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Onset of sediment transport is a continuous
transition driven by fluid shear and granular creep
Morgane Houssais1,*, Carlos P. Ortiz1,2,*, Douglas J. Durian2 & Douglas J. Jerolmack1

Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet pre-

dicting the onset of sediment transport remains notoriously unreliable. For almost a century,

this onset has been treated as a discontinuous transition at which hydrodynamic forces

overcome gravity-loaded grain–grain friction. Using a custom laminar-shear flume to image

slow granular dynamics deep into the bed, here we find that the onset is instead a continuous

transition from creeping to granular flow. This transition occurs inside the dense granular

bed at a critical viscous number, similar to granular flows and colloidal suspensions and

inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment

transport, where ‘bed load’ is a dense granular flow bounded by creep below and suspension

above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on

hillslopes. Results provide new predictions for the onset and dynamics of sediment transport

that challenge existing models.
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T
he Earth’s surface is a fluid-sediment interface that evolves
through the transport of granular material driven by an
applied fluid boundary-shear stress, t; it is often reported

as the dimensionless Shields number, t� ¼ t
rp � rð Þgd where rp, r, g

and d are particle density, fluid density, gravity and particle
diameter, respectively. The onset of sediment transport is
classically associated with a critical Shields number, t�c , that is
required to overcome grain friction1–3. For a range of values
t�c � t� � 5t�c , transport occurs as bed load, which is typically
viewed as a thin surface layer of moving grains in frequent
contact with—and supported by—an underlying granular bed
that is totally static4–6. For sufficiently large stresses t�45t�c ,
particles are entrained into the interior of the flow to form a
dilute suspension above the bed-load layer4.

While models for suspended-sediment transport in both
turbulent and laminar flows are reasonably accurate, bed load
prediction remains a challenge. Bed-load transport equations
typically employ a momentum balance between the near-bed
fluid and mobile surface grains, resulting in a nonlinear relation
between mass flux and t* (refs 4–6). For t� � t�c these equations
produce fair agreement with data; however, they break down
on approach to t�c where bed-load flux becomes highly inter-
mittent7–9. Unfortunately, near-critical transport predominates in
gravel rivers, which erode their banks until the fluid stress on the
channel margins is in the vicinity of the threshold of motion10.
The limiting factor for predicting near-critical transport appears
to be determining the threshold of motion itself.

Many studies have emphasized the confounding role of large-
scale fluctuations in t* as a result of turbulence4,8,11,12. Recently,
however, researchers have begun to recognize the importance of
particle–particle interactions in determining both the rheology
of13–16 and river patterns resulting from17 bed-load transport.
Sheared granular materials are known to undergo a transition
from a dense liquid-like state to a slow creeping state, as the
shear stress crosses the material yield stress18,19. In such a
transition, the timescale of grain dynamics diverges on approach
to the critical point20. Given that dry-granular flows,
colloidal suspensions and even molecular glasses exhibit similar
dynamics18,19,21, it seems reasonable to expect that bed-load
transport should exhibit the same kind of transition. If it does, it
might explain much of the difficulty in determining the onset of
sediment transport.

We test the ideas above by examining the dynamics of fluid-
driven sediment transport under a laminar shear flow, over a
wide range of time scales. Results show that the onset of sediment
transport is a continuous transition—from a creeping state to a
granular flow—presenting a new view that contradicts the widely
accepted static threshold concept. This transition is associated
with a critical viscous number. Surprisingly, particle concentra-
tion does not vary significantly across the transition. We propose
a new phase diagram that unites fluid-driven sediment transport
with a broader class of granular systems, while presenting
challenges to current models for both.

