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Unravelling the physics of size-dependent
dislocation-mediated plasticity
Jaafar A. El-Awady1

Size-affected dislocation-mediated plasticity is important in a wide range of materials and

technologies. Here we develop a generalized size-dependent dislocation-based model that

predicts strength as a function of crystal/grain size and the dislocation density. Three-

dimensional (3D) discrete dislocation dynamics (DDD) simulations reveal the existence of a

well-defined relationship between strength and dislocation microstructure at all length scales

for both single crystals and polycrystalline materials. The results predict a transition from

dislocation-source strengthening to forest-dominated strengthening at a size-dependent

critical dislocation density. It is also shown that the Hall–Petch relationship can be physically

interpreted by coupling with an appropriate kinetic equation of the evolution of the dislocation

density in polycrystals. The model is shown to be in remarkable agreement with experiments.

This work presents a micro-mechanistic framework to predict and interpret strength size-

scale effects, and provides an avenue towards performing multiscale simulations without

ad hoc assumptions.
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T
he question of how to explain and predict the effect of size
on the properties and response of materials has been at the
forefront of mechanics and materials research. Numerous

studies have been performed to identify the changes in material
properties (for example, thermal1, mechanical2, magnetic3,
electric4 and so on) as governed by the extrinsic size (for
example, crystal external dimensions) or intrinsic size (for
example, grain size, distance between precipitates, dislocation
cell-structure size and so on), D, of the material. An example of
an empirically based relationship that is extensively utilized to
predict size effects on strength, s, of single and polycrystalline
metals is the power-law relationship in the form s¼s0þ kD� n,
where s0, k and n are experimentally fitted parameters5–7.

In dislocation-mediated plasticity the fundamental building
blocks are dislocations, which collectively govern the plastic
deformation and damage evolution in metals8, semiconductors9,10,
semicrystalline polymers11,12 and even ceramics under shock
loading13. It is well established that the strength of bulk crystals
increases with increasing dislocation density generally following
the well-known Taylor-strengthening power law with an exponent
of 0.5 (ref. 14). However, for micron and sub-micron crystals,
strength has been observed to increase with decreasing crystal/
grain size2,15,16. Furthermore, it is also accepted that the initial
dislocation density plays an important role in the strength of
micron-sized single crystals, with several simulations and
experimental studies showing that bulk like behaviour is
recovered at large enough dislocation densities17–21.

A number of phenomenological relationships were postulated in
the literature to account for size effects (for example, refs 22–25).
One of these models, namely the ‘single-ended source model’, was
developed to predict size effects in microcrystals22. This model is
based on computing the probability of finding the maximum size
of a single-ended source in a microcrystal of a given diameter and
dislocation density. The studies by Zhou et al.23 and Lee and
Nix26 showed good agreement between this model and a wide
range of experimental data for dislocation densities in the range
of 1012� 1013m� 2. Furthermore, Phani et al.25 developed a
statistical model based on the random spatial distribution
orientation of dislocations in microcrystals. This model was used
to explain the strength and scatter in micro-compression and
micro-tension experiments of molybdenum alloy fibres. Finally,
Gu and Ngan24 developed a theoretical model assuming that the
yield strength of a microcrystal is determined by Taylor
interactions within the initial dislocation network.

Nevertheless, many questions still remain on the effect of
dislocation density on the size-dependent response of single
crystals and polycrystalline materials. To address this, in the
following, we present a study on size-dependent dislocation-
mediated plasticity by utilizing a large set of 3D discrete
dislocation dynamics (DDD) simulations. These simulations
span 2 orders of magnitude in crystal size and 5 orders of
magnitude of dislocation density. The results show a correlation
between crystal strength and dislocation density for micron and
sub-micron crystal sizes, and a minimum crystal strength marked
by a transition from dislocation-source strengthening to forest-
dominated strengthening at a size-dependent critical dislocation
density. These results are validated by a large set of experimental
results on micro- and macro-crystals reported previously19–21.
The developed model is finally shown to agree well with grain size
strengthening in polycrystals and provide a microstructurally
based understanding of the Hall–Petch relationship.

