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Integrated Omic analysis of lung cancer
reveals metabolism proteome signatures
with prognostic impact
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Cancer results from processes prone to selective pressure and dysregulation acting along the

sequence-to-phenotype continuum DNA-RNA-protein-disease. However, the extent to

which cancer is a manifestation of the proteome is unknown. Here we present an integrated

omic map representing non-small cell lung carcinoma. Dysregulated proteins not previously

implicated as cancer drivers are encoded throughout the genome including, but not limited to,

regions of recurrent DNA amplification/deletion. Clustering reveals signatures composed of

metabolism proteins particularly highly recapitulated between patient-matched primary and

xenograft tumours. Interrogation of The Cancer Genome Atlas reveals cohorts of patients

with lung and other cancers that have DNA alterations in genes encoding the signatures, and

this was accompanied by differences in survival. The recognition of genome and proteome

alterations as related products of selective pressure driving the disease phenotype may be a

general approach to uncover and group together cryptic, polygenic disease drivers.
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L
ung adenocarcinoma (ADC) and squamous cell carcinoma
(SCC) are the two major subtypes of lung cancer, and
combined account for 4900,000 deaths per year worldwide.

Characterization of tumour genomes has revealed large numbers
of tumour-associated DNA sequence alterations, including genes
frequently mutated in particular cancers including lung ADC
and SCC1–4. Indeed, tumorigenesis is driven by combinatorial
changes in tumour suppressor and oncogene (that is, driver) gene
sequence and dosage5. However, the roles of large numbers of
tumour-associated DNA sequence alterations that occur at only
low frequency and may act in concert remain to be determined.

The cancer phenotype is ultimately a product of a set of
processes, each prone to selective pressure and dysregulation in
cancer, acting at each stage of the sequence continuum DNA-
RNA-protein6. Selective pressure is accepted as a driving force
behind cancer-associated remodelling of the genome and
epigenome, but has not been systematically linked to the
proteome. Indeed, the extent to which the cancer phenotype is
a product of the proteome is not known. The ability of early-stage
non-small cell lung carcinoma (NSCLC)7 and breast cancer8

primary tumour explants to establish primary tumour-derived
xenograft (PDX) models is prognostic of poor outcome. Hence,
tumour engraftment may select for critical, aggressive aspects of
the cancer phenotype linked to disease progression. This is
consistent with reports that PDX models harbour genetic
aberrations closer to metastatic disease than corresponding
primary tumours in breast and pancreas cancers, and
melanoma9–12. However, the extent to which proteome
remodelling in primary tumours is recapitulated in PDX
models and links to disease progression is not known.

In order to uncover molecular features linked to NSCLC
clinical parameters, we integrate DNA, RNA and proteomics data
sets spanning the tissue spectrum from normal lung to patient-
matched primary and PDX tumours. The data are integrated in
the form of a genetic array and reveal genetically linked, NSCLC-
associated changes in the proteome that are conserved between
cognate primary and PDX tumours. We report that proteins not
previously implicated as cancer drivers are encoded throughout
the genome including, but not limited to, regions of recurrent
DNA amplification/deletion in NSCLC. We hypothesized that
polygenic cancer genes that function in concert may have
remained cryptic if they respond to selective pressure through
proteome remodelling, and consequently are infrequently
mutated or subject to copy number changes. We further posited
that since PDX engraftment is prognostic of overall survival in
NSCLC7, then proteome remodelling that is linked to overall
survival would be highly recapitulated in PDX models.
Unsupervised clustering reveals signatures composed of sets of
proteins involved in metabolism that are especially highly
recapitulated between primary and PDX tumours, but which
differ between the major NSCLC subtypes ADC and SCC.
Interrogation of The Cancer Genome Atlas (TCGA) reveals
sizeable cohorts of patients with DNA alterations in genes
encoding the metabolism proteome signatures, and this is
accompanied by differences in survival. Signatures with
prognostic impact discriminate lung ADC and SCC, and in
some instances are associated with non-lung cancers. Serine
hydroxymethyltransferase 2 (SHMT2), a key enzyme in serine/
glycine and folate-dependent, one-carbon metabolism, is
upregulated in the proteomes of NSCLC primary and PDX
tumours, and is implicated as a driver of chromosome 12q14.1
amplification, which is recurrent in NSCLC. SHMT2, along with
other enzymes implicated as anti-folate targets, is also part of a
metabolism signature associated with poor outcome in lung ADC.
The interrogation of cancer genomes and proteomes for
alterations that are related products of selective pressures

driving the cancer phenotype may be a general approach to
uncover and group together cryptic, polygenic cancer drivers,
which might represent new anticancer therapeutic targets.