Results
Experimental set-up. To probe the granular dynamics associated
with near-threshold bed-load transport, we performed six distinct
experiments in an idealized laboratory river consisting of a closed
annular flume (Fig. 1). Channel walls are smooth to allow slip
between particles and the boundary to approximate an infinitely
deep and wide channel. We immerse a granular bed of
acrylic spherical particles of diameter d¼ 1.5mm and density
rp¼ 1.19 gml� 1 in a fluid of viscosity Z¼ 72.2mPa s and density
r¼ 1.05 gml� 1. The system of width W¼ 17 d is sheared by
rotating the top of the flume at a constant rate O, which varied

from 0.7 to 4 r.p.m. in our experiments (see Fig. 1a), corre-
sponding to 0.04rt*r0.45 (see details of t measurement in
Methods). The low fluid Reynolds number (Rer3) for all
experiments ensures that both turbulence and secondary flows are
suppressed5 (see Methods), and allows us to isolate the slow
dynamics of particles under conditions simulating an infinitely
long, straight channel. Although turbulence is an important
component of sediment transport, experiments and theory show
that laminar bed load is similar to its turbulent counterpart in
many respects5,6,13. To visualize granular dynamics, we index-
match the particles and the fluid, and record laser-excited
fluorescence of a dye dispersed in the fluid15,22; this allows us to
image a vertical profile of grains in the centre of the channel
(Fig. 1b; see Methods). By acquiring images at a variety of frame
rates for durations up to several days, we are able to resolve
particle velocities over seven orders of magnitude (see
Supplementary Movies 1–3). Trajectories of individual grains
show that transport velocity varies widely, both in time and with
depth below the surface (Fig. 1c). By appropriately averaging,
however, we are able to recover a mean-field description of
the vertical profiles of particle streamwise velocity hVi and
concentration hCi (Fig. 1d; see also Supplementary Fig. 1). Three
different regimes are apparent, moving from top to bottom: (I) an
upper layer where hCi approaches zero and fluid forces dominate;
(II) a middle layer where hCi abruptly saturates to a constant
value Csat while hVi continuously decreases exponentially; and
(III) a lower layer where hCi remains constant and hVi decreases
more slowly. It is intriguing that the transition from (II) to (III) is
associated with a kink in the particle velocity profile, but no
significant change in concentration; we examine these points in
detail below.

Depth-integrated flux. We first verify that our experimental
results are consistent with expectations of sediment transport
derived from previous studies. Even with a laminar flow and
uniform spherical particles, the time series of depth-integrated
sediment flux is highly intermittent (Fig. 2a); it is qualitatively
similar to experiments involving turbulent flows and non-
spherical particles6–8,14. The origins of this erratic stick-slip
dynamics must lie in particle–particle interactions, rather than
the fluid. In contrast, the average flux—when appropriately
computed over a convergence time Dtconv—follows the laminar
bed-load transport law found earlier5,23 for a similar experimental
set-up (Fig. 2a) and indicates a similar critical Shields number,
t�c ’ 0:1.

A notable result is that Dtconv rapidly diverges as t* approaches
the inferred t�c . The timescale Dtconv for each experiment is
comparable to, but longer than, the strain-rate timescale of
surface grains, and is much longer than the fluid strain-rate
timescale (Fig. 2b). The diverging timescale is associated with the
slowing down, and increasing variability, of particle dynamics on
approach to critical; it is unrelated to hydrodynamics. As a
consequence, the closer the system is to critical, the longer it is
necessary to record particle displacements to compute a flux.
A hint of this behaviour can be seen in recent turbulent bed-load
experiments8. These results suggest that determination of the
threshold of motion depends on the resolution of the
measurement, and that particle motion may not cease at a
clearly defined t�c . We propose that sediment transport undergoes
a continuous slowing down—rather than a discontinuous
stop—on approach to its critical point (t�c ), similar to granular
and colloidal systems18,20.