Results
Deformation mechanism map. Figure 1 shows a composite
plot of the resolved shear strength, t, normalized by the shear

modulus, m, versus the initial dislocation density, r, from 273
DDD simulations of nickel single crystals having diameters in the
range 0.25rDr20.0 mm. The strength is computed between 0.5
and 1.0% strain, and at these strain levels the dislocation density
does not increase or decrease more than a factor of 2–3 times
from its initial value23,27,28. These results clearly show, for each
crystal size, the strength scales with the dislocation density
following a power-law relationship of the form t¼rn, having
negative and positive exponents below and above a critical
dislocation density, rcrit respectively. Here rcrit is defined as the
dislocation density at which the crystal has the lowest attainable
strength, tmin. As shown in Fig. 2, both rcrit and tmin are size-
dependent properties and are proportional to the inverse of the
crystal diameter and inverse of the square root of the crystal
diameter, respectively.

In DDD, all dislocations are tracked and their final dispositions
are known. Thus, by examining the evolution of the dislocation
microstructure from these simulations, four deformation
mechanisms can be identified as a function of the crystal size
and the initial dislocation density. The inserts in Fig. 1 show the
dislocation microstructure at the end of the simulation in thin
slices having a thickness of 468 nm. These slices are taken from
the middle of the height of five simulated microcrystals,
referenced by circled numbers, having D¼ 2.5 mm. The coloured
regions in Fig. 1 show the range of dominance of each
deformation mechanism. The boundaries between these regions
are shown as dashed lines and are not definitive due to the
unavoidable statistics of source distributions. In the red-shaded
region, the governing mechanism is dislocation starvation. In this
regime, the dislocation density is small and the number of sources
are limited, thus dislocations can easily escape the crystal after
activation. This mechanism was first suggested by Greer et al.29,
but only observed experimentally in microcrystals o160 nm in
diameter30. The absence of a starved crystal in most experiments
of specimens having D4160 nm can be attributed to the initial
dislocation density in these experiments, which is typically
reported to be Z1013m� 2. It is clear from the mechanism
map shown in Fig. 1 that this density is high enough that other
deformation mechanisms will dominate. As an example, for
starvation to be observed in a D¼ 250 nm microcrystal the
starting dislocation density should be o1012m� 2. For larger
microcrystals this starting dislocation density needs to be even
lower. It is worth noting that in the range of crystal sizes and
dislocation densities modelled here, only 9 simulations from the
273 DDD simulation results displayed true starvation behaviour.
The second mechanism observed from DDD simulations is the
single-source mechanism, dominating in the yellow region
(inserts 1, 2 and 3). Here plasticity is governed by the
activation of a single source, or a few sparse sources that hardly
interact with other dislocations in the crystal22,27. The third
mechanism identified is exhaustion hardening, which is dominant
in the light blue-shaded region (insert 4). In this region, the
crystal contains relatively high number of dislocation sources that
produce a high mobile dislocation density at yield. However,
these mobile dislocations exhaust from mutual interactions
and the resulting mobile dislocation density is insufficient to
sustain flow without increasing the applied stress17. Thus, the
dislocations that are present do not represent a steady-state mean
field of the statistical processes of trapping and source activation
that are found for macroscopic flow. Finally, in the purple region
the dominant mechanism is forest strengthening (insert 5). Here
a high enough dislocation density exists in the crystal and an
internal length scale develops, which is in the order of 1=

ffiffiffi
r

p
.

In this case, the strength is governed by the intrinsic size
determined by the steady-state dislocation forest, and is expected,
as suggested by experimental observations, to follow the
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well-known Taylor-strengthening relationship as the initial
dislocation density increases18,21.