Results
An integrated omic map of NSCLC. A set of 33 samples con-
sisting of 11 each primary NSCLC tumour, patient-matched
normal lung and PDX7 were analysed for DNA, RNA and protein
as outlined in Fig. 1a. Tumours scored 470% for cellularity, and
histological and immunohistochemical marker (p63/CK5/TTF1)
evaluation established 7 as ADC, and 4 as SCC (Supplementary
Table 1 and Supplementary Fig. 1). Ultrahigh-resolution mass
spectrometry13,14 was used to identify and quantify 4,030 protein
groups (Supplementary Data 1), and with Venn analysis showing
72% overlap in protein expression across the three sample types
(Supplementary Fig. 1). This level of lung proteome coverage is
comparable to the 3,621 proteins measured with pooled NSCLC
samples and non-patient-matched controls in Kikuchi et al.15 For
each quantified protein, corresponding gene DNA copy number,
mRNA expression level and protein amount were calculated
relative to matched normal lung, and the data were incorporated
into a symmetrically divided hexagon, with colour-encoded
values for primary tumour in the top quadrants and with
corresponding values for the cognate PDX entered in the bottom
sections, as depicted in Fig. 1a. By this arrangement, the top and
bottom halves of the hexagon represent mirror images of the
DNA, RNA and protein measures for the primary tumours
and cognate xenografts, respectively. In order to facilitate the
recognition and visualization of genetically linked trends
across tumours and grafts, an omic map was assembled in
which 44,330 hexagons (4,030 genes� 11 patients) were
assembled into an array by ordering horizontally according to
NSCLC patient (from left-to-right 7 ADC and 4 SCC), and
as a linear genetic map in the vertical direction (Fig. 1b and
Supplementary Data 2).

Protein expression from chromosomes was highly positively
correlated with chromosome gene density (rs40.9) and was not
generally related to cytogenetic size, indicating no gross
differential regulation of the proteome at the level of chromo-
somes (Supplementary Fig. 1). Spearman correlation analysis of
the integrated data sets indicated that each of the DNA, RNA and
protein measures was highly correlated between primary and PDX
tumours (Spearman rs40.6), whereas RNA-protein translations
were correlated to a moderate level (rsr0.4), and DNA-RNA
(rso0.2) and DNA-protein (rso0.1) to a much lesser extent
(Fig. 1c). These data confirm that generally protein abundance is
not a simple function of DNA copy and mRNA levels16,17, and
therefore largely unpredictable based on these indirect measures.
However, the omic map reveals genes whose dysregulation at the
level of DNA, RNA and protein, relative to normal lung, is highly
correlated between primary and PDX tumours. For example, a
gene predominantly upregulated at the DNA, mRNA and/or
protein level in primary tumours, and grafts would give rise to a
horizontal red feature across the encoding chromosome in the
array. Conversely, a broadly downregulated gene would give rise
to a horizontal blue feature. Such horizontal features are dispersed
throughout the array (and extracted from the map in Fig. 1d and
Supplementary Data 2), and in some instances intersecting with
vertical features representing regions of linked gene amplification
or loss (Fig. 1b). We suggest that proteins consistently up- or
downregulated across tumours, recapitulated in grafts and whose
genes map into regions associated with focal amplification or
deletion, respectively, may reflect proteome remodelling in
response to selective pressure for an aspect of the tumour
phenotype that is manifest at the protein level.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6469

2 NATURE COMMUNICATIONS | 5:5469 | DOI: 10.1038/ncomms6469 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Patient-matched
normal lung

NSCLC primary
tumor

ProteinRNADNA

Copy number
SNP array

Gene expression
illumina array

LC-MS/MS
orbitrap elite

Primary
tumour

Xeno-
graft

Spearman correlations

1p 1q 2 3 4 5 6 7 8 9 10 11
Chromosome

12 13 14 15 16 17 18 19 20 21 22 XY

0.36+0.06

0.31+0.07

0.16 +0.06

0.16 +0.06

Protein
Protein

RNA

DNA
(log-ratio intensity)

mRNA
(Z-score)

Protein
(Z-score)

>2>2>0.18
[–0.18, 0.18]

<–0.18
NA

[–2, 2][–2, 2]
<–2<–2

RNA

DNA
DNA

Patient-derived
xenograft Top 50 Bottom 50

0.10 +0.06

0.07 +0.03

0.
68

 +
0.

