we examined the extent of ribosome association
with ER membranes and SRP binding to ribosomes. Cell extracts
from control and Dex-treated or -untreated RPL23A-amiRNA
plants were separated into soluble and microsomal fractions by
ultracentrifugation, and these fractions were probed with various
antibodies (Supplementary Fig. 12). In Dex-treated RPL23A-
amiRNA plants, the RPL23A levels in soluble and microsomal
fractions were reduced. However, the SRP54 levels in microsomal
fractions were the same in both Dex-treated RPL23A- and
control-amiRNA plants, indicating that reduced RPL23A levels
may not affect ribosomal binding of SRP. RPL29, another
SRP54-binding protein at the ribosomal exit site33,35,36,44, may
support SRP-mediated targeting of ER proteins in Dex-treated
RPL23A-amiRNA plants (Supplementary Fig. 12). In Dex-treated
RPL23A-amiRNA plants, the RPL32 levels (another ribosomal
protein) were not significantly different from that in control-
amiRNA plants, confirming that ribosome biogenesis occurs
normally.
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Figure 6 | RPL23A-amiRNA plants have defective chloroplast biogenesis. (a) Phenotype of RPL23A-amiRNA plants. Plants were grown on Murashige-

Skoog (MS) plates containing 2 mM dexamethasone for 2 weeks. Two independent RPL23A-amiRNA plant lines were analysed. WT¼wild type; control-

amiRNA, transgenic plants transformed with the control vector. Scale bar, 1 cm. (b–g) Chloroplast morphology in RPL23A-amiRNA plants. Ultrathin sections

prepared from leaf tissues of 2-week-old RPL23A-amiRNA plants grown in the presence and absence of 2mM dexamethasone were examined by electron
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Discussion
In this study, we provide compelling evidence that AKR2A
captures its clients at ribosomes during translation. This is similar
to the behaviour of the ER-targeting factors SRP and pre-
targeting complex Bat3/TRC35/Ubl4A, and the cytosolic chaper-
ones that assist the folding of nascent proteins36,45–49. Together
with previous work on SRP and pre-targeting complex Bat3/
TRC35/Ubl4A, our study suggests that ribosomes serve as a
platform for the docking of cytosolic factors that target organellar
proteins.

AKR2A has a basal binding affinity for ribosomes. This binding
affinity is enhanced when ribosomes translate AKR2A clients.
The data indicate that AKR2A binds ribosomes before the
targeting signal of nascent AKR2A clients emerges from the
ribosomal exit tunnel. One possible scenario is that AKR2A binds
to ribosomes via the ARD at an early stage of translation, and
subsequently captures its clients via the N-terminal domain at a
later stage when they emerge from ribosomes but before they are
released (Fig. 8). This is an elegant mechanism for client protein
sorting by factors involved in organellar protein targeting. This
process is reminiscent of SRP action in ER targeting, in which
SRP-binding affinity for ribosomes is greater when ribosomes are
engaged in translation of SRP clients50.

The dynamics of AKR2A–ribosome interaction during transla-
tion raises an intriguing question of how nascent polypeptides
residing in the exit tunnel can specifically induce ribosomal

binding of their targeting factors. Recent work proposed that
different nascent polypeptides may interact differently with the
exit tunnel, which is lined primarily with negatively charged RNA
molecules and ribosomal proteins RPL4, RPL17 and RPL3926,51.
The interaction between the nascent polypeptide and the exit
tunnel may depend on individual amino acids and/or local
structures of the nascent polypeptide residing in the exit tunnel.
Consistent with this notion, different targeting signals have
different amino acid compositions. The TMD of COM proteins
has lower hydrophobicity than that of ER proteins52. Recent
studies have suggested that the presence of a signal-anchor
sequence within the exit tunnel of the ribosome promotes binding
of SRP to the ribosome50. The dynamics of the SRP–ribosome
interaction is affected by the biophysical properties of the nascent
polypeptide located within the exit tunnel of the translating
ribosome. Moreover, the presence of a transmembrane segment
within the exit tunnel of the ribosome has been shown to promote
recruitment of RAMP4 via RPL1753. Thus, it appears that nascent
chains within the exit tunnel of the ribosome are able to modulate
the biochemical properties of the exit region of the tunnel and
downstream events. In accordance with this idea, AKR2A was
recruited to ribosomes only when the targeting signal of its client
protein was passing through the interior of the exit tunnel of the
ribosome during translation. We propose that, during the passage
of targeting signals of nascent proteins through the exit tunnel,
the different physicochemical properties of targeting signals may
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induce targeting signal-specific structural changes in the
ribosome and/or in ribosomal proteins located at the exit site,
thereby allowing the ribosome and/or certain ribosomal proteins
to serve as a platform for interactions with targeting factors or
chaperones of organellar protein targeting or protein folding,
respectively.