It should also be noted that 2.5D DDD31,32 and 3D DDD
simulations17,21 have both been previously performed to
investigate the effect of variations in dislocation density on the

microcrystal strength. While those simulations revealed that the
strength versus size power-law exponent is affected by the initial
dislocation density, they were not able to establish the existence of
a strength and density relationship due to the limited range of
simulated crystal sizes and starting dislocation densities.

A generalized size-dependent Taylor-strengthening law. Both
strength and dislocation density at the boundaries between the
different mechanism regions shown in Fig. 1 scale with crystal size
in a similar manner to tmin and rcrit. Thus, it is possible to collapse
all DDD simulation results onto a single curve by plotting t

ffiffiffiffi
D

p
=m

versus rD, as shown in Fig. 3a. In Fig. 3b, the same scaling rela-
tionship for Ni single-crystal experiments ranging in diameter
from 0.2 to 40mm is shown. These microcrystals were focus ion
beam (FIB) milled into bulk crystals having initial dislocation
densities in the range of 1012 to 4� 1014m� 2 (refs 20,21,33,34).
The experimentally reported strengths are slightly higher on
average than those obtained from DDD simulations since they are
measured at higher strain levels (that is, between 1 and 5% strain).
Similar to the DDD simulations, the pre-existing dislocation
density is not expected to change much at these strain levels35,36,
and the effect of FIB damage is negligible in the presence of a pre-
existing dislocation network37. Nevertheless, the agreement
between DDD simulation results and experiments is remarkable.
It is worth noting that very few experiments exist at low rD values.
Also due to computational limitations it was not possible to
simulate crystals having very high values of rD. From Fig. 3, the
best fit for the DDD and experimental data is

t=m ¼ b
D
ffiffiffi
r

p þ ab
ffiffiffi
r

p ð1Þ
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Figure 2 | Minimum crystal strength and the critical dislocation density.

Minimum-resolved shear strength and critical dislocation density as a

function of crystal diameter from Ni micro-scale DDD simulations and

Cu-0.2 at%Ni macro-scale experiments39. Solid lines show the best

power-law fit for the simulations. The dashed lines are extrapolations for

larger crystal diameters.
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Figure 1 | Single-crystal deformation mechanism map. (a) Dimensionless-resolved shear strength versus the dislocation density as predicted from DDD

simulations. Experimental results from macro-scale Cu crystals39,60–63 and Cu-0.2 at%Ni crystals39 are also shown. The simulation data for the 10 and

20mm at rZ1011m� 2 are from the study by Rao et al.17 The deformation mechanism map is shown by coloured contours. (b–f) show the dislocation

microstructure in a thin foil (mimicking a TEM foil) extracted from the middle of the height of several D¼ 2.5mm microcrystals as indicated by arrows in a.

The dislocations gliding on slip planes parallel to the foil plane are in red, while those intersecting the foil plane are in blue.
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where b¼ 1.76� 10� 3 and a¼ 0.57 are dimensionless constants
with r and D in units of m� 2 and m, respectively. Equation (1) is
a generalized size-dependent Taylor-strengthening law. The
first term on the right-hand side is the intrinsic substructure
length scale, 1=

ffiffiffi
r

p
, normalized by the extrinsic length scale

of the crystal, D. This term is effectively the strength of the
weakest dislocation source, which is traditionally expressed in the
form bk/l, where k is a strength coefficient that is typically
assumed to be between 0 and 1, and l is the effective (or mean)
source length. Thus, the effective source length in the region
below the critical dislocation density can be shown to be in the
form l ¼ bD

ffiffiffi
r

p
=b. On the other hand, the second term in

equation (1) accounts for forest strengthening, and is proportional
to the magnitude of the Burgers vector, b, normalized by the
intrinsic length scale. Thus, the effective source length in the
region above the critical dislocation density can be shown to
be in the form l ¼ a=

ffiffiffi
r

p
. Further details are discussed in

Supplementary Note 1.

