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Centromeric binding and activity of Protein
Phosphatase 4
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The cell division cycle requires tight coupling between protein phosphorylation and dephos-

phorylation. However, understanding the cell cycle roles of multimeric protein phosphatases

has been limited by the lack of knowledge of how their diverse regulatory subunits target

highly conserved catalytic subunits to their sites of action. Phosphoprotein phosphatase 4

(PP4) has been recently shown to participate in the regulation of cell cycle progression. We

now find that the EVH1 domain of the regulatory subunit 3 of Drosophila PP4, Falafel (Flfl),

directly interacts with the centromeric protein C (CENP-C). Unlike other EVH1 domains that

interact with proline-rich ligands, the crystal structure of the Flfl amino-terminal EVH1 domain

bound to a CENP-C peptide reveals a new target-recognition mode for the phosphatase

subunit. We also show that binding of Flfl to CENP-C is required to bring PP4 activity to

centromeres to maintain CENP-C and attached core kinetochore proteins at chromosomes

during mitosis.
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R
eversible protein phosphorylation is a highly conserved
regulatory mechanism that is crucial for orchestrating
fundamental physiological processes such as cell division.

Several members of the large phosphoprotein phosphatase (PPP)
family of Ser/Thr phosphatases (the PP1-related family; the PP2A
family of PP2A, PP4 and PP6; PP2B and PP5) have been linked to
mitotic regulation1. However, our understanding of these enzymes
is largely incomplete, in part because of the highly conserved
nature of the catalytic subunits that rely on a wide range of
targeting subunits to provide specificity. Much of our insight is
based on PP1 and PP2A (refs 1,2), with little data available on the
substrates and regulation of the other PPP family members.

Recent studies revealed that protein phosphatase 4 (PP4), a
ubiquitous and essential PPP, regulates a variety of cellular
processes3, including chromatin biology4, DNA repair5–7 and cell
cycle progression8–10. Surprisingly, very few PP4 substrates have
been identified so far. Like its family member PP2A (ref. 1), PP4
often functions as a heterotrimeric complex3,11 consisting of one
evolutionarily conserved catalytic subunit (PP4c) that associates
with two types of regulatory subunits: a structural protein, PP4R2
(R2, and R1 in mammals), and a regulatory 3 (R3) subunit,
PP4R3 (platinum sensitivity 2 (Psy2) in yeast12,13, Falafel (Flfl)14

in Drosophila, suppressor of MEK1 (SMEK1; termed R3a11) and
SMEK2 (termed R3b11), the two known isoforms in human). The
major form of PP4, conserved from yeast to human cells,
comprises PP4c in complex with R2 and R3. However, in
metazoans PP4c can also associate with other ancillary proteins
(for example, R4, HDAC3, a4 or Gemin4 (see refs 3,11 and 15)).
Accordingly, PP4c has been found to be a component of several
mutually exclusive complexes including the PP4c-R2-R3 (R3a or
b) heterotrimer, but also PP4c-R1-HDAC3, PP4c-R4 or PP4c-a4,
that presumably have distinct substrates and biological roles.
Current models propose that PP4 functions through the modular
activity of its component subunits. But how these regulators co-
operate in substrate selectivity or sub-cellular localization and
stabilization of the holoenzyme is poorly understood.

A recent study, for example, indicates that the PP4c–R3b
complex does not require other regulatory subunits (for example,
R2 or R1) to dephosphorylate 53BP1 in DNA repair processes6.
In contrast, other studies demonstrate that both R2 and R3a are
necessary to target PP4c to the centrosomes16. Two studies
suggest that the R3 subunit can target PP4c to its substrate.
Human R3a, SMEK1, is reported to interact with the cell polarity
protein Par3 to mediate its dephosphorylation by PP4c in the
regulation of neuronal differentiation17. Furthermore, yeast R3,
Psy2, specifically interacts with the glucose signal transducer
protein Mth1 as a prerequisite for the PP4c–R3-mediated
dephosphorylation of both Mth1 and a transcriptional
repressor, Rgt1 (see ref. 18). These studies suggest that R3s are
substrate-targeting subunits of PP4 but how substrate specificity
is achieved remains unknown.

R3 orthologues are conserved throughout evolution with
similar domain architecture and have been found from yeasts
to human11,17–19 (Fig. 1a). They possess a predicted, conserved
pleckstrin homology (PH) superfamily-like domain and Smk-1/
DUF625 (Domain with Unknown Function 625, which is present
in Smk-1 protein, a component of the IIs longevity pathway that
regulates aging in Caenorhabditis elegans20) domain occupying
the amino-terminal region of the protein. These domains are
followed by a variable number of ARM (armadillo/HEAT repeats)
in the middle and a carboxy-terminal unstructured (low
complexity region) tail, which varies in length between different
species (Fig. 1a).

Flfl14, the R3-type subunit of Drosophila PP4, has
been shown to bind Miranda (Mira) and so recruits PP4
(PP4c–R2–R3Falafel) to regulate asymmetric division of

neuroblasts19. However, PP4’s substrate in this process is
unknown. Here we show that Flfl directly binds the
centromeric protein C (CENP-C) and brings PP4 activity to
centromeres. CENP-C is the key centromeric protein that
provides a platform for kinetochore assembly and so bridges
the mitotic centromere with core kinetochore proteins, which is
critical for proper chromosome segregation21,22. We have
precisely dissected the binding surfaces between Flfl and CENP-
C and now present the first crystal structure of the EVH1 domain
(which belongs to the family of PH-like domains23) of the R3
subunit of PP4 in complex with CENP-C. Interestingly, the
sequence defining this new variant of the EVH1 fold and the
residues crucial for CENP-C/substrate binding are well conserved
in all orthologues of PP4R3. We show that PP4 activity is
required for the dephosphorylation of both Flfl and CENP-C.
Moreover, the Flfl–CENP-C interaction brings PP4 catalytic
activity to centromeres and this is critical in regulating the
integrity of the mitotic centromeres and associated kinetochore
proteins. Thus these functional and structural data provide new
insights into PP4 function and the regulation of cell division.

Results
PP4 directly interacts with CENP-C. We have previously
demonstrated that Drosophila PP4 has critical roles in cell cycle
progression8. As with other members of the PP2A family, the
specificity of PP4 is thought to lie with interactions governed by
its regulatory subunits. Therefore we wished to identify proteins
interacting with Flfl, the R3-type subunit of Drosophila PP4. To
this end, we established a Drosophila D.Mel-2 cell line expressing
a Flfl::protein A fusion protein that we could affinity purify in
complex with its associated proteins. Mass spectrometry
identified components of the PP4 trimer consisting of Flfl
(bait), PP4c and R2. CENP-C was also identified with high
coverage and Mascot scores, indicating that it is a prominent
partner of Flfl in this cell line (Table 1). To confirm that CENP-C
also interacts with Flfl, we carried out the reciprocal experiment
of establishing a D.Mel-2 cell line expressing a CENP-C::protein
A. In this case, mass spectrometry identified all three subunits of
PP4, including Flfl (Table 2). Moreover, similar results were
obtained using either protein A-tagged Flfl or CENP-C expressed
in Drosophila syncytial embryos (Supplementary Tables 1 and 2).
Thus the interaction is not unique to cultured cells and is present
during normal Drosophila development.