Long-time ensemble-averaged dynamics. We return to the three
particle regimes introduced earlier. Particle concentration profiles
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(see Methods) all exhibit an abrupt increase with decreasing z to
achieve a similar saturated value Csat inside the bed (Fig. 3a). We
define the bed surface elevation zs as hCi jz¼zs¼ Csath i=2 (see
Methods). We interpret the change in hCi from (I) to (II) as a

transition from a dilute regime driven by the fluid and gravita-
tional forces, to a dense-granular flow24. Particle velocity profiles
have two distinct features (Fig. 3b): an exponential decay below
the surface corresponding to regime (II), and a transition to a
second, weaker exponential-like decay (regime III) that occurs at
similar values of hVi regardless of t*. (An important exception is
the lowest, sub-critical experiment associated with t*¼ 0.04, for
which only regime (III) is well developed). We define the depth of
the transition, zc, as the location of the kink in the profile
(Fig. 3b). The thickness of regime (II) may then be characterized
as hb¼ zs� zc, which is zero for subcritical stress and grows with
increasing t* above critical (Fig. 4). To investigate the granular
dynamics of regimes (II) and (III), we compute profiles of the
viscous number I:

I ¼ Z_g
Pp

; ð1Þ

as a function of depth relative to the critical value z� zc, where
_g ¼ dhVi

dz is the shear rate and Pp is the confining pressure (see
Methods). The viscous number represents the importance of the
timescale for confined particles to rearrange in the fluid Z

Pp
versus

the timescale of the strain 1
_g, and has recently been proposed as a

unifying parameter for characterizing the frictional rheology of
dense suspensions and granular flows25,26. On the basis of
comparison with other granular systems24–26, we posit that the
bed develops a dense-granular flow regime in the elevation range
between zs and zc (regime II), where

I / exp
z� zc
l

� �
; ð2Þ

and l is a characteristic decay lengthscale determined from fitting
equation 2 to our data (Fig. 3c).

For all values of t* our experiments exhibit an approximately
constant viscous number I zcð Þ ¼ Ic � 10� 7 at z¼ zc, close
to values found in recent experiments of sheared-granular
systems19,26. The lengthscale l increases with t* (Fig. 3c) in the
same manner as hb; their ratio is constant, hb/l¼ 3±1. We
identify the dense-granular flow regime (II) as the bed-load layer.
Recent experiments of bed-load transport, in turbulent flows and
with non-spherical particles, have shown qualitatively similar
patterns in terms of the particle velocity profile3,14 and growth of
the bed-load layer14. The lengthscale hb can then be interpreted to
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Figure 1 | Experimental set-up and definition of variables. (a) Cross-section sketch of the experimental set-up. (b) Example processed greyscale

image of light absorption in the interior of the bed (see details in Supplementary Information); fluid and particles appear as black and white, respectively.
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over 10-h run time for the same experiment. Blue and red curves show corresponding long-term-averaged particle concentration hCi and velocity hVi,
respectively. Three particle regimes discussed in text are noted I, II, III.
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� �
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time series of sediment flux, normalized by subtracting its mean value over

time hQi and dividing by its s.e. shQi. (b) Timescale for flux measurements

to converge Dtconv as a function of the Shields number t*, defined as the
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represent the thickness of the bed-load layer, while l is a constant
fraction of that.

The transition from regime (II) to regime (III) represents the
most important finding of our experiments. The decay in viscous
number dramatically slows down, and does not go to zero, across
the transition. The constant value for Ic despite variations in t*,
and its coincidence with the minimum values found in other
granular flows19 and dense suspensions26, strongly suggests the
presence of a continuous granular-flow transition. At depths
below zc, the viscous number profiles are similar for all
experiments (Fig. 3c), indicating similar dynamics. The lower
regime (III) consists of exceedingly slow particle motion
associated with structural rearrangements of the bed.

We identify this as a creeping regime, similar to sub-threshold
motion observed in disordered solids18,27. Interestingly, creeping
is commonly associated with the slow, gravity-driven motion of
soil that occurs on hillslopes in the absence of fluid-driven
transport28,29. We hypothesize that creeping occurs generally in
fluid-driven sediment transport—both below the bed-load layer
when it is active and for sub-threshold shear stresses where no
bed-load transport occurs. The latter point is supported by our
sub-threshold experiment (t*¼ 0.04), which exhibits creep in the
absence of bed load. Creep has likely not been reported previously
because sediment transport experiments did not observe particle
motion for sufficiently long times. It is also possible that straight
flumes suppress creep due to the confining downstream wall that
is required to retain grains in the channel; annular flumes do not
have this limitation. Although creeping may be influenced by
particle shape such that natural river sediments behave differently
from our experimental spheres, dry granular flow experiments
demonstrate that creeping occurs even for non-spherical particles
including natural sand30.