It should be noted that the constant b could, in general, be a
function of the stacking-fault energy, strain, strain rate and
temperature. Furthermore, for a very low dislocation density and/
or very small crystal size, the limit to equation (1) is the stress at
which full dislocations or partial dislocations nucleate from the
free surface of the crystal, g/b, where g is the stacking-fault
energy22.
While two qualitative experimental studies of the dislocation

microstructure in microcrystals were recently made35,38, source
length characteristics were not identified in those studies. Thus, in
the absence of such experimental characterization, the effective
source length is computed here from the current DDD
simulations. It should be noted that while initially all
dislocations in the simulations were randomly distributed with
a random length between 0 and D, the dislocation network
relaxes immediately to accommodate the high local dislocations
stress field. Due to these rearrangements, it is expected that the
effective dislocation-source length would differ from their initial
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randomly defined values. Plastic flow then occurs when the stress
is high enough to activate the weakest sources available in the
crystal. Figure 4 shows the effective source length at the onset of
plastic flow versus the initial dislocation density in four different
microcrystal sizes, D¼ 0.25, 0.5, 0.75 and 1.0 mm as computed
from DDD. It is clear from this figure that the DDD predictions
agree very well with the effective source length predictions made
based on equation (1).

The strength versus dislocation density as predicted from
equation (1) is plotted in Fig. 5 for different crystal sizes. The
DDD results, Ni microcrystal experiments20,21,33,34 and Cu bulk-
scale experiments39 of the same crystal sizes are also shown. This
figure shows that unlike when scaled as proposed in Fig. 3, the
microcrystal experiments alone are not able to predict the
minimum crystal strength or critical dislocation density if plotted
on a traditional strength versus dislocation density plot. Finally,
the coupled effects of dislocation density and range of studied

crystal sizes on the traditional strength versus size power-law
exponent are shown in Supplementary Figs 1 and 2, and
discussed in Supplementary Note 2.

Discussion
The above results clearly show the existence of a correlation
between the crystal strength and the dislocation density for
micron and sub-micron crystal sizes, in agreement with previous
experimental and simulation results16,18–21. Furthermore, these
results show the existence of a size-dependent critical dislocation
density that separates between two different deformation
mechanisms. While these results show this behaviour at the
microscale, the existence of a minimum strength for well-
annealed ‘bulk’ copper single crystals was first reported over
45 years ago40–42. One of the earliest studies to explain this is the
overlooked work of Johnson and Ashby41. They postulated that
when the dislocation density in a bulk crystal is below some
critical value, the probability of finding a dislocation source lying
on its slip plane decreases considerably41. This dictates that below
the critical dislocation density, the dislocation multiplication
stress should increase. This analytical model assumes a
distribution of dislocation segments forming a network in
which dislocations are entangled at randomly distributed three-
segment nodes. Thus, hereafter, this model is referred to as the
‘three-segment node model’. Based on this distribution, the
probability of finding a dislocation of length L or longer while
lying on a certain slip plane can be computed. It was shown that
the relationship between the crystal strength and the dislocation
density is

m=tð Þ4¼
ffiffiffi
6

p
V

8a4pb3
3Xþ 2X2 þ 0:5X3
� �

e�X ð2Þ

where X ¼ r3=2 8p
9A

� � amb
t

� �3
, V is the volume of the crystal, and

A¼ 0.744 is a constant. Equation (2) clearly encompasses the
effect of crystal size in the form of the crystal volume. Thus, the
minimum strength and critical dislocation density computed
from this model are also size dependent. This analytical model
predicts that below this critical dislocation density the strength
versus dislocation density follows a power-law relationship with
an exponent equal to � 1.5, while above it the well-accepted
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Taylor-strengthening relationship, t / ffiffiffi
r

