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Flow damping due to stochastization of the
magnetic field
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The driving and damping mechanism of plasma flow is an important issue because flow shear

has a significant impact on turbulence in a plasma, which determines the transport in the

magnetized plasma. Here we report clear evidence of the flow damping due to stochastization

of the magnetic field. Abrupt damping of the toroidal flow associated with a transition from

a nested magnetic flux surface to a stochastic magnetic field is observed when the

magnetic shear at the rational surface decreases to 0.5 in the large helical device. This

flow damping and resulting profile flattening are much stronger than expected from the

Rechester–Rosenbluth model. The toroidal flow shear shows a linear decay, while the ion

temperature gradient shows an exponential decay. This observation suggests that the flow

damping is due to the change in the non-diffusive term of momentum transport.
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S
tochastization of the magnetic flux surface is expected to be
induced when the magnetic islands are overlapped and their
width exceeds a threshold in toroidal plasmas. Stochastiza-

tion of magnetic surfaces has been considered to be important
because this mechanism, caused by perturbation fields, has a
strong impact on transport and MHD events, such as a major
disruption or an edge localized mode crash. The role of
stochasticity in electron and ion heat transport has been studied
in reverse field pinch (RFP) plasmas (in a reversed field
experiment (RFX)1,2 and in the Madison Symmetric Torus
(MST)3–5), where magnetic islands overlap and field lines are
stochastic. In general, good agreement between the electron
thermal diffusivity estimated from power balance and the analytic
predictions of the Rechester–Rosenbluth model6 has been
reported. However, the role of stochastization of the magnetic
field in plasma flow has not been discussed before, in spite of the
importance of flow shear in the turbulence in plasma, which
determines the transport in toroidal magnetized plasmas, such as
in tokamak, helical and RFP plasmas.

Here we demonstrate that stochastization of the magnetic field
occurs when the magnetic shear at the rational surface decreases
in a plasma and the damping of toroidal flow due to the
stochastization is stronger than expected by the Rechester–
Rosenbluth model.

Results
Experimental set-up. The large helical device (LHD) is a helio-
tron-type device for magnetic confinement of high-temperature
plasmas. The LHD has three tangential neutral beams (NBs); two
beams are used to change the direction of the plasma current
from parallel (co-injection) to anti-parallel (counter-injection)
with respect to the equivalent plasma current. The toroidal flow
and ion temperature are measured with charge exchange spec-
troscopy7, while the rotational transform, i/2p, and magnetic
shear, s[¼ (r/i)qi/qr], at the rational surface (i/2p¼ 0.5) are
measured with motional stark effect spectroscopy (MSE)8 in the
LHD. There are three kinds of topology of the magnetic field in
the plasma: the first is nested magnetic flux surfaces, the second is
a stochastic magnetic field and the third is a magnetic island. The
magnetic topology is identified by the characteristics of heat pulse
propagation produced by modulated electron cyclotron heating
(MECH), measured with electron cyclotron emission9. In the
nested magnetic flux surfaces, the heat pulse propagates outwards
on the time scale of the heat transport. In contrast, the heat pulse
propagation becomes very fast due to the propagation along the
magnetic field line in the stochastic region in the plasma.

Observation of flow damping. Figure 1 shows the time evolution
of toroidal flow, angular momentum, rotational transform,
magnetic shear, and inverse of the electron and ion thermal
diffusivity in the discharge, where the direction of the NB injec-
tion (NBI) is switched from co-injection to counter-injection
(parallel to anti-parallel to the equivalent plasma current, which
gives the poloidal field produced by the external coil current) at
t¼ 5.3 s. The vacuum magnetic axis is 3.6m and the magnetic
field strength is 2.75 T. The edge rotational transform decreases
due to the NB current drive (NBCD) and the central rotational
transform increases due to the inductive current; the magnetic
shear at the i/2p¼ 0.5 rational surface starts to decrease and
reaches the steady-state value of 0.5 at t¼ 5.8 s after the switch of
the NBI. This decrease of magnetic shear increases the magnetic
island width and finally causes stochastization due to the over-
lapping of magnetic islands with higher modes9,10. The toroidal
flow velocity changes its sign from positive (co-rotation) to
negative (counter-rotation) and becomes steady state at a central

toroidal flow velocity of � 40 km s� 1. An abrupt drop of the
toroidal flow velocity is observed at t¼ 6.0 s, although the NBI
continues to be injected until t¼ 7.3 s. The toroidal flow velocity
starts to recover at t¼ 6.7 s. The core angular momentum (reff/
a99o1/2) decreases at the stochastization, which suggests that
this flow damping is not due to the increase in perpendicular
viscosity but due to the direct loss of angular momentum.