Multiple ribosomal proteins located at the exit region of the
ribosomal tunnel have been shown to interact with various factors
involved in organellar protein targeting or co-translational
protein folding. RPL23 interacts with multiple factors such as
SRP, chaperones and NAC, which raises the possibility that
RPL23 functions as the general docking site. SRP and
chaperones35,54 also interact with RPL29 located at the exit
region of the ribosomal tunnel. Zuotin, a component of the
Hsp70- and Hsp40-based triad complex (Ssb/Ssz/Zuotin), which
is involved in co-translational folding of nascent polypeptides in
yeast, interacts with another ribosomal protein RPL31 (refs
55,56). AKR2A binds to RPL23A, the general docking site of
multiple proteins. AKR2A and SRP may bind to two different
sites on RPL23A in Arabidopsis. Similarly, Trigger factor and SRP
simultaneously bind to two different sites on RPL2336,57,58. The
importance of RPL23A in protein targeting to chloroplasts was
examined using Dex-inducible RPL23A-amiRNA plants.
Consistent with the biochemical data, Dex-treated RPL23A-
amiRNA plants exhibited yellow or albino phenotypes with severe
defects in chloroplast protein targeting and chloroplast
development. However, SRP-mediated protein targeting to the
ER in Dex-treated RPL23A-amiRNA plants was essentially the
same as that in control plants. In the case of SRP, the SRP54
N-domain binds to both RPL23 and RPL29 located at the exit
region of the ribosomal tunnel33,35,36,44. Thus, although it is not
fully understood how SRP can deliver proteins to the ER in Dex-
treated RPL23A-amiRNA plants, one possible explanation is that
in the absence of RPL23A, RPL29 alone may manage to recruit
SRP to the ribosome for the SRP-mediated targeting of ER
proteins in Dex-treated RPL23A-amiRNA plants.

In addition to AKR2A binding to ribosomes, AKR2A binds to
the nascent polypeptide as soon as the targeting signal emerges
from the ribosomal exit tunnel. In fact, AKR2A binding to
RPL23A at the ribosomal exit site induces AKR2A binding to its

client when it emerges from the ribosome. The mode of
interaction between AKR2A and RNCs may change depending
on the stage of translation. AKR2A initially binds to ribosomes;
subsequently, after the targeting signal emerges, it binds
simultaneously to both ribosomes and clients. When translation
is complete, AKR2A binds only to the client protein. The
interaction between AKR2A and its clients during translation is
crucial for protein targeting to chloroplasts in two different ways.
First, it greatly improves the sorting efficiency of COM proteins
among nascent proteins. Second, it eliminates the potential
nonspecific aggregate formation of COM proteins in the aqueous
cytosol before they are targeted to the chloroplast8,59.

AKR2s are involved in the targeting of COM-localized signal-
anchored (SA) proteins OEP7 and Toc64 as well as tail-anchored
(TA) proteins Toc33/Toc34 and OEP92,8,9. In Dex-treated
RPL23A-amiRNA plants, COM proteins Toc75 and Toc159 as
well as stromal protein RbcS and thylakoid protein Lhcb4 were
also reduced in their levels. It is possible that lower levels of Toc
components involved in protein import result in reduced levels of
transit peptide-containing proteins such as Toc75, RbcS and
Lhcb4 in Dex-treated RPL23A-amiRNA plants. Thus, AKR2A-
mediated protein targeting directly or indirectly plays a crucial
role in chloroplast proteome biogenesis.