Discussion
In light of these results, we propose a new phase diagram for
fluid-sheared granular transport (Fig. 4). A critical Shields
number t�c still exists; however, it does not represent a
discontinuous threshold of motion; rather, it signals a bifurcation
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in the transport dynamics between creeping and bed load. Data
support a relation for the bed-load layer hb=d � t�=t�c � 1

� �
for

t�4t�c (Fig. 4), such that the bed-load layer vanishes at a finite
Shields number. Owing to subcritical creep, transport does not
totally vanish. The bed-load layer is defined at its bottom
boundary zc by a critical inertial number Ic associated with the
transition to quasi-universal creeping dynamics (III). It is defined
at its top boundary zs by a particle concentration hCi¼ hCsati/2,
above which sediment is transported in a dilute regime (I)
associated with suspension.

The existence of creeping indicates that the fluid stress applied
at the surface is accommodated by motion deep into the bed; this
mechanism for attenuation of fluid momentum is unaccounted
for in existing models. In particular, state-of-the-art sediment
transport models presume a transition to no motion at a critical
particle concentration, below which a fixed static friction is
applied12,13,15,31. This is incompatible with our observed
transition to slow creeping at a critical viscous number. The
presence of creeping below the bed-load layer is also important
for river-scale dynamics. Although its contribution to overall
mass flux is negligible for flows in excess of 2t�c , the creep fraction
rapidly approaches one as the stress decreases towards t�c
(Supplementary Fig. 8). Moreover, creep could help to explain
puzzling laboratory and field observations of apparent temporal
changes in the threshold of motion5,7. Creeping drives
compaction of a granular bed, which increases the effective
friction and hence the critical stress26. Bed load appears to drive
dilation, as evidenced by the increase in zs with increasing t*
(Fig. 4), which may decrease friction and the critical stress.
Furthermore, the diverging timescale associated with the
transition to creep (Fig. 2) is a likely contributor to the large
scatter observed in measurements of near-threshold bed-load
transport9, which do not use a dynamically informed averaging
timescale.

Finally, long-term models of river evolution typically require
specification of an ‘active layer’, which is considered to be the
depth over which the sediment bed is mixed by bed-load
transport, and granular sorting can occur4,32. Often this layer is
defined subjectively or heuristically. Our new characterization of
the bed-load regime provides a mechanistic definition for the
active layer that may be directly tested with field data. We are
cautiously optimistic that our results are not restricted to the
idealized experimental set-up, as our observations of the bed-load
layer are consistent with the few reported results from more
‘realistic’ experiments3,14.

Our results indicate that surface sediment motion is influenced
not only by fluid shear from above, but by granular creep from
below. Spontaneous and intermittent transport of surface
particles occurs even in the absence of turbulence, in part as a
consequence of subsurface creeping. These observations stress the
importance of modelling granular rheology in the treatment of
sediment transport, a perspective that is new but is gaining
ground13,14,17. These results also suggest that the phenomenology
of granular phase transitions18 may be extended to geophysical
sediment transport, providing a complementary approach to the
prevailing hydrodynamic view.

Methods
Experimental set-up and protocol. To obtain clear 2D images of our 3D
experimental system, we index-match PMMA particles (d¼ 1.5mm, Engineering
Laboratories) with a mixture of viscous oils (85% of PM550 and 15% of PM556
from Dow Corning), and excite a dye (Exciton, pyrromethene 597) dispersed in the
oil with a green laser sheet (517 nm, 50mW) of thickness Cd/10. The experiment
is conducted on a vibration-damping optical table, while a damping coupler is
used to connect the driving motor to the flume. All computer code used in the
methods described below is available for download at http://dx.doi.org/10.6084/
m9.figshare.1269323.