To determine which of the three PP4 subunits, if any, directly
interacts with CENP-C, we synthesized each 35S-Met-labelled
subunit using in vitro transcription–translation (IVTT) and
identified which would bind to immobilized glutatione S-trans-
ferase (GST)-tagged full-length CENP-C. Of the three subunits,
only Flfl directly interacted with CENP-C (Fig. 1b).

As a major centromeric component, CENP-C shows distinct
centromeric localization throughout the cell cycle. To determine
whether Flfl also localizes at centromeres, we generated an anti-
Flfl antibody (Supplementary Fig. 1a) and used this to investigate
Flfl’s sub-cellular localization by indirect immunofluorescence
(IF). This revealed Flfl to be a predominantly nuclear protein, a
proportion of which co-localized with a centromeric marker, the
histone variant CENP-A (centromere identifier (CID), in
Drosophila; Fig. 1c). This accords with the association of Flfl
with centromeric CENP-C as shown by proteomics and in vitro
binding assays. Together these data indicate that PP4 is a
component of the Drosophila centromere that associates with
CENP-C through a direct interaction made by its R3 subunit, Flfl.

Flfl binding domain of CENP-C recruits PP4 to centromeres.
To narrow down the interacting surfaces between Flfl and
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Figure 1 | Interacting domains of Falafel and CENP-C. (a) Schematic representation of the common structural elements of PP4R3 proteins compared with

Drosophila R3, Falafel. R3s contain a conserved PH/EVH1-like domain and Smk-1 domain with unknown function in their N-termini, followed by Armadillo/

HEAT repeats (ARM) in the middle and a variable length (dotted line, according to HomoloGene R3 orthologues can be 767 to 1,136 amino acid-long) low

complexity region (LCR) at the C-termini. Falafel fragments used in this study are indicated below. (b) In vitro binding of GST-tagged CENP-C with IVTT-

expressed 35S-Met-labelled Falafel but not with labelled R2 or PP4c. (c) Confocal microscopy of interphase D.Mel-2 cells showing nuclear and centromeric

enrichment of Falafel. Magnified images below show co-localization of Falafel with the centromeric protein CENP-A/CID. Scale bar, 5mm. (d) In vitro

binding of GST-tagged N-terminal (FlflN, see a), (but not Middle and C-terminal FlflM and FlflC, see a) fragment of Falafel with 35S-Met-labelled full-length

(fl) and C-terminal part (C0) but not with N-terminal part (N0) of CENP-C. (e) Identification of the Falafel Binding Domain (FBD/fragment C9), a 92-amino

acid-long region of the C-terminal part of CENP-C that can bind FlflN in vitro. CEN indicates the centromeric localization motif58. ‘*’ indicates globin from the

reticulocyte lysate. (f) The EVH1 domain-containing GST-tagged FlflN (aa 1–361) and its truncated form Flfl1–168 (aa 1–168) specifically bind to 35S-Met-

labelled CENP-CFBD in vitro. In contrast Flfl169–361 (aa 169–361), the EVH1-lacking part of FlflN, which includes only an Smk-1 domain, cannot interact with
35S-CENP-CFBD. ‘*’ indicates globin from the reticulocyte lysate. (g) Western blots revealing that the entire PP4 complex is co-precipitated with

FLAG::CENP-CFBD from cultured cells or syncytial embryos; anti-aTubulin provides a loading and negative control. Left hand panels show Western blots of

cultured cells expressing FLAG only (1) or FLAG::CENP-CFBD (2). Right hand panels show Western blots of syncytial embryo proteins purified on

immobilized GST::CENP-CFBD. GST only serves as a negative control. Coomassie-stained gels demonstrate the loading of the bait proteins.
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CENP-C, we employed an in vitro binding assay and found that
the carboxy-terminal part of CENP-C specifically binds the
amino-terminal part of Flfl (Fig. 1d, Supplementary Fig. 1b),
which contains an EVH1 domain, a member of the PH-like
superfamily (residues 1–102) and an Smk-1 domain (residues
169–361) separated by a short inter-domain region (residues 103–
168; Fig. 1a). Subsequently, we determined that a 92-amino acid
(aa)-long fragment within CENP-C (the Flfl Binding Domain
(FBD); CENP-C residues 1002–1093) and the first 168 aa of Flfl
(Flfl1–168) were sufficient to support this interaction (Fig. 1e,f).
Finally, by using recombinant CENP-CFBD and Flfl1–168 expres-
sed in bacteria and purified to homogeneity, we demonstrated
that the two protein fragments can form a stable stoichiometric
complex in vitro confirming the direct and suggesting a
phosphorylation-independent interaction between them
(Supplementary Fig. 1c).

Just as we could use full-length CENP-C expressed in D.Mel-2
cells as an affinity bait to purify the PP4 holoenzyme (Table 2), we
could achieve the same purification using FLAG::CENP-CFBD

(Fig. 1g). Moreover, all three subunits of PP4 could be
successfully co-purified from Drosophila syncytial embryo
extracts, when recombinant GST::CENP-CFBD protein was used
as a bait (Fig. 1g), suggesting that CENP-CFBD is sufficient for the
binding of the PP4 holoenzyme. In accord with these findings,
CENP-C co-purified with protein A::Flfl1–168 from cultured cells
(Supplementary Table 3), but not with protein A::Flfl169–973

(Supplementary Table 4). Using indirect IF we found that, similar
to the endogenous protein (Fig. 1c), both FLAG-tagged Flfl and
Flfl1–168 localize to centromeres throughout the cell cycle
(Supplementary Fig. 1d). By contrast, FLAG::Flfl169–973 was

completely excluded from centromeres (data not shown). This
strongly suggests that the EVH1 domain within Flfl1–168 is both
necessary and sufficient to target Flfl to CENP-C and so to
centromeres.

Flfl-interacting motif of CENP-C is an atypical EVH1 ligand.
We asked whether the FBD of CENP-C might have features in
common with known EVH1 ligands that contain high and
repetitive proline content24. Therefore to more precisely define
the interaction site, we probed an array of overlapping 20 aa
peptides covering the entire CENP-CFBD fragment with
recombinant Flfl1–168. This identified a 19 aa sequence located
in the middle of the FBD (CENP-C residues 1048–1066), which
strongly interacted with Flfl1–168 that we termed Flfl-interacting
motif (FIM; Fig. 2a). We then tested the functional importance of
this sequence by carrying out in vitro binding assays, which
showed that the deletion of the FIM from CENP-CFBD prevented
its interaction with 35S-Met-labelled Flfl1–168 (Fig. 2b). Although
both the FIM deletion mutant of full-length CENP-C
(FLAG::CENP-CDFIM) and the wild-type protein (FLAG::CENP-
CWT) localized to centromeres equally well, the FLAG::CENP-
CDFIM protein was unable to interact with full-length Flfl
or Flfl1–168 in co-immunoprecipitation experiments (Fig. 2c) or
with any of the PP4 subunits as indicated by proteomics
(Supplementary Tables 5 and 6). Thus the FIM appeared to be
indispensable for the complex formation within the context of
full-length CENP-C protein. Finally we verified the role of FIM in
the recruitment of Flfl–PP4 to centromeres. We found that
FLAG::Flfl1–168 localized to centromeres when endogenous
CENP-C was replaced with green fluorescent protein::CENP-
CWT (GFP::CENP-CWT), but not at all when replaced with
GFP::CENP-CDFIM (Fig. 2d and Supplementary Fig. 1e). Thus a
19-aa-long segment of CENP-C, the FIM, is crucial for the
recruitment of Flfl and hence PP4 to centromeres.