p
, is recovered. The

only assumption made in this model is the character of the
dislocation network. Any reasonable dislocation distribution will
predict qualitatively a similar response with the minimum
strength and critical dislocation density varying by a factor of 3
to 4 (ref. 41). This twofold relationship was observed in well-
annealed Cu-0.2 at%Ni a few years later but with exponents equal
to 0.2 and � 0.2 above and below rcrit, respectively39.
Surprisingly, these experiments and analytical calculations have
been neglected as part of the vast ocean of overlooked research.
For comparison with the current DDD simulations, these later
bulk experimental results are also shown in Fig. 1. A clear
agreement between the bulk-scale behaviour and the micro-scale
behaviour is observed. The critical strength and the minimum-
resolved shear strength for these macrocrystals are also shown in
Fig. 2. While the minimum-resolved shear strength matches well
the extrapolations from DDD simulations, the critical dislocation
density does not show a good agreement. However, comparisons
with these Cu-0.2 at%Ni crystals should only by qualitative since
they exhibit a combined solid-solution strengthening and
dislocation strengthening. The former is not accounted for in
the presented DDD simulations or equation (1).

In the context of dislocation density effects, microcrystal
experiments were also reported for molybdenum (Mo)18,43, gold
(Au)44 and aluminium (Al)19 microcrystals. Micro-compression
experiments were performed on Mo microcrystals pre-strained to
0, 4 and 11% (ref. 18). The strength was reported to decrease with
increasing pre-strain, however, the scatter for the 4% pre-strained
microcrystal was huge, which was attributed to variations in the
dislocation density from 0 to 2.7� 1013m� 2 (ref. 43). Due to the
lack of precise dislocation density measurements versus crystal
strength in that study, it is difficult to quantitatively compare it
with the current results. For Au, micro-compression experiments
of 300 nm micropillars fabricated from puck-shaped pillars pre-
strained to 6, 13.5, 21, 35 and 41%, were reported44. Only the
dislocation density in the bare Au-thin film and the 35% pre-
strained microcrystal were reported. Thus, other than these two
data points, it is difficult to obtain quantitative comparisons with
the current DDD simulation results or with the Ni microcrystal
experiments. Nevertheless, the authors show that strength
continuously decreases with increasing pre-straining with no
clear minimum for the crystal strength although the dislocation
density reported for the 35% case was B1015m� 2. However, by
re-examining their transmission electron microscopy
micrographs, it could be argued that the dislocation density in
the pre-strained puck-shaped pillars is highly non-uniform as
compared with the upper half of the pillar, with the density
increasing considerably near the MgO interface. Thus, plasticity
would be expected to dominate in the lower dislocation density
region (the upper half of the microcrystal), since the bottom half
would experience large forest hardening due to the higher density
of dislocation entanglements in that region. It could be argued
that this is supported by the SEM micrographs, showing more
dislocation plasticity (surface slip) near the upper half of the
crystal versus the bottom half. Finally, micro-compression
experiments of pristine and 7% pre-strained Al microcrystals
were also performed19. The initial dislocation density, the proof
strength at 2% strain, as well as the strength and the dislocation
density at the end of deformation were all reported. Figure 3
summarizes these experimental results as compared with the
current model (equation 1) and Ni microcrystal experiments. It is
clear that these Al microcrystal results agree quite well with the
model and the Ni data.

Furthermore, a comparison between the single-ended source
model22, the three-segment node model41, and the stochastic
model25 with micro-scale experiments and equation (1) are

shown in Supplementary Fig. 3 and discussed in Supplementary
Note 3. It is clear that all these models show an inherent
correlation between strength and dislocation density. However,
none of these models can capture the universality of the response
at the bulk, micron and sub-micron scales, or the correct scaling
response below the critical dislocation density. In addition, while
these models show a change in response around a critical density,
none of them matches the experimental results or the DDD
simulations. These models underestimate the critical density and
minimum-resolved shear strength relationships and are unable to
predict the correlation with crystal size observed from DDD
simulations and experiments.