05

0.
67

 +
0.

16

0.
71

 +
0.

08

Figure 1 | An integrated omic platform and DNA-RNA-protein array for the characterization of NSCLC. (a) Normal lung, patient-matched primary

tumours and PDXs were quantified for DNA copy number, mRNA and comprehensive protein. Data for each primary tumour and PDX, relative to matched

normal lung, were colour-encoded as indicated, and integrated into six-sided polygons in a symmetrical manner, with primary tumour data in the top three

quadrants, and data from the cognate PDX in the mirror-image bottom sections. By this approach, 44� 105 data points were integrated into 44,459

polygons. (b) The polygons were assembled into a two–dimensional genetic array: As a linear genetic map in the vertical direction, organized by

chromosome and with bars indicating centromeres, and by patient in the horizontal direction. Increases in DNA, RNA and protein relative to normal lung are

shown in red and decreases in blue. Highly concordant changes in DNA, RNA and protein are therefore evident as streaks of red or blue. Such features in the

vertical direction represent genetically linked changes affecting adjacent genes/gene products and typically driven by regions of DNA amplification or loss. In

some instances, these are intersected by streaks of the same trend (that is, up/red or down/blue) in the horizontal direction. These reflect correlated

changes in one or more of the linked genes across the set of individual patient tumours and recapitulated in PDXs. Two examples of such intersecting

features near 7p11 and 12q14 are shown boxed (and further expanded in Fig. 2). See also Supplementary Data 2 for higher resolution images of individual

chromosome arrays further annotated with gene name, chromosome number and nucleotide position. (c) Spearman correlations were determined between

DNA, RNA and protein, and between respective primary tumour and PDXs as indicated. (d) The 50 genes most highly upregulated (Top 50, red) or

downregulated (Bottom 50, blue) and concordant across the DNA-RNA-protein sequence continuum in their dysregulation compared with normal

lung were excised from the integrated array/map. SNP, single nucleotide polymorphism; NA, data not available. See also Supplementary Data 2.
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Two examples of such intersecting features, indicated by boxes
in Fig. 1b, are located near 7p11.2 and 12q14.1. The chromosome
7 amplicon is in tumour SCC3 and contains the gene encoding
the NSCLC drug target, epidermal growth factor receptor (EGFR)
(Fig. 2a), whereas the chromosome 12 amplicon is in ADC6 and

contains the oncogene CDK4 (Fig. 2c). Both of these amplicons
are recurrent in NSCLC4. Tumour SCC3 was observed to have a
cytogenetically defined amplification of EGFR (Supplementary
Table 1). Consistent with this, in both the primary and PDX
tumour, the nine adjacent genes were co-amplified giving rise to a
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Figure 2 | Analysis of the omic array for evidence of proteome selection. (a) An expanded segment of the array from the short arm of chromosome

(chr.) 7 (7p11.2) as indicated, showing the detected genetically linked components of an EGFR amplicon. Note that mRNA was not available for primary

tumour sample SCC3 (S3). The boxed vertical and horizontal red features reflect increases relative to normal lung: The vertical red feature results from

the amplification of the indicated genes in patient SCC3. The horizontal features reflect increases associated with the gene CCT6A across the 22 tumours

and grafts (solid red box) and EGFR (dashed black box). (b) Each of the eight components of the CCT chaperonin complex (including CCT6A) were

extracted from the array and show in toto at the protein level a twofold increase in tumours and 2.3-fold increase in grafts (Table 1). (c) An expanded

segment of the array from the long arm of chromosome 12 (12q14.1), which includes a vertical red feature (boxed in red) associated with an amplicon

spanning the indicated 12 genes in patient sample ADC6 (A6). Horizontal boxes highlight SHMT2 (solid red box), which was increased relative to

normal lung in most of the primary and xenograft tumours, and CDK4 (dashed black box), which is a known proto-oncogene product within the amplicon.