As the FIM did not show any particular enrichment for proline
residues characteristic of EVH1 ligands, we decided to define
individual residues within this sequence that were important for
the interaction. We found that substitution mutants at four
adjacent sites within the 19-mer, 1057-Phe-Lys-Lys-Pro-1060
(FKKP), disrupted this binding suggesting their potential
importance in making direct contact between the two proteins
(Fig. 2e). The phenylalanine and proline residues appear
absolutely critical for this interaction, while some variation in
the identity of the intervening residues may be tolerated.

Conserved structure of the EVH1 domain of Flfl. To better
understand the molecular basis for the Flfl–CENP-C interaction,
we co-crystallized an amino-terminal 122-aa-long fragment of Flfl
containing the EVH1 domain (Flfl1–122) and the CENP-CFIM

peptide and solved the structure by molecular replacement to
1.5 Å resolution as described in Methods. Crystallographic sta-
tistics and representative electron density are provided in Table 3
and Supplementary Fig. 2a, respectively. The final model com-
prises residues 4–114 of Flfl and 1055–1065 of CENP-C. We
found that the Flfl1–122 fragment is composed of a seven-stranded
b barrel capped by a C-terminal a-helix (Fig. 3a). Two concave
surfaces are formed by the outside of each b sheet, one of which
(strands b1, b2, b5, b6 and b7; Fig. 3a) forms the peptide-binding
groove with contributions from an inter-strand loop (residues
66–69). The CENP-C peptide can be unambiguously identified as
bound into that groove (Supplementary Fig. 2b). Although the
structure of Flfl1–122 slightly deviates from the canonical EVH1
domains (Supplementary Fig. 2c), three-dimensional searches
using the DALI server25 showed several proteins in the EVH1
family23 as close structural homologues. The EVH1 domain from

Table 1 | Falafel-interacting proteins in D.Mel-2 cells.

Protein A::Falafel affinity purification

# FlyBase CG Protein Score Coverage (%)

1 9351 Falafel (bait) 11,959 26
2 31258 CENP-C 1,178 13
3 42389 CG42389 1,124 10
4 32505 PP4c 872 27
5 2890 R2 316 7

AP-MS, affinity purification-coupled mass spectrometry.
AP-MS reveals protein A::Falafel pulling down centromeric protein CENP-C as well as R2 and
PP4c, subunits of PP4, from D.Mel-2 cells with good Mascot scores and sequence
representation (coverage).

Table 2 | CENP-C-interacting proteins in D.Mel-2 cells.

CENP-C::protein A affinity purification

# FlyBase CG Protein Score Coverage (%)

1 31258 CENP-C (bait) 6,141 31
2 9351 Falafel 705 16
3 32505 PP4c 632 28
4 2890 R2 621 23
5 17870 14-3-3zeta 268 18
6 31196 14-3-3epsilon 239 24
7 13329 CENP-A/CID 184 12
8 4817 SSRP1 (FACT complex) 98 3
9 10223 Topoisomerase2 86 1
10 1828 Dre4 (FACT complex) 53 1

AP-MS, affinity purification-coupled mass spectrometry.
AP-MS of CENP-C::protein A reveals all three subunits of PP4 interacting with CENP-C in
D.Mel-2 cells.
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MENA26 appears most closely related structurally (root-mean-
square deviation 2.2 Å over 113 Ca positions; Z-score¼ 13.8).
The binding site lies in a highly conserved groove on the surface
of the protein (Fig. 3b,c) burying 1,700Å2 of the total 6,700Å2

surface of Flfl1–122 and corresponds to the surface responsible for
binding proline-rich sequences in other members of the EVH1
family27. The residues within the EVH1 domain, which are
involved in binding to CENP-CFIM, are highly conserved in the
R3 subunits of PP4 from a very wide range of other organisms
(Supplementary Fig. 2d).

Residues 1055–1065 of the CENP-CFIM peptide are well
defined in the electron density, and include FKKP motif of the
residues predicted to interact with the Flfl1–122 by peptide array
analysis (Fig. 2e). The peptide backbone adopts a left-handed

helical conformation similar to the polyproline II (PPII) helix28.
This arrangement is mainly stabilized by the establishment of
hydrogen bonding and van der Waals interaction between
Pro1060 and Trp20. The twofold pseudo-symmetry displayed
by the PPII helix enables bidirectional ligand binding often
observed in polyproline recognition motifs such as the SH3
domain29,30. Additional residues flanking the PPII sequence
provide directional specificity. In our structure CENP-C0s
Phe1057 and Pro1060 provide the principle specificity and
directionality of binding (Fig. 3d and Supplementary Fig. 2e; see
also the legend for Supplementary Fig. 2e). EVH1 domain ligand
selectivity is dependent on which family the domain belongs to27.
Class I EVH1 domains, as found in the Ena/VASP proteins
recognize FPPPP sequences, while Class II domains, exemplified
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by Homer/Vesl, bind a PPxxF motif. Class III domains, found
uniquely in WASP proteins are specific for LPPPEP. The ligands
for Class IV domains, also known as Spred domains, are
unknown. A structural study has suggested that the Spred-1
EVH1 domain may preferentially bind low proline content
ligands due to a narrowed peptide-binding channel with slight
displacement of the conserved tryptophan and associated strand
b2 (ref. 31). However, in our structure this element more closely
resembles the canonical EVH1 fold. Although the FKKP motif
recognized by Flfl closely resembles the inverted PPxxF sequence
bound by Homer, the mGluR-Homer crystal structure shows an
unusual peptide conformation, in which the peptide backbone
arches away from the EVH1 surface to place the terminal
phenylalanine in a unique binding pocket32. In our structure, the
FIM is bound in the reverse orientation to that of the mGluR
peptide, placing the phenylalanine in a roughly similar location.
However, the peptide is bound to Flfl in a more classical
configuration that resembles Class I and Class II ligands by
maintaining PPII configuration for its full length. We suggest that
Flfl–FIM interaction constitutes a novel mode of EVH1 binding
in which a low proline content ligand is recognized in a PPII
conformation.

PP4 is necessary for the integrity of mitotic centromere. Having
defined the interaction site between Flfl and CENP-C, we then
wished to assess its biological significance. To this end we first
depleted cells of Flfl and recorded the behaviour of centromeres
throughout the cell cycle. We did not observe any consequences
of Flfl depletion in interphase cells. However, during mitosis a
proportion of CENP-C became displaced from centromeres and
accumulated on the spindle microtubules or around the spindle
poles. In contrast, CENP-C was entirely restricted to centromeres

in control cells (kan RNAi versus flfl RNAi; top two panels in
Fig. 4a; quantitation in Fig. 4b). CENP-C serves a fundamental
role at the centromere both as a component of the centromere
itself and as a partner of the kinetochore-associated Mis12
complex21,22. We therefore investigated whether CENP-C0s
centromeric displacement also affected the mitotic localization
of any of the core kinetochore proteins. We found that while the
centromeric protein, CENP-A, remained associated with the
centromere, the displaced CENP-C was accompanied by all core
kinetochore components, exemplified by Mis12, Nsl1 and Spc105
(Supplementary Fig. 3).