Methods
Materials. The silane coupling agent, N-[3-(triethoxysilyl)propyl]-O-polyethylene-
oxide urethane (TPU) (Gelest), was stored under nitrogen, and all other chemicals
and solvents were reagent grade from Sigma-Aldrich unless noted otherwise. All
washing solvents for the probes and substrates were HPLC grade from Mallinckrodt
Baker. Ultrapure deionized (DI) water (18.2MO cm) was produced by the Milli-Q
purification system (Millipore). The silicon-nitride probes (PEN-0012-03; k¼
B16pNnm� 1) were purchased from NanoInk. The polished prime Si(100) wafers
(dopant, phosphorus; resistivity, 1.0–10.0O cm) were purchased from Silicon
Quest International. All water used in the ribosomal complex experiments was
pretreated overnight with diethylpyrocarbonate [0.05% (v/v)].

Plant growth. Arabidopsis plants (Col-0) were grown on Murashige-Skoog (MS)
plates or liquid media supplemented with 1% sucrose in a growth chamber at
20–22 �C under a 16 h light/8 h dark cycle. Leaves or whole tissues were harvested
from 10-day- to 3-week-old plants and used immediately for protoplast isolation or
total RNA extraction.
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Figure 8 | Model for AKR2A binding to nascent AKR2A clients and RPL23A located at the ribosomal exit site. AKR2A has a basal binding affinity for

ribosomes. The AKR2A ribosomal binding affinity is enhanced when the targeting signal of a nascent AKR2A client resides in the ribosomal exit tunnel

before it emerges from the ribosome. In this process, AKR2A docks to RPL23A at the ribosomal tunnel exit site, and thereby is positioned for binding cargo

proteins. After the targeting signal emerges from the exit tunnel, AKR2A simultaneously binds two RNC sites, ribosomal RPL23A and the COM client

targeting signal. ARD¼ the C-terminal ankyrin repeat domain; N¼ the N-terminal AKR2A domain.
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Construction of plasmid DNAs. The constructs of GST- or His-tagged recom-
binant proteins RPL23A, RPL32A and OEP7 deletion mutants were generated using
a PCR approach. The primer sequences used in this study are listed in
Supplementary Table 5. The primers used were as follows: RPL23aA-F1 and
RPL23aA-R1 for His:RPL23aA; RPL23aB-F1 and RPL23aB-R1 for His:RPL23aB;
RPL32A-F and RPL32A-R for His:RPL32A; RPL23aA-F2 and RPL23aA-R2 for
GST:RPL23aA; RPL23aB-F2 and RPL23aB-R2 for GST:RPL23aB; OEP7-F1 and
OEP7(9)-R for GST:OEP7(9); OEP7-F1 and OEP7(27)-R for GST:OEP7(27); OEP7-
F1 and OEP7(36)-R1 for GST:OEP7(36); and OEP7-F1 and OEP7(50)-R1 for
GST:OEP7(50). PCR products were ligated to pRSET-A for His tagging or
pGEX5x1 for GST tagging. The primers used for generation of in vitro translation
constructs were as follows: OEP7-F2 and OEP7(36)-R2 for OEP7(36); GFP-F1 and
GFP(36)-R for GFP(36); GGPS2-F and GGPS2(36)-R for GGPS2(36); BiP-F and
BiP-R for BiP(36); and AtToc64-F and AtToc64-R for AtToc64(36). To generate
OEP7:GFP(90) and OEP7:GFP(104), PCR was performed using OEP7-F2/
OEP7(50)-R2 and GFP-F2/GFP(40)-R for the first PCR of OEP7:GFP(90);
OEP7-F2/OEP7-R2 and GFP-F3/GFP(40)-R for the first PCR of OEP7:GFP(104);
and OEP7-F2 and GFP(40)-R for the second PCR of OEP7:GFP(90) and
OEP7:GFP(104). The PCR products were ligated into the vector. To generate
AtToc64:HA, PCR was performed using AtToc64-F2 and AtToc64-HA-R and
326-AtToc64:GFP as a template. The PCR product was ligated into pCS2þ for
in vitro transcription. Construction of His:AKR2A, His:AKR2A(1� 210),
His:ARD(211� 342), His:GFP, GST:AKR2A, GST:OEP7, HA:AKR2A and
AtOEP7:GFP was described previously8,60,61.