The quantification of amplicon proteins is summarized in Table 1. See also Supplementary Fig. 2 and Supplementary Data 2.
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vertical red feature in the array (see the vertical box in Fig. 2a).
These genes were also amplified in ADC8 as part of a non-focal
amplification. As a proto-oncogene product, the EGFR is an
obvious driver of 7p11.2 amplification and tumour growth.
Strikingly, every PDX showed elevated EGFR protein relative to
normal lung or the cognate primary tumour (Fig. 2a and Table 1).
This is consistent with increased EGFR translation associated

with tumour hypoxia18 and/or impaired EGFR downregulation
that occurs in various cancers19.

Examination across the array for protein expression from the
genes co-amplified with EGFR in SCC3 suggests additional
drivers in CCT6A and CHCHD2, which were increased in both
primary and PDX tumours (Fig. 2a and Table 1). Every primary
tumour and xenograft had elevated CCT6A protein relative to
normal lung (Fig. 2a). The CCT6A protein is part of the CCT
(cytosolic chaperonin containing t-complex polypeptide 1)
chaperonin complex that comprises two rings, each containing
eight paralogous subunits20,21. The complex plays a central role in
proteostasis22, and is involved in the folding of actin and
tubulin23, and proteins associated with cell proliferation and
cancer including B and E type cyclins, p21 RAS and the von
Hippel-Lindau (VHL) tumour suppressor24–26. Genomic studies
have implicated individual CCT complex genes in cancer, but the
data are perplexing, given the obligate hetero-oligomeric structure
of the CCT protein complex20,21. For example, CCT3 alone was
identified as part of a prognostic NSCLC gene expression
signature27, whereas CCT2 and CCT5 transcript levels are
related to colorectal cancer progression.28

Inspection of data from TCGA via cBio Cancer Genomics
Portal29 indicates that various CCT subunit genes are subject to
copy number gains in many cancers (Supplementary Fig. 2). For
example, 440% of lung ADC, the highest among measured
cancer types, contain a DNA alteration (that is, gene
amplification, or, rarely mutation or gene copy number loss) in
at least one of the eight CCT subunit genes, as do 430% of lung
SCC. In nine other cancer types, the incidence of CCT gene
alteration exceeds 20%, and they present largely in a mutually
exclusive manner (Supplementary Fig. 2). However, if equivalent
subunit stoichiometry is required in order to generate functional
CCT protein complexes, an increase in only one subunit would be
futile. One explanation for these observations would be if CCT
subunit stoichiometry is maintained at the protein level. In
order to test this and to determine whether the CCT complex or
just the CCT6A subunit was altered, data for all of the CCT
complex subunits were extracted from the array (Fig. 2b). This
revealed that indeed all eight CCT subunits were significantly
elevated at the protein level in primary and PDX tumours
compared with normal lung (Table 1), and this is consistent with
the conclusion that CCT chaperonin activity is broadly activated
in NSCLC.

Coiled-coil-helix-coiled-coil-helix domain containing 2
(CHCHD2) was co-amplified with EGFR in SCC3 (Fig. 2a).
Indeed, there is a strong tendency for their co-amplification in
B7% of NSCLC (Supplementary Fig. 2). Our analysis suggests
that their upregulation at the protein level is more frequent, with
8 of 11 cases showing elevated CHCHD2 in primary and/or PDX
tumours (Fig. 2a), and elevated on average eightfold in primary
and sevenfold in PDX tumours (Table 1). CHCHD2 promotes
cell migration and regulates oxidative phosphorylation both at the
protein level in mitochondria and transcriptionally30–33.
Therefore, elevated expression of CHCHD2 may contribute to
increased mitochondrial function and cell motility in NSCLC34.
These data suggest that amplification at 7p11.2 may to some
extent be driven by selective pressure to increase protein
expression of CCT6A and CHCHD2, in addition to EGFR.

CDK4 resides within the 12q14.1 amplicon identified in ADC6
(Fig. 2c) and is associated with recurrent amplification in lung
cancer35. However, with the exception of ADC6 and PDX-ADC5,
CDK4 protein expression was not generally elevated in the
NSCLC samples, and was in fact decreased relative to normal
lung in four of the primary tumours (Fig. 2c). By contrast,
proteins encoded by SHMT2 and TSFM were each increased in 21
of the 22 tumour and xenograft samples (Fig. 2c and Table 1).

Table 1 | Genetically or functionally linked dysregulated
proteins in NSCLC.