To address whether the direct binding of Flfl to CENP-C was
responsible for maintaining centromere integrity during mitosis,
we determined the consequences of specifically disrupting the
CENP-C–Flfl interaction. To this end we substituted endogenous
CENP-C with FLAG-tagged CENP-C deleted for the FIM
(FLAG::CENP-CDFIM). This not only led to the removal of Flfl
from interphase centromeres, but also resulted in the displace-
ment of CENP-CDFIM from centromeres in mitosis (Fig. 4a,c).
Thus when CENP-C fails to recruit Flfl, the integrity of the
mitotic centromere is compromised in a manner similar to that
occurring following Flfl depletion.

To address whether the mitotic centromere association of
CENP-C requires PP4’s catalytic activity, we first depleted its
catalytic subunit PP4c. This resulted in partial CENP-C
displacement from centromeres in mitotic cells (Fig. 4b), similar
to the effects of Flfl depletion. However, we could not rule out the
possibility that the CENP-C mislocalization phenotype repre-
sented loss of a structural function for the PP4c subunit and so we
decided to develop a catalytically inactive form of this
phosphatase. To do this we first needed to identify changes in
the phospho-modifications of proteins associated with loss of
PP4. Interestingly, we noticed that on PP4c depletion, Flfl
remained hyper phosphorylated and migrated slower in a band-
shift assay (Fig. 5a). We also found that the FLAG-tagged FBD of
CENP-C displayed lambda phosphatase (l-PPase) sensitive
bands (Fig. 5b) of higher electrophoretic mobility after depletion
of either Flfl, PP4c or in the presence of phosphatase inhibitor,
okadaic acid (Fig. 5c). These observations suggest that both Flfl
and CENP-C are novel substrates of PP4, although we cannot rule
out the possibility of the indirect inhibition of some secondary
phosphatase on PP4 knockdown. In addition, these findings
provided us with a simple assay for assessing the catalytic activity
of PP4c. To design a catalytically inactive PP4c, we first aligned
the primary sequences of the catalytic subunits of PP2Ac/mts and
PP4c, which identified highly conserved residues in the active site
regions33 (Supplementary Fig. 4a). We then engineered a
transgene with the aa substitutions, D85N and H115N, which
should render the phosphatase catalytically inactive. Consistent
with the loss of enzymatic activity, D.Mel-2 cells expressing this
phosphatase-dead (PhD) mutant of PP4c in the absence of its
endogenous counterpart no longer displayed a Flfl doublet on
immunoblots (IBs) but only the slower migrating, phosphorylated
form of the protein (Fig. 5d). This phosphatase-dead counterpart
of PP4c (PP4cPhD) could interact with both R2 and Flfl
(Supplementary Fig. 4b), confirming the structural integrity of
the inactive trimeric phosphatase. We then expressed PP4cWT

or PP4cPhD in D.Mel-2 cells lacking endogenous PP4c
(Supplementary Fig. 4c) and assessed their progression through
mitosis. The loss of PP4 catalytic activity resulted in CENP-C
displacement from the centromeres (Fig. 4a, bottom panels) to
virtually the same extent as both Flfl and PP4c depletions
(compare Fig. 4d with Fig. 4b and c). Thus, centromere integrity
during mitosis requires the localized delivery of the catalytic
subunit to the centromere mediated by the interactions of PP4’s
R3 regulatory subunit, Flfl and the centromeric protein CENP-C.

Table 3 | Data collection and refinement statistics
(molecular replacement).

Falafel (1–122)_CENP-C (FIM)

Data collection
Space group P61
Cell dimensions
a, b, c (Å) 67.75, 67.75, 53.37
a, b, g (�) 90, 90, 120

Resolution (Å) 58.68–1.50 (1.55–1.50)
Rsym or Rmerge 0.03 (0.39)
I/sI 11.72 (1.84)
Completeness (%) 99.70 (98.19)
Redundancy 6.7 (6.45)

Refinement
Resolution (Å) 58.68–1.50
No. reflections 22,313
Rwork/Rfree 0.13 (0.19)/0.17 (0.26)
No. atoms 1,061
Protein 971
Ligand/ion 5
Water 85

B-factors 31.5
Protein 30.6
Ligand/ion 44.6
Water 41.6

R.m.s deviations:
Bond lengths (Å) 0.009
Bond angles (�) 1.17

FIM, Falafel-interacting motif; r.m.s, root mean square.
Statistics for the highest-resolution shell are shown in parentheses.
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Discussion
Studies of protein phosphatases have been limited by restricted
knowledge of either the mechanisms that regulate their specificity
or the identity of the protein kinases they oppose. Moreover, the

fact that most protein phosphatases are multimeric complexes, in
which regulatory subunits deliver stability, localization and
substrate recognition activities to the catalytic subunits, has
limited the number of inhibitory compounds that have been
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developed against them1,34,35. Together, this has led to a signi-
ficant delay in our understanding of how exactly phosphorylation
regulates multiple cellular processes.

We have developed an interest in PP4 as a newly emerged
regulator of cell cycle progression8,9. PP4 is a member of the
PP2A family of Ser/Thr phosphoprotein phosphatases and as in
the case of PP2A, the common form of the holoenzyme
comprises a catalytic and two regulatory subunits. We were
specifically led to study potential roles of Flfl, the R3 subunit of
PP4 in Drosophila, because of the involvement of R3 subunits in a
variety of cellular processes3,11 including the cell cycle16. The
human R3b subunit SMEK2, for example, participates in
regulation of S-phase progression and behaves as a chromatin
protein phosphorylated by the cyclin-dependent kinases36. In
addition, R3 subunits of PP4 influence cell cycle progression
through involvement in DNA repair pathways6,7. Our present
finding of a functional interaction between Flfl and CENP-C
directly illustrates the role played by the R3 subunit in targeting
the PP4 to the centromere to regulate its structure and function.

Several previous studies have implicated R3 as the targeting
subunit of PP4 (see introduction). This regulatory subunit is well
conserved from yeast to human and has an EVH1 domain and a
Smk-1/DUF625 domain occupying the N-terminal part of the
protein (Fig. 1a). This part of the molecule appears important in
all of its targeting interactions described to date: the Smk-1/
DUF625 domain of mammalian R3a interacts with the PP4
substrate Par3 in neuronal differentiation17; the EVH1 domain of
yeast R3 interacts with the PP4 substrate Mth1 (see ref. 18) and
the EVH1 (formerly RanBD) domain of Drosophila R3, Flfl,

binds Mira to regulate asymmetric division of neuroblasts19. We
now show that the EVH1 domain of Flfl also directly interacts
with the key centromeric protein, CENP-C.