The RPL23A-amiRNA construct was designed using Web MicroRNA Designer
3 (http://wmd3.weigelworld.org). The RPL23A-amiRNA was prepared by
overlapping PCR as described previously62. The primer sets used were RPL23A-I
miR-s, RPL23A-II miR-a, RPL23A-III miR*s and RPL23A-IV miR*a, together with
two vector primers (amiRNA-A and amiRNA-B) in the adjacent region that defines
the amiRNA foldback. The resulting PCR fragment, including the full amiRNA
foldback, was ligated into the inducible vector pTA7002. The control-amiRNA
vector was described previously63. All PCR products were sequenced to confirm the
nucleotide sequences.

Transient expression of proteins in protoplasts. Plasmids were purified using
the HiPure Plasmid DNA Purification kit (Invitrogen, Carlsbad, CA) according to
the manufacturer’s protocol. The fusion constructs were transformed into proto-
plasts prepared from whole Arabidopsis seedlings using polyethylene glycol-
mediated transformation64,65.

Generation of transgenic Arabidopsis plants. Transgenic plants were generated
by the floral dipping method66. Transgenic plants were screened on MS medium
containing 1% sucrose and antibiotics (30mg l� 1 hygromycin B and 100mg l� 1

cefotaxime), and homozygous lines were isolated at the T3 generation.

RNA extraction and quantitative RT-PCR. For quantitative RT-PCR, total RNA
was isolated from 10-day-old seedlings grown in MS liquid medium supplemented
with 1% sucrose in a growth chamber at 20� 22 �C under a 16 h light/8 h dark
cycle. Total RNA was extracted using the RNAqueous kit (Ambion, Austin, TX).
TURBO DNase (Ambion, Austin, TX) was used to remove any DNA con-
tamination from the RNA samples, and extracted RNA was used for reverse
transcription into cDNA using the High Capacity cDNA Reverse Transcription kit
(AB, Foster City, CA).

Quantitative RT-PCR was performed with a SYBR green kit (AB) to detect
RPL23aA, RPL23aB and ACT2. Amplified samples were normalized with ACT2.
The primers used were RPL23aA-RT-F and RPL23aA-RT-R for RPL23aA,
RPL23aB-RT-F and RPL23aB-RT-R for RPL23aB, and ACT2-F and ACT2-R for
ACT2.

Preparation of RNCs and ribosome-binding assay. We generated RNCs using
the transcription and translation-coupled wheat-germ extract systems (Promega).
For transcription by T7 polymerase, linearized DNA template containing a T7
promoter was prepared by PCR using the following T7 Pro(� 200) and reverse
primers: OEP7(36)-T for OEP7(36); GFP(36)-T for GFP(36); GGPS2(36)-T for
GGPS2(36); BiP(36)-T for BiP(36); AtToc64(36)-T for AtToc64(36); and GFP(40)-
T for OEP7:GFP(90) and OEP7:GFP(104). PCR products were expressed according
to the manufacturer’s protocol. For RNA labelling, 1 mM biotin-11-CTP (Roche)
was added to the reaction mixture. For ribosome-binding assay, purified
His:AKR2A (0.25 mM) was added to the reaction mixture and incubated for 60min
at 30 �C. RNCs or His:AKR2A-bound RNCs were separated from the rest of the
wheat-germ extract by ultracentrifugation through a 20% sucrose cushion using a
TLA 120.2 rotor for 90min at 200,000� g. The recovered samples were subjected
to AFM analysis or western blot analysis.