Gene Chr. no. Protein expression*
(Fold, relative to normal lung)

Primary tumour P PDX P

Chr. 7 amplicon
SEC61G 7 1.59 0.17 0.82 0.62
EGFR 7 4.99 0.01 31.2 0.00
LANCL2 7 1.84 0.31 2.02 0.27
MRPS17 7 2.12 0.01 1.43 0.32
GBAS 7 1.16 0.66 0.99 0.96
PSPH 7 1.27 0.72 1.56 0.43
CCT6A 7 2.28 0.00 2.78 0.00
SUMF2 7 1.49 0.22 1.19 0.54
CHCHD2 7 8.35 0.00 7.04 0.00

CCT chaperonin complex
TCP1 6 2.09 0.00 2.28 0.00
CCT2 12 2.19 0.00 2.55 0.00
CCT3 1 2.25 0.00 2.38 0.00
CCT4 2 1.66 0.01 1.82 0.01
CCT5 5 1.92 0.00 2.35 0.00
CCT6A 7 2.28 0.00 2.78 0.00
CCT7 2 1.82 0.00 2.19 0.00
CCT8 21 2.18 0.00 2.12 0.00

Chr. 12 amplicon
NAB2 12 1.91 0.10 1.82 0.14
STAT6 12 1.68 0.29 1.24 0.69
LRP1 12 0.61 0.04 0.63 0.07
SHMT2 12 13.93 0.00 22.09 0.00
MARS 12 2.21 0.00 2.40 0.00
DCTN2 12 1.20 0.34 1.04 0.87
PIP4K2C 12 5.06 0.00 10.41 0.00
OS9 12 1.26 0.39 1.40 0.50
TSPAN31 12 1.03 0.95 1.01 0.98
CDK4 12 0.69 0.42 0.89 0.82
METTL1 12 0.80 0.34 1.40 0.27
TSFM 12 9.84 0.00 18.51 0.00

Ser/Gly/One-carbon
PHGDH 1 3.62 0.03 3.79 0.08
PSAT1 9 6.94 0.00 12.63 0.00
GLS 2 0.96 0.91 1.25 0.58
ASNS 7 4.31 0.01 5.47 0.00
PSPH 7 1.27 0.72 1.56 0.43
CBS 21 1.67 0.19 2.55 0.02
PTDSS1 8 1.63 0.11 1.48 0.23
SHMT2 12 13.93 0.00 22.09 0.00
SHMT1 17 1.67 0.25 1.95 0.06
MTHFD1 14 2.90 0.00 2.98 0.00
MTHFD1L 6 5.14 0.00 7.59 0.00
MTHFD2 2 3.96 0.00 5.48 0.00
MARS 12 2.21 0.00 2.40 0.00
GCSH 16 5.89 0.00 9.30 0.00
GLDC 9 1.28 0.41 1.60 0.18

Chr., chromosome; NSCLC, non-small cell lung carcinoma; PDX, primary tumour-derived
xenograft.
*Fold changes 41.5 and Po0.05 in primary and PDX tumours are in bold
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SHMT2 was upregulated at the protein level 14-fold in primary
tumours and 22-fold in PDX tumours (Table 1). It is functionally
redundant with SHMT1 (ref. 36), which was not significantly
differentially expressed in tumours relative to normal lung
(Table 1). SHMT2 catalyses folate-dependent conversion of
serine to glycine as part of the one-carbon pathway37, and
therefore plays a key role in the biosynthesis of nucleotides
and S-adenosylmethionine required for the synthesis and
methylation of DNA. Interestingly, MARS-encoded methionyl–
tRNA synthetase, which is genetically linked to SHMT2 (Fig. 2),
was upregulated more than twofold in primary and PDX tumours
(Table 1). A similar level of ectopic MARS overexpression was
sufficient to stimulate epithelial cell proliferation38. Recent
reports indicate that tumours, or tumour-initiating cells39,
become ‘addicted’ to dysregulated serine biosynthesis and
glycine cleavage pathways39,40. Additional enzymes involved in
serine/glycine/one-carbon metabolism were upregulated in the
primary and PDX tumours (Table 1 and Supplementary Fig. 2).
These proteins include PSAT1, which is elevated in colon
tumours and tumorigenic in related cell lines41, and PHGDH,
which is upregulated in several cancers including melanoma42,
and is required for anaplerotic metabolism when upregulated in
estrogen receptor (ER)-negative breast cancer models40. Although
PHGDH protein was elevated in both ADC and SCC subtypes
compared with normal lung (Table 1), it was significantly higher
in SCC than ADC primary tumours (15-fold, P¼ 0.02),
consistent with recent analyses of NSCLC xenografts43,44.
The cytosolic folate-dependent dehydrogenase, MTHFD1,
and especially its mitochondrial equivalents, MTHFD1L and
MTHFD2, were upregulated in primary and PDX tumours
(Table 1). This upregulation at the protein level, along with
that of SHMT2, is consistent with their elevated mRNA
expression in various cancer types45. SHMT2 was implicated
as a driver required for survival in a series of cancer cell lines46,
and was shown to be upregulated and required for maintenance
of redox balance and tumour cell survival in response to
hypoxia47. Finally, in apparent contrast to its metabolism
function in mitochondria, SHMT2 was recently identified as an
adaptor subunit of a cytosolic BRISC (BRCC36 isopeptidase
complex) deubiquitinase48. These data, and additional results
described below, suggest that amplification at 12q14.1 may to
some extent be driven by selective pressure to increase the
expression of SHMT2.