The question that arises now is whether it is possible to extend
equation (1) to predict size effects in polycrystals. One reason for
the triumph of the traditional Taylor-strengthening constitutive
law over the past eight decades is its effectiveness in predicting
the strength of both bulk single crystals and polycrystalline
materials14. Similarly, for equation (1) to be a generalized size-
dependent constitutive law, it should also be applicable to
polycrystals. To test this argument, the strength of polycrystals, s,
can be deduced from equation (1) by multiplying the shear stress
by the ‘Taylor factor’, M (ref. 45). In this context, D would denote
the average grain size of the crystal. The Taylor factor is in the
range of 1.73 to 3.67 depending on the condition and texture of
the crystal46. Figure 6 shows the polycrystalline material strength,
from equation (1), as a function of grain size at M¼ 2.5 and for
different dislocation densities. It is clear that at a constant
dislocation density the relationship takes the form spD� n with
the power-law exponent in the range 0rnr0.5. Interestingly, for
crystals having an average grain size Dr1 mm and having
dislocation densities o1013m� 2, the well-accepted Hall–Petch
relationship is recovered (that is, n¼ 0.5; (refs 5,6). As the
dislocation density increases, the exponent decreases until the
effect of grain size vanishes. This is in qualitative agreement with
other experimental and simulation observations47,48. Note that
the strength reported in Fig. 6 is the flow strength for a given
dislocation density. No assumption has been made on the
evolution of the dislocation density and subsequent hardening,
which clearly would be different in single crystals versus
polycrystals.
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The recovery of the Hall–Petch relationship from equation (1)
can be explained as follows. Conrad showed experimentally that
the evolution of the dislocation density in any polycrystal is
linearly proportional to strain and inversely proportional to the
average grain size as

r ¼ r0 þ
AE
bD

ð3Þ

where r0 is the initial dislocation density, E is the stain, and A is a
constant49–51. For polycrystals having an average grain size
Dr1mm and an initial dislocation density rr1013m� 2, it can
be shown that r0 � AE=Db. Utilizing this and substituting
equation (3) into equation (1) we get

s ¼ Mm
bffiffiffiffiffiffiffiffiffiffi
AE=b

p þ ab
ffiffiffiffiffiffiffiffiffiffi
AE=b

p !
D� 0:5 ð4Þ

Equation (4) suggests that at any strain level, the traditional
Hall–Petch relationship holds for small crystal sizes and low
initial dislocation densities. For copper, it was shown experimen-
tally that A¼ 3.58 (ref. 46), and in the current analysis we assume
the same value for nickel. The Hall–Petch plot for polycrystalline
Ni as predicted from equations (1) and (3) at yield (that is,
E ¼ 0:002) is shown in Fig. 7. It should be noted that it is
unrealistic to expect that the initial dislocation density is constant
in all grain sizes tested from nanocrystalline to coarse-grained
crystals. Instead, the initial dislocation density must be a function
of the grain size52. Thus, to more reasonably mimic experiments,
the initial dislocation density used to predict the red lines
in Fig. 7 is assumed to be in the order of 1012m� 2 for grains
D410 mm, and increase inversely with grain size such that
r0¼ 1012(1þ 10� 10� 6/D) mm. Moreover, the solid-curve is for
M¼ 2.5, and the dashed curves are the limits at M¼ 1.73 and
M¼ 3.67. The results from eight different nanocrystalline
experiments are also shown for comparison15,53. It is clear that
the analytical predictions based on equation (1) are in excellent
quantitative agreement with the experimental results for an
average grain size DZ50 nm. For polycrystals with grain sizes
Do50 nm, the deformation is typically governed by twinning,
grain boundary sliding and grain boundary rotations15. These

deformation mechanisms are not accounted for in equation (1)
and are beyond the scope of this study.

It should be mentioned that equation (1) cannot be used
alone to predict crystal hardening or softening in single or
polycrystalline materials. It must be complimented by a kinetic
equation for the evolution of the dislocation density (for example,
equation (3)), which will be different for single crystals than for
polycrystals. Such coupling will provide an avenue towards
performing physics-based simulations at larger scales (for
example, crystal plasticity simulations) without ad hoc assump-
tions or nonphysical empirical-based assumptions.