The granular bed for each experiment is prepared with the same protocol: for
5min the flume top is rotated at 30 r.p.m., applying a total shear stress strong
enough to suspend all particles. The rotation then slowly returns to zero, and the
particles settle for 5min, building a random packed layer of B11 d. The only
exception is the subcritical experiment (t*¼ 0.04), which was B13 d thick. Then, a
constant rotation O drives the system during the entire experiment. The duration
of the experiment is not fixed; each lasts long enough (10 h to several days) that all
particles present in the recorded frames exhibit some significant displacement
during the run. The bed exhibits a significant compaction phase at the beginning of
the experiment, which involves a slight decrease over time of the bed surface
elevation. Thereafter the system reaches a saturated regime, where the overall bed
thickness change is o10%. Data are acquired in this steady-state regime, from
which we compute the long-time-averaged parameters hC(z)i and hV(z)i.

We compute the fluid-flow depth hf¼ H� zs, where H is the total depth of the
flume and the elevation of the surface zs is determined as shown below. We
compute the fluid-flow velocity at the top plate in the channel centre as
U¼O � 2pR, where R¼ 17 cm is the radial distance to the channel centre. The fluid
boundary-shear stress is then calculated as t¼ ZU/hf. To compute the confinement
pressure profile Pp(z), we define a hydrostatic pressure based on the ensemble-
averaged particle concentration profile hCi(z): Pp ¼ b rp � r

� �
g
R ztop
z hCiðzÞdz,

where ztop is the elevation of the rotating top plate and b is a normalization
coefficient equal to 0.836, chosen to scale our 2D concentration hCsati¼ 0.7
to a 3D packing fraction of 0.585, similar to recent experiments in a
comparable system15.

For our definition of t*, and throughout our analysis, we assume the fluid flow
is laminar and unidirectional in the azimuthal direction of the annular flume.
The laminar assumption is justified because the Reynolds number associated with
the fluid channel above the bed is small. We estimate this Reynolds number as
Re¼ (rUplatehf)/(Z), which is E3 for the largest O in these experiments. The
unidirectional assumption is justified based on the small ratio of radial viscous
stress to the azimuthal viscous stress for our experimental conditions:

Radial stress
Azimuthal stress

¼ c Re
hf
R

¼ 0:4 % ; ð3Þ

where hf ’ 3d, R is the flume radius and c ’ 0:06 is an estimated coefficient5 that
is only weakly dependent on the flow aspect ratio.

Image analysis. Using a Nikon DSLR 5100 digital camera, we record the real-time
positions of single particles by acquiring the fluorescence intensity from a laser dye
(concentration E1 mM) dispersed in the fluid that is suitable for long data
acquisition without significant photobleaching.

To sample fast dynamics near the surface, where the relevant timescale is the
settling time of particles over their own diameter d/vsed¼ 0.68 s, we acquire images
continuously at 30Hz for 20min. To sample slow dynamics in the bed, we acquire
single images at a rate of one every 15 s for 10 h or longer.

To detect the positions of the particles with subpixel accuracy, we first correct
for effects due to the laser-sheet illumination (see Supplementary Fig. 2), then find
particle positions to pixel accuracy by peak-finding above a threshold. The details
of the background correction process are shown in Supplementary Fig. 2. It is
designed specifically to handle both long-wavelength background intensity
variations and intermediate wavelength fluctuations (stripes) due to slight
mismatches in the index of refraction of the particles relative to the fluid. On the
basis of the raw intensity M(x,y), we define the laser background signal Mbk(x,y) as
the local mean of a rolling disk of diameter 3d. In addition, we define the total
background intensity fluctuations of the image stot, by performing the usual
addition of uncertainties, as a pixel-wise addition of the background and raw image
fluctuations: stot ¼ ðs2Mbk

þ s2Mraw
Þ0:5. In turn, the background and raw image

fluctuations are defined by a local s.d. filter over each image. This filter assigns to
every pixel the value of the s.d. of the grey values in a disk-shaped neighbourhood.