TSFM is a mitochondrial translation elongation factor
required for the production of respiratory proteins encoded by
the mitochondrial genome. However, of the three mitochondrial
genome encoded proteins detected (ATP8, COX1 and COX2),
none was upregulated in the PDX models, and only COX1
was upregulated in primary tumours (fourfold; P¼ 0.03).
Therefore, the functional significance of TSFM upregulation
and, in particular, any effect on the 10 undetected proteins
expressed from the mitochondria genome remain to be
determined.

Analysis of tumour proteome recapitulation in PDX models.
The analyses of the 7p11.2 and 12q14.1 amplicons are examples
that illustrate how the integrated omic map establishes an
approach to explore how cancer genomes and transcriptomes
impact the proteome. However, a limitation of the omic map
visualization approach is that trends in the proteome may be less
apparent if non-concordant with DNA and RNA measures.
Indeed, analysis of the omic map revealed vast numbers of highly
dysregulated proteins encoded broadly across the genome, and
which are not limited to corresponding regions of recurrent
genome amplification or deletion in NSCLC (Fig. 3 and

Supplementary Fig. 3). This is consistent with the Spearman
analysis (Fig. 1c), and suggests that protein expression-based
positive and negative drivers of the cancer phenotype have
remained cryptic at the genome and transcriptome level.

The histology, and DNA and RNA profiles of the PDX models
closely mirrors that of cognate primary tumours (Fig. 1c and
Supplementary Fig. 1)7. Moreover, early-stage NSCLC tumours
that engraft are biologically more aggressive and appear
representative of cancers with a higher propensity to relapse
after surgery7. Therefore, we compared the proteomes of primary
and PDX tumours with the rationale that proteins important to
the cancer phenotype would be particularly highly recapitulated
in the PDX models. Unsupervised hierarchical clustering of the
normal, primary tumour and PDX samples according to protein
abundance fully resolved normal lung from primary and PDX
tumours, and showed that none of the normal lung samples was
matched to its cognate primary tumour or PDX (Fig. 4a). Hence,
normal lung proteomes are distinctly different from tumour
proteomes. This comprehensive proteome analysis indicated that
only five primary and cognate PDX tumours were most similar to
each other (Fig. 4a). We questioned whether proteins most highly
differentially expressed in tumours relative to normal lung would
be more similar between primary and PDX tumours. Surprisingly,
when the basis of comparison was a subset of the proteome
comprising the 359 most highly differentially expressed proteins
(that is, fold change 45, Po0.05), only six primary PDX pairs
matched up, including ADC6, and the same five that matched by
using the comprehensive proteome data set (Fig. 4b).