In conclusion, from this study, a size-dependent dislocations-
based analytical model was developed using DDD simulations of
microcrystals spanning 2 orders of magnitude of crystal sizes and
5 orders of magnitude of dislocation densities. The model is
shown to be fully consistent with numerous experimental studies
of single crystals and polycrystalline materials. Although this
model was based on the total dislocation density, it is possible to
re-derive the model based on the density of forest dislocations
threading the primary slip plane54, or by accounting for the forest
interactions between the primary slip system and other secondary
systems55. Nevertheless, the overall conclusions of this work will
not change. Because of the applicability of the model to an
extremely large set of crystal/grain sizes (that is, bulk to
tens of nanometers) and its portability for predicting the
strength of both single and polycrystals, the proposed model is
expected to have further applications in constitutive law
development and multiscale methods. This model can also be
extended to address problems where the high strain rate
sensitivity of mobile dislocation density is important.

Methods
DDD simulations. In DDD simulations, plasticity is modelled by numerically
computing the evolution of dislocation ensembles. These computations can be
performed in 2D or 3D computational cells. In 2D DDD simulations, dislocations
are modelled as infinite long straight dislocations56. On the other hand, 3D DDD
methods are based on modelling the full dynamics of dislocation loops in space. All
simulations performed here are based on two different 3D DDD techniques. For
simulations of microcrystals having diameters Do10 mm, the method developed by
El-Awady et al.57 is used. In this approach, dislocations are discretized using curved
spline segments58, and the image field due to the free surfaces is computed using
the boundary element method57. Also, screw dislocation cross-slip is accounted
for27. For simulations involving microcrystals having diameters DZ10 mm, an in
house modified version of the massively parallel DDD code ‘ParaDis’59, developed
at the Lawrence Livermore National Laboratory, was used. Here dislocations are
discretized as straight line segments. The modifications to the open source version
include accounting for dislocation surface interactions and enforcing slip on the
appropriate face-centred cubic glide planes17. Simulations with this code did not
account for dislocation cross-slip.

The material properties used in all simulations are those of Ni single crystals.
For simulations involving crystals with Do10mm, the simulation cell is a perfect
cylinder having a length to diameter ratio of L/D¼ 3:1. This mimics the geometry
of most micro-compression experiments fabricated by FIB milling7. A compressive
load is imposed along the axis of the cylindrical cell, which is parallel to the
[001] direction, thus insuring multi-slip conditions. For simulations involving
microcrystals with DZ10mm the computational cell is cubical with an edge-length
equal to D. The compressive load imposed in these simulations is along the ½413�
direction, insuring a nominally single-slip condition. A combined force-controlled
and displacement-controlled loading scheme is used in all simulations to mimic
experimental studies that do not allow for stress-relaxation33.

Initial dislocation network. The initial dislocation density in the simulations is
varied by 5 orders of magnitude from 1� 109 to 4� 1014m� 2. The initial dis-
location network is randomly assigned by introducing a distribution of single-
ended, double-ended, surface–surface dislocations, or pinning-free circular and
dipolar loops. The dislocation-source length is varied based on a two parameter
Weibull distribution27. It should be noted that our own simulations as well as other
published studies show that introducing random pinning points (for example,
Frank-Read sources) give quantitatively the same response in terms of size-scale
effects as compared with simulations starting from an initially pin-free dislocation
network for the same relaxed dislocation densities28. For further details about
mobility laws, elastic constants and surface boundary conditions, the reader is
referred to refs 17,27,57.
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Finally, the current DDD simulations do not include any criterion to naturally
nucleate new dislocations from free surfaces, if the resolved shear stress to activate
a pre-existing source is higher than the theoretical stress of the crystal or if all pre-
existing dislocations have escaped the crystal. Thus, to address this limitation in the
current simulations, if the resolved shear stress exceeds the theoretical strength of
the crystal the simulations are aborted and the strength of the crystal is recorded as
the theoretical strength of Ni, which is equal to 833MPa22.
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