To label nascent polypeptides, we used EasyTag Express Protein Labelling Mix
supplemented with [35S]methionine and [35S]cysteine (Perkin Elmer). EasyTag
Express Protein Labelling Mix (4 ml) was added to the reaction mixture. After
incubation, free radio-labelled amino acids were removed using PD-10 desalting
columns. The samples were separated by 18% SDS–PAGE after boiling in sample

loading buffer. After electrophoresis, the gels were dried and subjected to
autoradiography.

Recombinant protein purification and protein pull-down assay. E. coli BL21
(DE3) cells transformed with different constructs encoding GST- or His-fused
recombinant proteins were cultured to OD600E0.6. Protein expression was
induced by adding 0.5� 1mM IPTG at 37 �C for 3 h. GST or GST-fusion proteins
were bound to glutathione beads (Thermo Scientific, Rockford, IL) and washed
several times with buffer (50mM Tris-HCl, pH 7.5, 150mM NaCl, 5mM
EDTA, 1% Triton X-100, 1� complete protease inhibitor cocktail (Roche,
Werk Penzberg, Germany)) for purification. His-tagged proteins were bound to
Niþ -NTA agarose beads (Qiagen, Hilden, Germany) and washed several
times with washing buffer (50mM NaH2PO4, pH 8.0, 300mM NaCl, 10mM
imidazole, 1% Triton X-100, 1� complete protease inhibitor cocktail (Roche))
for purification.

To study the interaction of RPL23A with AKR2A, in vitro protein pull-down
experiments were performed. In brief, GST alone or GST:AKR2A (3 mg)
immobilized on glutathione beads was incubated with His-tagged recombinant
proteins (1mg) as prey in binding buffer (20mM Tris-HCl, pH 7.5, 150mM NaCl,
3mM MgCl2, 1mM DTT, 0.1% Triton X-100) at 4 �C for 3 h. Beads were
washed three times with binding buffer. Subsequently, proteins were separated
by SDS–PAGE and analysed by western blotting using an anti-His antibody
(dilution 1:1,000, Qiagen, Cat. No. 34610).

Polysome analysis. The AtToc64:HA DNA fragment was amplified by PCR using
50-pCS2-transcription (50-CGCCATTCTGCCTGGGGAC-30) and 30-pCS2-tran-
scription (50-CAATAGCATCACAAATTTCACAAA-30) as the primer set and
pCS2þAtToc64:HA plasmid as a template. Capped and polyadenylated AtTo-
c64:HA mRNAs were generated by mMESSAGE mMACHINE SP6 (Ambion)
according to the manufacturer’s protocol. AtToc64:HA mRNA (2mg) and purified
His:AKR2A (0.25mM) were added to the wheat-germ extract system (Promega)
and incubated for 60 to 90min at 30 �C. After incubation, cycloheximide
(0.1mgml� 1) was added to terminate translation.

A 15� 50% (w/v) linear sucrose gradient was prepared using the method of
Abe and Davies67. In vitro translation mixtures (0.2ml) were loaded onto the top of
the linear sucrose gradients, and ribosomes were fractionated by ultracentrifugation
at 200,000� g for 120min at 4 �C in a SW 41 Ti rotor (Beckman). The gradient was
collected from the top to the bottom with a density gradient fractionator
RETRIEVER 500 (Teledyne Isco) in a total of 20 fractions (each fraction with
500 ml), and these fractions were analysed by measuring absorbance at 254 nm.
Data were recorded and processed with UA-6 (Teledyne Isco). Subsequently, these
fractions were subjected to TCA precipitation, the pellets were re-suspended in
0.1 N NaOH, and then analysed by western blotting using anti-RPL23A (dilution
1:1,000, Abcam, Cat. No. ab71341) and anti-His antibodies.

Co-immunoprecipitation and crosslinking. For co-immunoprecipitation ana-
lyses, in vitro translation samples were incubated with 2 mg of an anti-His mono-
clonal antibody (Qiagen) for 2 h at 4 �C, followed by an additional incubation with
20 ml of protein-A Sepharose CL-4B beads (Amersham Biosciences) for 2 h at 4 �C.
Immunoprecipitates were washed three times with immunoprecipitation buffer
(50mM HEPES, pH 7.5, 150mM NaCl, 3mM MgCl2, 1mM DTT, 0.5% Triton
X-100) and subjected to RNA isolation.