The Kyoto Encyclopedia of Genes and Genomes (www.geno-
me.jp/kegg) was used to analyse the measured proteomes, and the
most prevalent annotation assigned to the proteins detected in the
33 samples was metabolism. When the proteomes were searched
against a curated set of 2,752 metabolic enzymes and transpor-
ters40, a total of 838 non-redundant metabolism proteins were
identified (Supplementary Data 1), including 200 dysregulated in
primary and PDX tumours relative to normal lung (|fold change|
42, Po0.05; Supplementary Fig. 4). Changes in metabolism
underlie the cancer phenotype, and inhibitors targeting metabolic
enzymes are in clinical development as anticancer therapeutics49.
Indeed, several specific enzyme isoforms involved in central
carbon metabolism were dysregulated (Supplementary Fig. 5).
However, a comprehensive characterization of metabolism
proteins in primary cancer tissue has not been made. When the
tissue samples were subjected to unsupervised clustering
according to the metabolism proteome, that is, the 838
quantified metabolism proteins, normal lung remained as a
distinctive group, and, surprisingly, a substantial increase in the
pairing of cognate PDX and primary tumours was observed with
nine matches out of a possible 11. Furthermore, among the paired
primary and PDX tumours, the histological subtypes ADC and
SCC were resolved from each other (Fig. 4c). This high degree of
correct primary tumour-to-PDX pairing could not be replicated
randomly (Po1.0� 10� 5, permutation test). When clustering
was conducted according to proteins annotated for macro-
molecular synthesis and stability, or cell/extracellular interactions,
which, similar to metabolism, are protein classes substantially
represented in the proteome data set and dysregulated in the
primary and PDX tumours (Table 2), the clustering of normal
lung samples was again retained, but correct primary tumour–
PDX pairing occurred in only three cases. Hence the metabolism-
proteome represents a subset of the proteome that is
exceptionally similar between tumours and their grafts
including the recapitulation of histological distinctions, but
significantly different from normal lung. This is consistent with
the notion that the transformed metabolic state constitutes a core,
driving component of the tumour phenotype6.
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Metabolism-proteome signatures and clinical significance. We
reasoned that if the protein clusters (Fig. 4c) reflect concerted
selective pressure to maintain the cancer phenotype during
engraftment, then there should exist DNA alterations in the
encoding genes that define patient subgroups with shared phe-
notypic features. To test this, genomics and clinical data from
1,900 patients spanning seven different cancers (Table 3) were
retrieved through TCGA and cBioPortal29. For each cancer type,
every node of the metabolism-proteome dendrogram (Fig. 4c)
was iteratively searched for DNA alterations (that is,
amplification, deletion and mutation) associated with the genes
encoding the clustered proteins. This revealed clusters that were
altered in 410% of patients and correlated with overall survival
in NSCLC and other cancers (Table 3 and Supplementary
Data 3). Clusters with prognostic impact were selected from the
dendrogram analysis based on their local minimal log-rank
P values (see Methods section). An internal validation algorithm
was applied in which for each cluster, 104 mock clusters
comprising the same number of proteins from the 838 detected
metabolism proteins were randomly generated and were similarly
tested. Only clusters for which the log-rank P value was in the top
fifth percentile of the corresponding mock clusters were accepted.

Table 3 presents a subset of 18 clusters, ranging in size from 3
to 87 proteins and comprising 295 non-redundant proteins, in
which overall survival was significantly different between NSCLC
patient groups with or without DNA alterations in the set of
genes encoding the clustered proteins (log-rank P valueo0.05).
Specification sheets for each of the 18 clusters, including
frequency and type of DNA alteration by gene and cancer
type, and Kaplan–Meier survival curves are assembled in
Supplementary Data 4.

The gene-based clusters were exclusive for lung tumour
histology, with 12 associated with lung SCC and another six
lung ADC. Eleven of the SCC clusters were associated with better
overall survival, whereas all but one of the ADC clusters was
associated with worse overall survival (Table 3). Therefore, the
segregation of tumours according to histology, which was driven
by the clustering of metabolism proteins, was largely reiterated
when the metabolism proteome clusters were extrapolated to
encoding genes and clinical outcomes.

In some instances, individual clusters were statistically
significantly correlated with overall survival in cancers other
than NSCLC (Table 3, and Supplementary Data 3 and 4). For
example, cluster C10, associated with better outcome in lung
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Figure 3 | Genome-wide protein differential expression compared with DNA amplification/deletion in NSCLC. Protein expression was determined by

mass spectrometry for each of 11 primary tumours and corresponding PDX samples and scored þ 1 if upregulated (red, right) or � 1 if downregulated

(blue, left) relative to normal lung, using the same criteria used to generate the omic map (Fig. 1b). For each quantified protein, the sum of the 22 individual

sample scores represents the differential expression score, which was plotted as a linear genetic map (left panel) and aligned with an analogous

GISTIC analysis of DNA amplification (right panel, red) and deletion (right panel, blue)67 based on the analysis of 4300 NSCLC, sourced from TCGA and

by using Tumorscape (www.broadinstitute.org/tumourscape)68. Genomic Identification of Significant Targets in Cancer (GISTIC)67 score (top) and FDRs