EVH1 domains are structurally related to PH domains but
generally bind to proline-rich amino-acid sequences rather than
phospholipids. Our study provides the first analysis of the
interaction between an R3 regulatory subunit and its target at
atomic resolution that together with in vitro and in vivo binding
assays unequivocally confirms complex formation between these
proteins. This mode of targeting PP4 to its substrate(s) appears
very different to other Ser/Thr protein phosphatases such as PP1
and PP2A, in which the variable regulatory subunits often form a
contiguous substrate recognition surface with the conserved
catalytic subunit37. The R3 regulatory subunits of PP4 by contrast
appear to rely on a flexibly linked EVH1 domain for substrate
recruitment, which then presumably places the catalytic subunit
proximal to the target residue(s). Analysis of the crystal structure
shows that the interaction takes place in the groove that forms
within the EVH1-like domain of Flfl. This domain deviates from
the canonical EVH1 domain in that a conserved phenylalanine
(Phe77 in 1EVH) is replaced by leucine (Leu70) and the side
chain of a conserved tyrosine (Tyr12 in Flfl1–122) is in a different
orientation to that in other EVH1 family members (Fig. 3c and
Supplementary Fig. 2c). Nevertheless, the 3D organization of this
part of Flfl shows close structural homology with other EVH1
domains. Moreover, EVH1 domains present in amino termini of
R3 subunits of PP4 phosphatases are highly conserved at their
primary sequence, suggesting that their mode of binding
to ligands will also be conserved (Supplementary Fig. 2d).
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Interestingly, unlike other EVH1 ligands, the segment of CENP-C
that binds Flfl does not have an enriched and repetitive proline
content. Within the 19 aa FIM of CENP-C, we identify a stretch
of four aa of which Phe1057 and Pro1060 are key for specificity of
binding. They also direct the orientation of binding within the
EVH1 groove. This evokes a direct comparison with the crystal
structure of the Homer EVH1 domain bound to an mGluR

peptide that contains the reverse PxxF recognition motif32. It
seems, however, that the Homer EVH1 domain might be more of
an exception to the rule since the FxxP sequence in CENP-C
appears to adopt a conformation extremely similar to the left-
handed PPII helix, which more typically interacts with the EVH1
domains. It is of future interest to examine the variations allowed
at this interface in considering the targeting of PP4 to its multiple
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sites of action via its R3 subunit, and how the remainder of the R3
domain may participate in substrate binding.

Our results point to the functional importance of the
interaction between the Flfl EVH1 domain and CENP-C in
bringing the catalytic subunit PP4c to centromeres. Failure to do
this results in some loss of integrity of the centromere during
mitosis that we demonstrate in several ways. First, cells depleted
of Flfl exhibit displacement of CENP-C away from centromeres
and towards the centrosome during mitosis, whereas localization
of the centromeric histone CENP-A/CID remains unaffected.
This specifically requires the interaction between Flfl and CENP-
C because the same phenotype is evoked when endogenous
CENP-C is substituted by a CENP-CDFIM mutant, which does not
bind Flfl. Two pieces of evidence suggest that Flfl’s function in
this context is to deliver protein dephosphorylation activity to
centromeres: CENP-C also becomes displaced from centromeres
during mitosis either following depletion of the PP4 catalytic
subunit, PP4c, or when Phosphatase Dead PP4c is substituted for
the endogenous wild-type protein.

CENP-C is not only a structural component of the centromere
but it also provides a scaffold for kinetochore assembly and a hub
for kinetochore regulation21,22,38. We have previously observed
that mislocalization of CENP-C at the centrosome through
other means results in mislocalization of kinetochore proteins21,
just as we now observe following loss of PP4 activity from
the centromere. The extensive phospho-modification of CENP-C
represents a tremendous technical challenge to the unravelling
of the precise patterns of protein phosphorylation and
dephosphorylation that regulate its function. Genome-wide
phospho-proteomics studies have previously found CENP-C to
be heavily phosphorylated at multiple sites39,40, suggesting that it
may be phosphorylated by multiple protein kinases. Our own
analysis identifies at least 20 sites on CENP-C phosphorylated
in vivo (David Glover lab, unpublished data). Although the direct
roles of protein phosphatases in dephosphorylating these sites
must first await the identification of the opposing protein kinases,
it seems very likely that both multiple kinases and multiple
phosphatases will be involved.

CENP-C together with CENP-A/CID and CAL1 forms a
complex at the Drosophila centromere, and the three proteins
show interdependency in their localization41. Our observations
imply that in the absence of the centromeric function of PP4, the
association of CENP-C with its other centromeric partners is
weakened, either during loading or maintenance at centromeres,
allowing its displacement towards spindle poles. While our
findings implicate CENP-C as a putative PP4 substrate, it seems
reasonable to assume that it is not the only centromere/
kinetochore protein dephosphorylated by PP4. Indeed it has
been described, for example, that in human cells PP4
phosphoregulates Ndel1, the human orthologue of Drosophila
NudE42, which is critical for the recruitment of dynein to
kinetochores43 and also regulates microtubule organization42,44.
Another study finds the kinetochore component Dsn1 as a
potential target of PP4 (see ref. 5). Thus dephosphorylation
of alternative kinetochore substrates could also influence
centromeric protein function.

The central finding of our study is that a variant of an EVH1-
like fold located in the amino-terminal part of Flfl, the R3 subunit
of Drosophila PP4, is required to bind to a motif in the carboxy-
terminal part of CENP-C and so to target PP4 phosphatase
activity to regulate centromeric structure (Fig. 5e). This opens
the door not only for studies on the structure and function
of PP4 but also on which centromeric or kinetochore
proteins might be regulated by PP4 activity and about their exact
roles in kinetochore biology and the regulation of cell cycle
progression.

Methods
DNA constructs. Complementary DNA clones for PP4c (RE58406; CG32505,
PP4–19c), R2 (LD28993; CG2890; PP4R2r) and Flfl (LD13350; CG9351, flfl/PP4R3)
were obtained from the Drosophila Genomics Resource Centre. Full length, N0 and
C0 of CENP-C were made previously21. DNA encoding full-length CENP-C or its
truncated forms (FBD (CENP-C1002–1093aa), FBDDFIM (FBDD47–65aa) and CENP-
C1202–1411aa (C3)), full-length subunits of PP4 (PP4c, R2 and Flfl) and truncated
forms of Flfl (FlflN (aa 1–361), FlflM (aa 362–666), FlflC (aa 667–973), Flfl1–168aa,
Flfl169–361aa or Flfl169–973aa) or PP4c (PP4c1–50aa) were respectively cloned into
pDONR221 using the Gateway System (Life Technologies). CENP-CD1048–1066aa