His:AKR2A-bound RNCs were treated with crosslinker BS(PEG)9 (Pierce
Biotechnology, Rockford, IL, USA) according to the manufacturer’s instructions.
Western blot analysis was performed with specific antibodies68.

Immunoblotting analysis. Proteins were separated by 8B12% SDS–PAGE after
boiling in the sample loading buffer, and the gel was transferred onto a poly-
vinylidene fluoride membrane (Millipore Corporation, USA). For western blot
analysis, the membranes were treated with 6% non-fat dry milk in TTBS buffer for
30min to prevent nonspecific binding of antibodies followed by incubation with
corresponding primary and secondary antibodies using standard protocols. The
antibodies used in this study include anti-AALP (dilution 1:3,000), anti-actin
(dilution 1:1,000, MP Biomedicals, Cat. No. 69100), anti-AKR2 (dilution 1:1,000),
anti-BiP (dilution 1:3,000), anti-catalase (dilution 1:1,000), anti-GFP (dilution
1:1,000, Clontech, Cat. No. 632381), anti-HA (dilution 1:1,000, Roche, Cat. No. 11
867 423 001), anti-Hsp70 (dilution 1:3,000, Agrisera, Cat. No. AS08 371), anti-
Lhcb4 (dilution 1:7,000, Agrisera, Cat. No. AS04 045), anti-PIP2 (dilution 1:1,000,
antibodies-online GmbH, Cat. No. ABIN349672), anti-RbcS (dilution 1:5,000,
Agrisera, Cat. No. AS07 259), anti-RPL32 (dilution 1:1,000, Abcam, Cat. No.
ab50759), anti-SRP54 (dilution 1:1,000, BD Biosciences, Cat. No. 610940), anti-
Toc34 (dilution 1:5,000, Agrisera, Cat. No. AS07 238), anti-Toc75 (dilution 1:5,000,
Agrisera, Cat. No. AS06 150), anti-Toc159 (dilution 1:5,000, gift from Dr Hsou-
min Li, Academia Sinica, Taiwan), anti-VDAC1 (dilution 1:5,000, Agrisera, Cat.
No. AS07 212), anti-VSR (dilution 1:1,000), anti-mouse horseradish peroxidase-
conjugated antibody (dilution 1:7,000, Bethyl, Cat. No. A90-146P), anti-rabbit
horseradish peroxidase-conjugated antibody (dilution 1:7,000, Bethyl, Cat. No.
A120-101P) and anti-rat horseradish peroxidase-conjugated antibody (dilution

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7843 ARTICLE

NATURE COMMUNICATIONS | 6:6843 |DOI: 10.1038/ncomms7843 |www.nature.com/naturecommunications 11

& 2015 Macmillan Publishers Limited. All rights reserved.

http://wmd3.weigelworld.org
http://www.nature.com/naturecommunications


1:7,000, Bethyl, Cat. No. A110-105P). Full-size images are presented in
Supplementary Figs 13 and 14.

Immobilization of proteins on AFM probes and substrates. Dendron-modified
AFM probes and substrates were prepared and conjugated with reduced glu-
tathione (GSH)29. GSH-tethered probes were immersed in PBS buffer (10mM
phosphate buffer, 2.7mM KCl, 137mM NaCl, 3mM MgCl2, pH 7.4) to solubilize
GST-fused AKR2A (32 mgml� 1); probes were immersed for 30min at room
temperature. For preparation of the reference systems, GSH-tethered substrates
were placed in PBS buffer to solubilize GST-fused OEP7 deletion mutants
(B15.5 mgml� 1), or GST-fused RPL23aA and RPL23aB (B22.2 mgml� 1);
substrates were immersed for 30min at room temperature. After incubation, the
probes and substrates were rinsed with the same buffer and stored in the buffer.