We define a scaled fluorescence intensity ~Mðx; yÞ:

~Mðx; yÞ ¼ Mðx; yÞ�Mbkðx; yÞ
stotðx; yÞþ e

ð4Þ

where e is used to avoid numerical division by zero. This normalized image is
shown in Supplementary Fig. 3d, where all values above zero are shown as white.
Note, its corresponding histogram of grey values shows a clear separation between
data above and below background, approximately at zero.

After removing the background, we determine sub-pixel positions using the
radial symmetry method33. In brief, this method uses the image-gradient vector
field to determine the least-squares point of maximal radial symmetry for each
particle (see Supplementary Fig. 4). We verify the accuracy of particle detection, by
computing the mean-squared-difference w2 between the background corrected
image and an image generated from the detected particles. If w2 is above a
threshold, we mask out the particles that we have already found and conduct a
further search for smaller, dimmer particles. We do four iterations searching for
progressively smaller, dimmer particles, then one last iteration of pixel-accurate
detection over the region outside the particles we have already found. A graphical
representation of this process is shown in Supplementary Fig. 4a, where the circle
colour indicates the iteration number. Most particles are detected on the first
iteration, corresponding to in-plane particles, but we find the accuracy of tracks to
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be improved by searching for additional particles. The relative intensity of particles
is sharply peaked below background, and we reject any particle whose relative
intensity is above 0.5 relative to the local intensity fluctuations (see Supplementary
Fig. 4). We have confirmed that our velocity and concentration profiles are similar
when determined using Niblack’s local thresholding algorithm on the raw images,
followed by disk detection by convolution with a binary disk-shaped kernel.
However, we reduce our overall uncertainty in the velocities and obtain a
substantially more accurate estimate of the concentration profile and the position
of the surface by using these methods.

We stitch positions at different frames into tracks using Lagrangian particle
tracking34. This method differs from the Grier–Crocker tracking algorithm35 in
that it minimizes the mean-squared distance between positions in frames by
including an estimate of the velocity in the previous frame. We find this method
performs better for data sets such as this, where the range of velocities spans
multiple orders of magnitude and no single max-displacement tracking parameter
is suitable for all particles.

Computation of depth-averaged particle flux. Given that we can observe the
entire vertical bed structure and dynamics, we choose to apply the rigorous
definition of Furbish36 to determine the sediment flux, Q. As presented in
Supplementary Fig. 5a, we define a unique horizontal line at x¼ xp, where the
flux associated with each particle crossing the line is:

QðtÞx¼xp
¼

Zz¼H

z¼0

Vi t; z; x ¼ xp
� �

Si t; z; x ¼ xp
� �

dz: ð5Þ

The estimated total flux from the data is the sum of the displacement of nj particles
intersecting the line x¼ xp at t¼ tj:

QðtjÞxp ¼
Xnj
i¼1

Vi tj; xi
� �

� S xið Þ; ð6Þ

where S is the geometrical function defining the cross-sectional area of the
individual particle intersecting the line x¼ xp:

S ¼ p d � xi � x21
� �

with xi ¼ d=2þ xi � xp
�� �� : ð7Þ

In practice, given the finite acquisition frequency and the wide range and
fluctuations of displacements in the system at each given time, three different cases
are treated. They are presented in Supplementary Fig. 5b.

The relative error37 of the flux is defined as the ratio of the s.e. to the mean
value of the flux, sQ/hQi, evaluated over the time inverval Dt. This relative error
decreases monotonically with increasing Dt for all experiments (see Supplementary
Fig. 6). To counter spatial variability, we average nine different positions x¼ xp
spread over the image frame width to compute the data presented Fig. 2, adding s.e.
from the averaging over positions to the respective error bars of each data point. In
the main text we use a threshold value of sQ/hQi¼ 0.6 to define the convergence
timescale of the flux, Dtconv; however, the trend for the convergence timescale is not
sensitive to choice of threshold.