(hereafter CENP-CDFIM) or PP4cD85NH115N (hereafter PP4cPhD as Phosphatase
Dead) entry clones were created by standard mutagenesis using QuikChange II XL
Site-Directed Mutagenesis Kit (Agilent Technologies). All entry clones were
verified by DNA sequencing. Expression constructs were then made using the
following destination vectors: pDEST15 (N-terminal GST fusion in Escherichia coli,
Life Technologies), pDEST17 or pET-DEST42 (N- or C-terminal 6�His fusion in
E. coli or in vitro transcription/translation; Life Technologies), pAFW and pAWF
(N- or C-terminal 3� FLAG fusion in D.Mel-2 cells, Drosophila Gateway Vector
Collection), pMT–PrA (N-terminal protein A fusion under the regulation of the
copper-inducible Metallothionein A (CG9470) promoter in D.Mel-2 cells, in
house), pMT–GFP (N-terminal eGFP-fusion in D.Mel-2 cells, in house) and
pMAT–PrA–N/C (N- or C-terminal protein A fusion under the regulation of
maternal atubulin promoter in Drosophila embryos, in house). Conventional
cloning was used to insert full-length CENP-C CDS into the pAc5.1_V5-ProtA
vector (obtained from Paolo D’Avino, Department of Pathology, University of
Cambridge) for constitutive expression with a protein A tag in D.Mel-2 cells21.
His::TEV::Flfl1–168aa, His::TEV::Flfl1–122aa (hereafter Flfl1–122) or His::TEV::CENP-
CFBD constructs were made by PCR amplification of the coding regions with a TEV
protease cleavage site fused to their 50 ends. The PCR products were inserted into
the pETDuet-1 plasmid (Novagen) in frame with the N-terminal 6�His-tag
(MCS1). DNA constructs for the coupled IVTT expression of full-length untagged
PP4c, R2 or Flfl were made by conventional cloning: CDS were amplified by PCR
and inserted into the T7 promoter-regulated pETDuet-1 plasmid (MCS2). T7
promoter-driven pDEST17/CENPC-fl, CENPC-N0 or CENPC-C0 constructs used
in IVTT were made by the LR reaction. Linear DNA fragments used in IVTT
encoding truncated forms of CENP-C-C0 (C1–C11, see Fig. 1e) or Flfl (Flfl1–168)
were generated by PCR using appropriate primers to create the following
configuration: T7-Kozak-ATG-gene-specific sequence-STOP codon.
Oligonucleotide primers used in this study are listed in Supplementary Table 7.

Recombinant protein expression and purification. For crystallizations studies,
His::TEV::Flfl1–122 was expressed in E. coli strain BL21 (DE3) RIL and purified to
homogeneity as follows: cells were grown to A600¼ 0.6 and expression was
induced with 1mM isopropyl 1-thio-b-D-galactopyranoside overnight at 18 �C.
Cells were lysed by sonication in buffer containing 150mM NaCl, 50mM
Tris–HCl, pH 8.0, 0.1mM EDTA, 0.5mM Tris(2-carboxyethyl)phosphine, com-
plete protease inhibitor cocktail (Roche, 11873580001) and centrifuged at 34,000 g
to pellet cell debris. The cleared lysate was loaded onto a 5ml HisTrap HP column
(GE Healthcare) and eluted with a gradient of 0–250mM imidazole. His::TEV was
removed by adding TEV protease (in house) to the main Flfl1–122-containing
fractions, which then were further purified by anion-exchange chromatography
using a 5ml HiTrap Q Sepharose FF column (GE Healthcare) and eluted with a
gradient of 0.15–1M NaCl. The final purification was performed using size
exclusion chromatography in buffer containing 150mM NaCl, 50mM Tris–HCl,
pH 8.0, 0.5mM Tris(2-carboxyethyl)phosphine. The purity of samples was ana-
lyzed by SDS–PAGE.

For other purposes, His- or GST-tagged proteins were expressed in
Rosetta2(DE3)pLysS Singles (Novagen) E. coli strain as detailed above. GST-tagged
proteins were affinity purified on Glutathione Sepharose 4b resin (GE Healthcare)
according to the manufacturer’s protocol. GST-tagged FlflN, FlflM, FlflC, Flfl1–168,
Flfl169–361, CENP-C, FBD, FBDDFIM or GST-alone proteins were maintained on
beads after immobilization and stored in PBS supplemented with 50% glycerol at
� 20 �C. His-tagged proteins were affinity purified on Ni-NTA resin (Qiagen)
according to the manufacturer’s guide. After elution with 300mM imidazole,
His::TEV::Flfl1–168 and His::TEV::CENP-CFBD were dialyzed against PBS for 4 h at
4 �C, and subsequently treated with His-tagged TEV protease (in house),
re-incubated with Ni-NTA resin for 30min on ice and supernatants were dialyzed
against PBSþ 10% glycerol (PBSG) for 16 h at 4 �C and stored at � 20 �C.

Protein purification from cultured cells or embryos. We have previously pub-
lished detailed protocols for sample preparation, protein A affinity purification and
proteomic analysis in refs 45,46. Briefly, B109 D.Mel-2 cells expressing protein
A-tagged CENP-C, Flfl, Flfl1–168 or Flfl169–973 were lysed in 8ml extraction buffer
(EB; 50mM HEPES pH 7.5, 100mM CH3COOK, 100mM NaCl, 50mM KCl,
2mMMgCl2, 2mM EGTA-Na, 5mM DTT, 0.5% NP-40, 5% glycerol and complete
protease inhibitor cocktail) on ice using Power Gen 125 homogenizer (Fisher
Scientific). Embryos (1 g) expressing protein A-tagged CENP-C or Flfl were
homogenized in 8ml EB on ice using Dounce tissue grinder (Wheaton).
Homogenates were treated with 2,000Kunitz units of DNase I (Sigma, D4263) for
5min at 37 �C and 10min at 25 �C and centrifuged (4 �C, 10min, 10,000 g).
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Clarified lysates were mixed with rabbit immunoglobulin-G-conjugated Dynabeads
(Life Technologies, 14302D) for 2 h at 4 �C, beads were washed four times in EB
and proteins were eluted with 1M NH4OH (10min at 25 �C). Eluates were acetone
precipitated and samples were analyzed by mass spectrometry.

Immunoaffinity purification of FLAG-tagged proteins was performed as
follows: (1) Large scale: FLAG::CENP-CFBD, FLAG::CENP-CWT or FLAG::CENP-
CDFIM were affinity purified from B109 stably transfected D.Mel-2 cells on anti-
FLAGM2 magnetic beads (Sigma, M8823) as described above. Purified complexes
were analyzed by immunoblotting or mass spectrometry. (2) Small-scale for the
l-PPase band-shift assay: stably transfected D.Mel-2 cells (1–5� 106 cells per well)
expressing FLAG::CENP-CFBD were treated with DMSO (carrier control), 50 nM
okadaic acid (3 h at 25 �C) or double-stranded RNAs (dsRNAs) targeting flfl, pp4c
or kan for RNA-mediated interference (RNAi). Cells were lysed in EB by passing a
cell suspension through a G25 needle (five times) followed by centrifugation (4 �C,
10min, 21,000 g). Supernatants were incubated with anti-FLAGM2 magnetic beads
(4 �C, 3 h, 15 r.p.m.) and bound proteins were eluted with 1M NH4OH (room
temperature, 5min), precipitated with ice-cold acetone and used in a l-PPase
assay.

Small-scale GFP purification was performed from 1–5� 106 D.Mel-2 cells
expressing wild-type or DFIM variants of FLAG::CENP-C and transiently co-
transfected with GFP-tagged Flfl, Flfl1–168 or Flfl169–973 (in pMT–GFP) on GFP–
Trap beads (ChromoTek, gta) following the protocol detailed above (see small-scale
FLAGM2 IP). Protein complexes were eluted with 1� Laemmli sample buffer and
analyzed by immunoblotting.