The topology of the magnetic field is identified by the
characteristics of the heat pulse propagation driven by MECH
with a frequency of 25Hz at the plasma center within
reff/a99o0.1. Here, reff is the averaged minor radius on a magnetic
flux surface and a99 is the effective minor radius in which 99% of
the plasma kinetic energy is confined, which is 0.63m in this
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Figure 1 | Time evolution of flow velocity and other plasma parameters.

Time evolution of (a) toroidal flow velocity, Vf, (b) angular momentum in

the core (reff/a99o1/2), (c) rotational transform, i/2p, (d) magnetic shear,

s, at the rational surface (i/2p¼0.5), and (e) inverse of the electron and

ion thermal diffusivity, 1/we, 1/wi, at reff/a99¼0.35 in the discharge where

the direction of neutral beam injection (NBI) is switched from co- to

counter-injection. Radial profiles of delay time of heat pulse produced by

modulated electron cyclotron heating (MECH) at three time slices

(t¼ 5.45, 6.02, 6.72 s) are also plotted. The error bars of the delay times

are standard deviations. The error bars of toroidal rotation are derived from

the uncertainty of the fitting parameter of the charge exchange line

emission to a Gaussian profile. The error bars of rotational transform and

magnetic shear are derived from the standard deviations of the MSE signal.
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discharge. Just after the beam switch at t¼ 5.45 s, the delay time
of the heat pulse indicates that the magnetic topology is
characterized by normal nested magnetic flux surfaces as seen
in Fig. 1. At t¼ 6.02 s, where abrupt drop of the toroidal flow
velocity is observed, the delay time of the heat pulse propagation
shows flattening in the plasma core (reff/a99o0.57), which
indicates the change of magnetic topology to a stochastic
character (stochastization of the magnetic field). During the
latter period in this discharge, at t¼ 6.72 s, the radial profile of
the delay time shows a small peak at reff/a99B0.5, which indicates
the magnetic island where the heat pulse propagates from the
boundary to the O-point of the magnetic island, located at
reff/a99B0.5. There are two patterns of heat pulse propagation
observed in the flat temperature region: one pattern is a very fast
propagation as seen at t¼ 6.02 s, and the other is simultaneous
propagation at two separate points (reff/a99B0.4 and 0.6) as seen
at t¼ 6.72 s. The former is clear evidence of the stochastization of
the magnetic field, and the latter is consistent with a magnetic
flux surface with a magnetic island. A negative slope of the time
delay shows that the heat pulse propagates inward from the
boundary of the magnetic island at reff/a99B0.6 to the O-point,
and a peaked delay profile indicates that the heat transport inside
the magnetic island is comparable to or even better than that
outside of the magnetic island11,12.

Thermal diffusivity and viscosity. In the core plasma of the
LHD, the electron thermal diffusivity evaluated from heat pulse is
comparable to that evaluated from the power balance in the
steady state13. These experimental results suggest that the heat
pinch14 or other non-linearities of electron transport are small
enough to be neglected in this experiment. Therefore, the effective
transport coefficients (electron thermal diffusivity, ion thermal
diffusivity and viscosity) are evaluated from the ratio of radial flux
normalized by density to gradient for simplicity. Here, the radial
flux of electron ion heat transport and momentum transport are
calculated from the power deposition and torque profiles driven
by the MECH and the NBIs. Figure 2 shows the radial profiles of
toroidal flow velocity, electron temperature, ion temperature and
electron density before (t¼ 5.64 s, 5.61 s) and after (t¼ 6.44 s,
6.41 s) the stochastization of the magnetic field. Before the
stochastization, the toroidal flow velocity is very peaked at the
plasma centre, because the toroidal viscosity due to helical ripple
increases sharply towards the plasma edge and hence significant
damping of the toroidal flow occurs there. After the
stochastization, a clear flattening of the toroidal flow, ion
temperature and electron temperature profiles is observed.
Since the density profile is already flat even before the
stochastization, the effect of stochastization on particle
transport is not clear in this experiment. The increase of
electron density is gradual and not due to the stochastization of
the magnetic field.