The fit of the mean particle flux as a function of the Shields number is
performed for the function Q=Vp ¼ at� t� � t�c

� �
, where Vp is particle volume,

we choose t�c ¼ 0:1 based on observations from a similar experiment5, and we
determine the free parameter a¼ 0.91±0.13 s� 1. The value for a is in fair
agreement with previous experiments5. We do not include the subcritical
experiment (t*¼ 0.04) in this fit, as the associated bed-load flux is zero while the
flux expression is valid only for positive bed-load flux.

Detection of the bed surface. The concentration profile C(z) for a given
configuration of particles is determined from a processed binary image, valued at
zero outside of particles and one inside of particles. For each elevation z, the
concentration is determined as the pixel-wise average in the x direction. This
concentration is the 1D analogue of packing fraction, the fraction of space occupied
by the particles.

The surface is defined as the position zs at which the concentration crosses fifty
percent of its saturated value38. As we find the saturated value does not vary
significantly from experiment to experiment, we use a fixed threshold of 0.35 to
define the surface position. We define zs only after averaging the concentration for
a time at least as long as Dtconv, the flux convergence time. The error bar size is
equal to the difference in positions between crossing a concentration equal to
30 and 40%.

Individual-particle velocity measurement. In a slowly driven granular system,
the intermittency of each particle trajectory is important. Figure 1c illustrates the
amplitude of the velocity fluctuations for a few particles through time. One can
see that there are long periods of immobility, which makes the velocity field
measurement delicate. Another difficulty of our experiment is that we capture 2D
displacements in a 3D system, which means that particles sometimes move laterally
and disappear from the record. To tackle these issues, we measure time steps DTp,i
of the ith displacement of each particle p verifying DXp,iZ3*dx, where dx is the
spatial resolution limit of our image analysis for the particle centre detection.

We therefore calculate particle velocities as

Vp;i ¼
DXp;i

DTp;i
; ð8Þ

and the associated error

sVp;i ¼
dX
DTp;i

: ð9Þ

Ensemble averaging of velocities. At a given depth range zk� 1þDzkozko
zkþ 1�Dzk, we hypothesize that all the particle displacements detected exhibit a
convergent mean velocity. Then we compute the average of the N(zk) individual
velocities measured during the records in zk±Dzk

Vm zkð Þ ¼

PN zkð Þ

i
Vp;i sVp;i

� �� 2
� �

PN zkð Þ

i
sVp;i

� �� 2
� � ; ð10Þ

with the associated error

sVm zkð Þ
� �2¼ 1

PN zkð Þ

i
sVt;i

� �� 2
� � : ð11Þ

In contrast, some particle displacements are below our detection limit; the total
displacement of the tracked particle DXt over the track duration DTt is smaller than
our resolution dx. To provide a consistent computation of the uncertainties of the
measured velocities, we define for each elevation of the profile the minimum
velocity we can detect at given elevation dV(zk)¼ dX/max(DTt(zk)). It corresponds
to the fact that the longest track could exhibit a very slow displacement at our
detection limit. Practically, it is rather rare to lose the longest tracks; while the
slowest motions occur at the flume bottom, we drive the experiment long enough
that even these particles typically exhibit a detectable motion. However, a
significant number of tracks are too brief for their velocity to be measured. In order
not to lose their information, we allocate them the value

Vs zkð Þ ¼ dV zkð Þ
2

� dV zkð Þ
2

: ð12Þ

Finally, the velocity field of a given record n is computed as an average between
these two particles’ populations