To pull down embryonic PP4, a wild-type (Oregon-R) syncytial embryo extract
was incubated with GST (control) or GST::CENP-CFBD (for 3 h at 4 �C, with gentle
rotation) immobilized on Glutathione Sepharose 4b resin. The beads were then
washed five times in EB, resuspended in Laemmli sample buffer, boiled and
subjected to SDS–PAGE.

Mass spectrometry. Mass spectrometric analyses of protein samples obtained
after affinity purifications were performed at Mass Spectrometry Laboratory,
Institute of Biochemistry and Biophysics, Polish Academy of Sciences (Warsaw,
Poland)21. Samples were digested with trypsin (Promega V5111) and peptide
mixtures were analyzed by liquid chromatography–tandem mass spectrometry
(LC–MS/MS) using Nano-Acquity (Waters) LC system and Orbitrap Velos mass
spectrometer (Thermo Electron Corp.). MS/MS raw data were analyzed by Mascot
Distiller followed by Mascot Search (Matrix Science) against FlyBase database.

In vitro complex formation. Recombinant Flfl1–168 or CENP-CFBD were loaded
(v¼ 0.5mlmin� 1; V¼ 0.5ml, respectively) onto a Superdex 200 size exclusion
column (GE Healthcare), and individual fractions were analyzed by SDS–PAGE
followed by Coomassie brilliant blue (CBB) staining. To reconstitute the dimeric
complex in vitro, Flfl1–168 and CENP-CFBD were mixed in an B1:1 molar ratio,
incubated on ice for 16 h, centrifuged (4 �C, 10min, 21,000 g) and loaded onto the
Superdex 200 column.

IVTTand binding assays. For the interaction studies 35S-methionine-labelled Flfl,
Flfl1–168, R2, PP4c, CENP-C-fl, CENPC-N0 , CENPC-C0 or C1–C11 (see Fig. 1e)
fragments of CENPC-C were expressed in vitro using the TNT T7 Quick Coupled
Transcription/Translation System (Promega, L1170). Hundred nanograms of
purified PCR fragments (C1–C11, Flfl1–168) or recombinant plasmids (Flfl, R2 or
PP4c in pETDuet-1; CENP-C-fl, CENPC-N0 or CENPC-C0 in pDEST17) were
added to a 30 ml reaction mixture (containing TNT Quick Master Mix, RNasin Plus
RNase Inhibitor (Promega, N2611), T7 TNT PCR Enhancer, protease inhibitor
cocktail and 0.5MBq Methionine-L [35S] (Perkin Elmer, NEG709A001MC)), and
incubated at 30 �C for 60min. The mixture was centrifuged at 21,000 g at 25 �C for
5min. The supernatant (IVTT input) was divided into equal parts and used for an
in vitro binding assay in which GST only served as the negative control and other
GST-tagged proteins were used as a bait. Bait proteins immobilized on Glutathione
Sepharose 4b resin were resuspended in 800ml of binding buffer (50mM HEPES
pH 7.4, 150mM NaCl, 1mM MgCl2, 1mM EGTA, 1mM DTT, 0.1% Triton X-100,
complete protease inhibitor cocktail and 0.5mgml� 1 BSA), mixed with IVTT-
expressed 35S-Met-labelled prey and incubated for 1 h at 25 �C (with gentle rota-
tion). Then beads were washed with washing buffer (binding buffer without BSA),
transferred into new tubes and boiled in Laemmli sample buffer. Proteins were
separated by SDS–PAGE and gels were then stained with Coomassie brilliant blue,
dried and directly used for autoradiography. Exposure to hypersensitive film
(Kodak BioMax MS film, 8222648) was carried out at � 80 �C.

Peptide array. Two peptide arrays were generated (Peptide Synthesis Laboratory,
CR UK LRI, London): (1) interaction array: 82 different 20-mer peptides each
shifted by 1 aa and covering the whole sequence of CENP-CFBD were spotted onto
a cellulose membrane; (2) substitution array: each and every residue in the 19-mer
FIM motif (1048-PDESSADVVFKKPLAPAPR-1066) was substituted with 19
individual different aa giving 380 peptides in total, which were spotted onto a
cellulose membrane. Membranes were activated by washing in 50% ethanol and
10% glacial acetic acid for 1 h and then washed three times in Buffer A (50mM
Tris, pH 7.5, 100mM NaCl and 1mM DTT) for 10min each. Hundred nanomolar

high purity untagged Flfl1–168 in Buffer A was left to incubate with the arrays at
4 �C overnight with continuous shaking. The membranes were then washed with
Buffer A and incubated with anti-Flfl antibody in Buffer B (Buffer A supplemented
with 0.1% Tween-20 and 5% milk powder) for 3 h at room temperature. After
further washes, spots with bound Flfl1–168 were detected using goat anti-rat
immunoglobulin-G–horseradish peroxidase–conjugated secondary antibody (2 h at
room temperature) and visualized by chemiluminescence according to the man-
ufacturer’s instruction (Merck Millipore, WBKLS0500).

k-PPase band-shift assay. Immunaffinity-purified FLAG::CENP-CFBD and its
phosphorylated forms were treated with exogenous l-PPase (NEB, P0753): purified
protein precipitates were resuspended in l-PPase buffer supplemented with 1mM
MnCl2. Samples were divided into two equal portions and incubated at 30 �C in the
presence or absence of l-PPase for indicated times (max 2 h). The reaction was
stopped by adding Laemmli sample buffer followed by heat inactivation (for 5min
at 95 �C). Samples were subjected to Phos-tag-containing SDS–PAGE.

Phos-tag SDS–PAGE. For the better separation of phosphorylated FLAG::CENP-
CFBD species, protein samples were subjected to 15% SDS–PAGE containing 25 mM
Phos-tag (Wako, AAL-107) in the presence of 70 mM MnCl2. Proteins were blotted
to nitrocellulose membrane according to the manufacturer.

Antibodies. Affinity-purified GST-tagged FlflN, PP4c1–50 or CENP-C1202–1411 and
R2::His were further purified by size exclusion chromatography (Superdex 75, GE
Healthcare) in PBS and used as antigens to immunize rats (anti-Flfl and anti-
CENP-C by IBMC, Portugal), a mouse (anti-PP4c by Harlan, UK) or a rabbit (anti-
R2 by Harlan). The specificity of the antibodies was confirmed by immunoblotting
(Supplementary Fig. 1a) after gene-specific RNAi in D.Mel-2 cells. The following
antibodies were used in IB or IF experiments: rat anti-Flfl serum (IB: 1:10,000,
IF: 1,000), mouse anti-PP4c serum (IB: 1:3,000), rat anti-CENP-C serum (IB:
1:3,000, IF: 1:1,000), mouse anti-FLAGM2 (Sigma, F3165; IB: 1:1,0000, IF: 1:5,000),
mouse anti-aTubulin (clone DM1A; Sigma, T9026; IB: 1:10,000, IF: 1:500) and
mouse anti-GFP (Roche, 11814460001; IB: 1:2,000, IF:1:1,000). Chicken anti-CID
purified antibody (IF: 1:2,000), rabbit anti-Mis12 serum (IF: 1:500), rabbit anti-
Nsl1 serum (IF: 1:1,000), sheep anti-Spc105 serum (IF: 1:1,000), rabbit anti-Ndc80
serum (1:500) and rabbit anti-Spd2 (IF: 1:2,000) antibodies were generated and
used in previous studies in our laboratory21,47,48. Secondary antibodies for IB or IF
were obtained from Jackson ImmunoResearch (horseradish peroxidase or DyLight
conjugates) or Life Technologies (AlexaFluor conjugates) and used at 1:10,000 (IB)
or 1:500 (IF) dilution.