Thermal diffusivity (defined as the ratio of the normalized heat
flux to the temperature gradient) is evaluated for ion and electron
transport, with a correction due to the slowing-down process15.
The electron thermal diffusivity (we) at reff/a99¼ 0.35 (reff¼ 0.2m)
increases by more than one order of magnitude
(we¼ 4.1±1.2m2 s� 1-4102m2 s� 1), while the ion thermal
diffusivity (wi) increases only by a factor of 1.8
(wi¼ 3.8±0.3m2 s� 1-6.9±0.9m2 s� 1). The electron and ion
thermal diffusivity in the stochastic region can be evaluated as
wsti;e ¼ DMue;i using the Rechester–Rosenbluth model6. Here ue
and ui are the thermal velocities of electron and ion, respectively,
and DM is the diffusion of the field line, defined by 2pðr2s =RÞB2

n, rs
is the radius of the resonant surface and Bn (¼ (RBr)/(rsBf)) is
the normalized perturbation field16. Then we in the stochastic

region is expected to be much larger than that of the ions by
(mi/me)1/2 because of its larger thermal velocity5,17. The
thermal diffusivity in the stochastic region wst evaluated from
similar discharges9 is 2.5±0.5� 102m2 s� 1 for electrons and
6±1m2 s� 1 for ions, which is consistent with this experimental
observation. The magnitude of the electron thermal diffusivity is
comparable to that estimated from the power balance and also
predicted by the analytic formula of the Rechester–Rosenbluth
model6 in RFX1 and in MST3 experiments (102–103m2 s� 1).

The viscosity coefficient of the toroidal flow (mf) is similar to wi
before the stochastization, which indicates that both momentum
and ion heat transport are dominated by turbulence transport.
However, the increase in mf is by a factor of 5 (mf¼ 4.0±1.6
m2 s� 1-21±5m2 s� 1), which is much larger than that in ion
thermal transport. This fact suggests that the damping of the
toroidal flow is not only due to the increase of the viscosity
coefficient. Because the toroidal flow velocity is much more
peaked in the core region (reff/a99o0.5), where the stochastiza-
tion takes place, than the ion and electron temperature, the
change in toroidal flow is most significant at the topology
bifurcation from nested flux surface to the stochastic magnetic
field.

Physics mechanism of flow damping. In this section, the physics
mechanism of flow damping is discussed. The large effective
Prandtl number observed during stochastization (mf/w¼ 3) dis-
cussed in the previous section suggests the existence of an addi-
tional damping mechanism of the toroidal flow due to
stochastization of the magnetic field. Figure 3 shows radial
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Figure 2 | Radial profiles of flow velocity, temperatures, and density.