Vnh i zkð Þ ¼ fs zkð ÞVs zkð Þþ fm zkð ÞVm zkð Þ; ð13Þ
with fs(zk)¼Ns/(NsþNm)(zk) the proportion of tracks with an average velocity
below our detection limit: DXt,j/DTt,j o dV(zk), and conversely, fm(zk)¼ Nm/
(NsþNm)(zk) the proportion of tracks with an average velocity DXt,j/DTt,jZdV(zk).
(Note that Nm and Ns are the number of particles with detected and undetected
velocities, respectively.) Accordingly, its associated error is

s Vn zkð Þh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fs zkð ÞsVs zkð Þ
� �2 þ fm zkð ÞsVm zkð Þ

� �2q
: ð14Þ

To face the fact that we have a very inhomogeneous data set to analyse, we
make an irregular vertical grid (zk,Dzk) to maintain a fixed number of individual
particle velocities Vp,i per elevation strip.

Thereafter, we average the two different records using a regular vertical grid
(zl,Dzl):

Vh i zlð Þ ¼
V1h is2V1h i þ V2h is2V2h i

� �
s2V1h i þs2V2h i

; ð15Þ

with its associated error:

s2Vx
zlð Þ ¼ s2V1h i þs2V2h i: ð16Þ

Supplementary Fig. 7a presents all the averaged velocities computed for each
individual track, for both records at 30 fps (in red) and 1 image each 15 s (in blue),
for the experiment driven at t*¼ 0.45. We generally capture thousands of
individual velocities above our detection limit dV for each record. This figure
illustrates how the two different records are complementary to probe the entire
profile. Superposed black circles on Supplementary Fig. 7b are the final averaged
profile hVi(z). In cyan, there are represented the two associated profiles dV(z)
above which we are able to quantify displacement. They naturally increase as
the maximum duration of tracks decreases, as particles closer to the surface are
more mobile.

Determination of the critical depth zc. We fit the velocity profiles with the
following functional form:

VfitðzÞ ¼ A exp � l1zð Þþ exp � l2zð Þ½ 	 ð17Þ
We choose this function because it is able to satisfy a continuous transition

between any two exponential decays, including a transition to a uniform value.
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Restricting l1 and l2 to positive values guarantees that the function itself is
continuous and monotonically decreasing, and its derivative (the shear-rate) is also
continuous and monotonically decreasing. We fit the data using this function by
solving the nonlinear least-squares minimization of w2 using the Nelder–Mead
simplex method. We define w2 using equal weights in log-space, by fitting
ydata¼ log(Vdata) against yfit¼ log(Vfit)¼ log(exp(� l1z)þ exp(� l2z))þA, with
three free parameters l1, l2 and A. The w2 for the fits is computed over the
non-uniform grid of z-values by using Simpson’s method of integration.

The critical depth zc is defined as the point of maximum curvature in log-space:

zc ¼ argmax
d2

dz2
log Vfitð Þ

����
����


 �
ð18Þ

Determination of the critical viscous number Ic. We estimate Ic from the average
of the values observed nearest to zc, from the intersection of the regression lines for
each profile at different Shields numbers, and from the intersection of the double
exponential fits. Within their uncertainties, the three methods converge on the
same value of Ic as 1
 10� 7.

Comparison of creeping flux relative with bed-load flux. To quantify the net
importance of the creeping regime relative to the bed-load regime, we compute the
flux of both by integrating our concentration and velocity profiles. Therefore, we
write the creeping flux as:

Qc ¼
Zzc
0

b CðzÞh i VðzÞh idz; ð19Þ

and the bed-load flux:

Qb ¼
Zzs
zc

b CðzÞh i VðzÞh idz; ð20Þ

with b a coefficient close to 1, introduced above.
The flux profiles are represented Supplementary Fig. 8a. Supplementary

Figure 8b presents both fluxes, creeping and bed load, as a function of the Shields
number. We can see that while the bed-load flux increases notably with the Shields
number, the creeping flux remains constant. As a consequence, the proportion of
the creeping flux Qc relative to the sum QcþQb, represented in Supplementary
Fig. 8c, increases rapidly as the Shields number decreases towards the threshold of
bed-load transport. For the experiment at t¼ 0.04, the proportion of creeping
reaches 100%.
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