RNC immobilization on dendron-modified substrates. Dendron-modified sub-
strates were placed in 50mM NaHCO3 buffer (pH 8.5) with a small amount of
dimethylformamide (DMF) to solubilize biotinyl-N-hydroxy-succinimide (NHS-
biotin) (10mM) and incubated for 2 h. Then, substrates were immersed in DMF
and the solution was stirred for 30min at room temperature. Subsequently, sub-
strates were rinsed thoroughly with DMF, then with methanol and then dried under
vacuum. The resulting substrates were placed in PBS buffer (10mM phosphate
buffer, 2.7mM KCl, 137mM NaCl, pH 7.4) to solubilize streptavidin (30mgml� 1)
for 30min at room temperature. After incubation, substrates were washed briefly
with PBS buffer (10mM phosphate buffer, 2.7mM KCl, 137mM NaCl, 3mM
MgCl2, 0.05% (v/v) DEPC, pH 7.4) and placed in PBS buffer to solubilize RNCs at
room temperature for 30min. RNCs were diluted with a 40� volume of PBS buffer.
Finally, substrates were rinsed with the same buffer and stored in the buffer.

Recording force-distance curves. NanoWizard I AFM (JPK Instrument AG) was
used for force measurement of the reference systems and the RNC samples. For-
ceRobot 300 automated force spectroscope (JPK Instrument AG) was employed for
force mapping the RNC samples. In both cases, the force-distance curves were
recorded at a retraction speed of 540 nm s� 1. All curves were measured at room
temperature in PBS buffer containing 3.0mM MgCl2 (for the reference systems) or
3.0mM MgCl2 and DEPC (0.05% (v/v)) for ribosome samples. The spring constant
of each AFM probe was calibrated in solution using JPK SPM software (thermal-
noise method), and the resulting value ranged from 15 to 25 pN nm� 1. For each
sample, at least three independent measurements were conducted using freshly
prepared probe and substrate for each measurement. To obtain the most probable
force value for the unbinding event, more than 100 force-distance curves were
recorded at a position, and more than three positions on a substrate were examined
in each experiment. The collected force-distance curves were analysed using the
JPK data processing software. An unbinding force histogram was generated from
the whole set of the collected specific curves. For the double-peaked curves, the
force value of the larger peak was used to generate the force histogram. The most
probable force value was obtained by fitting with a single Gaussian curve, and the
presented statistical error was 2s/ON, where 2s was the width of the distribution
and N was the number of unbinding events in the histogram18.

Force mapping and data analysis for RNCs. Adhesion force maps were obtained
by processing the force value recorded during raster-scanning on a 300 nm� 300
nm area with a pixel size of 15 nm. The force-distance curves were recorded five
times at each pixel, and the force value from the specific curves was averaged. To
generate a map, a pixel that did not show any specific curve or that showed a
specific curve only once out of five measurements was not included.

Dynamic force spectroscopy for reference systems. A z-scan length of 450 nm
and z-scan rates of 0.023� 10.0Hz were used, resulting in loading rates of 200 to
200,000 pN s� 1. The loading rate was determined by multiplying the retraction
speed by the effective spring constant. The kinetic off rate constant (koff) and the
energy barrier distance (xb) were obtained from the equation, F*¼ fbln(r/koff fb),
where fb is the ratio of the thermal energy kBT to the length scale xb69.

Electron microscopy. Arabidopsis leaf tissues were fixed with 2% paraformalde-
hyde and 2% glutaraldehyde in 50mM cacodylate buffer (pH 7.2) for 4 h, washed
with the same buffer and post-fixed with 1% osmium tetroxide in cacodylate buffer
for 2 h. After dehydration, leaf specimens were embedded in LR White (London
Resin). Ultrathin sections of leaf specimens (60� 80 nm thick) were collected on
uncoated copper grids (150mesh), and then stained with 3% uranyl acetate and
Reynolds’ lead citrate. Images were captured with a transmission electron micro-
scope (Jeol JEM-1011) at 80 kV.

Statistical analysis. Data are expressed as a mean value±s.d. or s.e.m. No
statistical method was used to predetermine sample sizes. Statistical significance
was examined using the Student’s two-tail t-test. A P value o0.05 was considered
statistically significant. In figures with quantitative data, * designates Po0.05,
**Po0.01, and ***Po0.001.
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