Radial profiles of (a) toroidal flow velocity, (b) electron temperature, (c) ion

temperature and (d) electron density before (t¼ 5.64, 5.61 s) and after

(t¼ 6.44, 6.41 s) the stochastization of the magnetic field. The solid lines in

the radial profiles of electron density are polynomial fit curves to data

points. The error bars of toroidal rotation and ion temperature are derived

from the uncertainty of the fitting parameter of the charge exchange line

emission to a Gaussian profile. The error bars of electron temperature are

derived from the standard deviations of the signal.
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profiles of the ion temperature and toroidal flow velocity in the
core region of reff/a99o0.6, and the decay of the ion temperature
gradient and the toroidal flow velocity shear during the decay
phase at reff/a99¼ 0.27. The ion temperature profiles show a
prompt flattening after the stochastization (the drops in ion
temperature occur earlier and faster over time); however, the
toroidal flow velocity profiles show a damping after the drop of
ion temperature in the time scale of 100ms. The decay rate of the
central ion temperature becomes smaller with time (qTi/qt(5.278–
5.307 s)4qTi/qt(5.307–5.347 s)BqTi/qt(5.347–5.382 s)), while
that of the toroidal rotation becomes larger and then constant
with time (qVf/qt(5.278–5.307 s)oqVf/qt(5.307–5.347 s)BqVf/
qt(5.347–5.382 s)). There is a clear difference in the decay of the
ion temperature gradient and the toroidal flow velocity shear
observed. The toroidal flow shear shows a linear decay, while the
ion temperature gradient shows an exponential decay, which is
indicated by the solid lines in Fig. 3a,b in log-scale. The toroidal
flow shear decreases more than the linear curve at tB5.4 s, as
seen in Fig. 3b. This experimental observation (linear decay)
cannot be explained by the increase in the diffusive term of the
momentum transport, which should be proportional to the
velocity shear, and it suggests a new damping mechanism.

Radial propagation of stochastization. It is an interesting issue
how the stochastic region develops in time during the stochasti-
zation. In order to study the radial propagation of stochastization,
the radial profile of the time taken for the abrupt drop of toroidal
flow velocity is studied. Figure 4 shows the time evolution of the
toroidal flow near the i/2p¼ 0.5 surface and magnetic axis, and a
radial propagation of the onset of the flow damping and the radial
profile of the rotational transform measured with the MSE. As
discussed earlier, the decay of toroidal flow velocity can be fitted
well with a linear line. Therefore we can derive the onset time of
flow damping from the intersection of two lines of linear fitting to

the data before (totfit) and after (t4tfit) the stochastization.
Because the time of the stochastization itself is unknown before
the fitting and the intersection depends on how the data are
separated (namely tfit), tfit is scanned from well before (t¼ 5.26 s)
to well after (t¼ 5.32 s) the stochastization by 60ms, and the
onset time and its error bars are determined from the average
value and standard deviation in this scan. Please note that the
onset time is insensitive to tfit. These results show that the
stochastization starts near the rational surface of i/2p¼ 0.5 at
reff/a99¼ 0.45–0.55 and propagates radially in two time scales.
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The thickness of the stochastic region increases slowly up to a
quarter of the plasma minor radius (reff/a99¼ 0.36–0.62), and
then a rapid extension of the stochastic region to the magnetic
axis takes place. The sudden extension of the stochastic region to
the magnetic axis observed in this experiment indicates the non-
linear growth of the perturbation field causing stochastization,
which was proposed in the major disruption or sawtooth crash
model16,18.

Discussion
The change in a radial electric field associated with stochastiza-
tion is plotted in Fig. 4d. The positive radial electric field in the
core region (reff/a99o0.4) decreases and the negative radial
electric field outside this region increases after stochastization of
the magnetic field. The change in the radial electric field is more
significant near the rational surface, where the dominant modes
are resonant, while the flattening of the electron temperature is
observed in the whole core region. This observation is consistent
with the fact that the transport enhanced due to the stochastiza-
tion of magnetic field is ambipolar except for the region near
locations where the dominant modes are resonant19. Although
the neoclassical transport is sensitive to the radial electric field,
the effect of the radial electric field on transport is relatively small
because the electron heat transport is dominated by turbulence
transport in this plasma.

In this experiment, the abrupt damping of the toroidal flow due
to stochastization of the magnetic field is observed when the
magnetic shear drops to 0.5 after the switch of the NBI from
co-injection to counter-injection. The stochastization starts near
the rational surface of i/2p¼ 0.5 and the stochastic region
develops to the magnetic axis in two time scales: one is a slow
increase of the stochastization width and the other is a fast
extension to the magnetic axis. After the stochastization of
the magnetic field, the increase of we is much larger than that
of the ions (we/wi415) because of the difference in thermal
velocity, which is consistent with the Rechester–Rosenbluth
model (B40) (ref. 6). On the other hand, the flow damping
observed cannot be explained by this model and there are clear
differences in the decay between ion temperature and toroidal
flow velocity, which suggests that the damping of flow is due to
the change in the non-diffusive term of momentum transport
associated with the stochastization of the magnetic field.