Transgenic flies. Transgenic Drosophila melanogaster stocks constitutively
expressing protein A-tagged CENP-C (w; P(maternal atub-Cenp-C::PrA)) or Flfl
(w; þ ; P(maternal atub-PrA::Flfl)) in female germline were made using standard
P-element transformation (Fly Facility, Department of Genetics, University of
Cambridge). Fly stocks were cultured at 25 �C on standard Drosophila food. Fly
stocks expressing the transgenic proteins in a comparable (same or lower) level
than that of the endogenous protein were used in proteomic studies.

Cell cultures. D.Mel-2 cells (Life Technologies) were grown in Express Five SFM
medium (Life Technologies, 10486-025) supplemented with 2mM L-glutamine
(25030-024) and Pen Strep (15140-122) according to standard procedures.
Protein A::Flfl, protein A::Flfl1–168, protein A::Flfl169–973, CENP-C::protein A,
FLAG::CENP-CFBD, FLAG::CENP-CWT, FLAG::CENP-CDFIM, Flfl::FLAG,
FLAG::Flfl1–168, GFP::CENP-CWT/FLAG::Flfl1–168, GFP::CENP-CDFIM/FLAG::
Flfl1–168, FLAG::PP4cWT and FLAG::PP4cPhD stable cell lines were established
using FuGENE HD Transfection Reagent (Promega, E2311) following standard
procedures21. Briefly, 3 mg of DNA was mixed with 15ml of the reagent in 150 ml
of nuclease-free water for each transfection mixture and incubated at room
temperature for 15min. Then, each mixture was added drop wise to a well of
a six-well plate, where cells were previously seeded in 2ml of medium at 40–60%
confluency. The antibiotic selection started 48 h post-transfection and was
carried out according to standard procedures45.

RNAi and immunostaining of cells. The sequences of primers used to amplify
dsRNAs for RNAi experiments are given in Supplementary Table 7. For Flfl, PP4c
and CENP-C more than one dsRNA was generated. We have not noticed differ-
ences between them, in terms of effectiveness of the knockdown or a phenotype.
The time for maximal protein depletion was empirically determined; in general the
most severe phenotype was attained after two sequential rounds of RNAi. Cells
were transfected with dsRNAs using TransFast (Promega, E2431) and then plated
on non-treated or 0.5mgml� 1 concanavalin-A-coated cover slips, fixed with 4%
formaldehyde and immunostained47,48. Briefly, fixed cells were blocked in 3% BSA,
0.5% Triton X-100 in PBS, then incubated in primary antibody-containing PBT
(1% BSA, 0.1% Triton X-100 in PBS) for 2–4 h, followed by three washes in PBT,
1 h-long incubation in secondary antibody-containing PBT and three more washes
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in PBT. After this, cover slips were rinsed with pure water and mounted on slides
with ProLong Gold antifade reagent (Life Technologies, P36934).

Microscopy. Images were acquired on a Zeiss Axiovert 200M microscope
(objective � 100/numerical aperture 1.4) with a Cool-SNAP HQ camera (Photo-
metrics) using MAG Biosystems Software—Metamorph (Molecular Devices).
Images showing Flfl, Flfl::FLAG or FLAG::Flfl1–168 localization were acquired using
a Zeiss LSM 510 Meta Confocal Microscope (� 100 objective) using LSM510
software (release version 4.2 SP1, Carl Zeiss MicroImaging) and processed using
ImageJ (NIH, USA). Line scans were done using ImageJ and values were imported
to MS Excel, which was used to prepare plots.

Phenotypic analysis. The CENP-C displacement phenotype was most reliably
scored in cells in which the spindle axis was parallel to the cover slip with well
separated centrosomes, as shown by Spd2 staining, and where the chromosomes
were largely congressed at the equator (Fig. 4a). This prevented false positives due
to centrosome proximal to centromeric signals. It is therefore likely that our
phenotypic counts are underestimates of the penetrance of the defect. Data from
four independent RNAi experiments were analyzed using GraphPad Prism soft-
ware to produce the graph in Fig. 4b. The expressions of wild-type and DFIM
versions of CENP-C were assessed after four RNAi experiments (Fig. 4c) and wild-
type and PhD versions of PP4c after two RNAi experiments (Fig. 4d). A minimum
of 50 mitotic cells were scored for each variant within each experiment. In
experiments, which involved replacement of endogenous CENP-C with the
transgenic CENP-C constructs, only those cells were scored that showed normal
levels of CENP-C.

Crystallographic methods. Crystals of native protein–peptide complex were
grown in sitting drops by the vapour diffusion method49. Solution of protein at
22mgml� 1 was incubated overnight with peptide (PDESSADVVFKKPLAPAPR)
in a ratio of 1:1.3. Crystals of complex were grown by mixing 0.2 ml of this
solution with a 1:1 dilution of ½ reservoir buffer (3.31M Ammonium Sulfate,
9.5% Glycerol) and ½ Silver Bullet screen (Hampton Research; 0.2% w/v
4-Aminobenzoic, 0.2% w/v Azelaic acid, 0.2% w/v o-Sulfobenzoic acid mono-
ammonium salt, 0.2% w/v p-Coumaric acid, 0.2% w/v Sodium 4-aminosalicylate
dihydrate and 20mM HEPES sodium pH 6.8) with distilled water. Crystals grew in
space group P61 (unit cell dimensions: a¼ b¼ 67.75Å, c¼ 53.37 Å) to a size of
0.4� 0.2� 0.1mm. Under the assumption of one protein molecule per asymmetric
unit, a VM value of 2.46Å3Da� 1 corresponding to a solvent content of 49.9% was
calculated50. Crystals used for data collection were soaked in 3.4M sodium
malonate for a period of 2min, transferred to loops and immersed in liquid
nitrogen. X-ray diffraction data were collected at beamline ID29 (see ref. 51) of the
European Synchrotron Radiation Facility. Data used to solve the structure were
collected from a single crystal flash frozen at � 180 �C. All data were processed and
scaled using XDS52. Data collection statistics are shown in Table 3.

The structure of Flfl1–122 was solved by molecular replacement using the
programme Mr Bump53 and two structures of RanBD and Spred-1 domains (PDB
i.d. 1XOD, 1RRP) with a sequence identity of 20% as search models in a Phaser
ensemble. The structure was iteratively rebuilt using Coot54 and refined with
Refmac5 (see ref. 55) and phenix.refine56. The peptide sequence was docked
after refinement for Flfl1–122 alone had converged, and anisotropic B-factor
parameterization was employed for all non-water atoms. The structure was
validated using tools from the Molprobity suite57, which showed 99% of residues to
be in the favoured Ramachandran region and gave an overall clash score of 0.52.

Image processing. Scanned autoradiographs, gels and immunoblots were cropped
and compiled into figures using Adobe Photoshop and Illustrator CS6. Uncropped
scans are provided in Supplementary Figs 5–9.
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