One of the candidates for a new flow damping mechanism is
the change in the non-diffusive term of toroidal momentum
transport20 due to stochastization of the magnetic field. The other
candidate is a toroidal momentum pinch as a direct
electromagnetic effect, which is also proportional to the ion
temperature gradient21. Here a stochastization of the magnetic
field may reduce the phase correlation between magnetic vector
potential and electrostatic potential, thus resulting in reduction of
the momentum pinch. These electromagnetic effects on toroidal
momentum transport (momentum pinch) become strong in the
plasma with large ion temperature gradient and decrease the
effective Prandtl number significantly (even to negative values in
the case of small density gradients). In our experiment, the
Prandtl number before the stochastization is close to unity and
the momentum pinch effect is expected to be small. After the
stochastization, the ion temperature gradient, which causes the
momentum pinch, becomes even smaller. This flow damping
mechanism is a strong candidate for the angular momentum loss
due to the magnetic island disruption in tokamaks, and should
also be important in the solar flare, where the magnetic
stochastization (overlapping of magnetic islands) is one of the
candidates to explain the fast time scale of magnetic field
reconnection22,23.

Methods
Large helical device. LHD is a heliotron-type device for magnetic confinement of
high-temperature plasmas within a magnetic field, B, of 2.7 T at the magnetic axis
in the vacuum field, with a major radius, Rax, and effective minor radius, reff, of 3.6
and 0.63m, respectively. In this experiment, the plasma density is 1–2� 1019m� 3

and the central temperature is in the range of 2–4 keV. The LHD is equipped with
three tangential NBs in the opposite injection direction (two counterclockwise and
one clockwise) and electron cyclotron heating (ECH). The NBs are applied for both
electron and ion heating, while the ECH is applied for electron heating focused at
the magnetic axis in the plasma. The NBs are also used to control the magnetic
shear with the toroidal current driven by the NB.

NB current drive. NB current drive (NBCD) is one of the useful tools to drive
toroidal current. The total plasma current driven by the NB is in the range of
B100 kA (counter-direction) to 50 kA (co-direction), which is only 3–6% of the
equivalent plasma current (1.8MA) produced by the external helical coils. How-
ever, the time scale in the change of total current is longer than the beam pulses,
and the inductive current in the direction opposite to the toroidal current due to
NBCD in the core region plays an important role in this experiment. Therefore, by
switching the direction of the NBCD during the discharge, the magnetic shear near
the plasma core can be controlled. In this experiment, the direction of the injected
NB switches from parallel (co-direction) to antiparallel (counter-direction) with
respect to the equivalent plasma current, and magnetic shear decreases effectively
(from 1.3 to 0.5) after the injection of the NB in the counter-direction.

Modulated ECH. The heat pulse propagation experiment is a useful tool for
identifying the magnetic topology in toroidal plasmas. In a magnetic flux surface
with a magnetic island, the heat pulse shows bi-directional slow propagation. This
is because the perturbation is felt simultaneously at two points separated in radius,
which can be interpreted as a surface equilibration. On the other hand, the heat
pulse shows very fast propagation in the magnetic flux surface with stochastization
due to the heat pulse propagation along the magnetic field in the time scale of
thermal velocity. Recently MECH has been applied to investigate the characteristics
of heat pulse propagation. In this experiment, MECH with a frequency of 25Hz
focused at the plasma centre is applied.

Thermal diffusivity and viscosity. Thermal diffusivity and viscosity are evaluated
from the ratio of the heat flux and momentum flux to the temperature gradient and
velocity gradient. The heat flux and momentum flux are calculated from the
heating and torque profiles from NBs and ECH using the FIT-3D code, where the
steady-state solution of the Fokker–Planck equation is solved based on the birth
profile of fast ions calculated by the Monte–Carlo method with the radial redis-
tribution of fast ions due to prompt orbit effects with a correction due to the
slowing-down process.
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