(q values, bottom; vertical green line is 0.25 cutoff for significance) for each alteration (x axis) are plotted at each genome position (y axis; chromosome

numbers indicated); dotted lines indicate the centromeres. Amplifications (red lines) and deletions (blue lines) are shown. See also Supplementary Fig. 3.
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SCC, also defined a subset of patients with head and neck SCC,
but was associated with worse outcome. Cluster C2, comprising
43 genes/gene products including the cancer driver IDH2, was
associated with better outcome in both lung SCC and
glioblastoma multiforma, but worse outcome in acute myeloid
leukaemia. Cluster C6, which was associated with better outcome
in lung SCC, was altered in 40% of breast invasive carcinoma and
was associated with worse outcome. Three clusters, which were
associated with worse (C9) or better (C11) outcomes in lung SCC
or worse outcome in lung ADC (C14), were associated with better
outcomes in ovarian serous cystadenocarcinoma (Table 3 and
Supplementary Data 4). Hence, metabolism proteome clusters,

when extrapolated to encoding genes constitute signatures
conserved across different cancer types.

The clusters in some instances comprises differentially
expressed proteins (Table 3; downregulated are in italics and
upregulated are in boldface). Of the 295 cluster proteins, 65 were
differentially expressed and highly correlated between primary
and PDX tumours (R2¼ 0.86). A Venn analysis and outline of
metabolic pathways defined by the clusters and differentially
expressed proteins are represented in Supplementary Fig. 6. Two
clusters (C10 and C15) comprise entirely of proteins upregulated
in NSCLC primary and PDX tumours relative to normal lung,
and coincidentally had the greatest statistical significance between
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patient groups, with Kaplan–Meier log-rank P values of 0.004 and
0.0003, respectively (Fig. 5). C10 is defined by seven proteins,
including the cancer-associated M2 isoform of the glycolytic
enzyme pyruvate kinase (PKM2)50, and three enzymes involved
in nucleotide biosynthesis (Table 3). Based on inspection of
isoform-specific peptides, PKM2 was confirmed as elevated in
tumours (log2 (tumour/normal)¼ 1.7, false discovery rate (FDR)
o0.001), whereas PKM1 was not (log2 (tumour/normal)¼ 0.06,
FDR 40.9; Supplementary Data 5). C15 has features of a
folate signature, since three of its proteins (PAICS, PPAT and
GART; Table 3) were previously identified as methotrexate-
binding, candidate anti-folate targets51, whereas SHMT2 was
recently identified as a target of the next-generation anti-folate,
pemetrexed52, and showing co-expression with other folate
enzymes53. Folate-dependent metabolism, involving one-carbon

units provided by SHMT activity as noted above, is required
for the replication and methylation of DNA. Inhibition of
folate-dependent one-carbon metabolism by methotrexate has
been an anticancer therapeutic for460 years54, but has toxic side
effects55. Pemetrexed is indicated for the treatment of non-
squamous NSCLC, but the molecular basis for differential efficacy
is not fully understood56. Coincidentally, the folate signature C15
was associated with worse outcome in lung ADC, but not SCC.
Other enzymes in C15 are annotated for nucleotide binding or
metabolism, and/or mitochondrion localization. Functional
interactions and concerted contributions to the cancer
phenotype remain to be determined for the metabolism
proteome clusters.

In conclusion, the integration of comprehensive data sets
spanning the sequence-to-phenotype continuum DNA-RNA-
proteome-disease uncovered proteome alterations and mole-
cular signatures linking cancer metabolism and overall survival in
lung and other cancers, which have not been predicted by
genomics and transcriptomics alone. Genes encoding the
metabolism proteome in NSCLC are subject to selective pressures
that manifest (1) proteome remodelling conserved between
primary and PDX tumours, and (2) DNA alterations with
prognostic impact in NSCLC and other cancers. We suggest that
the linking of proteome remodelling with DNA alterations, both
products of selective pressure, may be a general approach to
uncover and group together cryptic, polygenic cancer driver
genes, which individually display only low-frequency mutation
and/or copy number variation57. The analysis of proteome
recapitulation as demonstrated herein suggests that the NSCLC
PDX system might have utility for the development of anti-
metabolism therapeutics.

Methods
The protocols for use of surgically resected NSCLC samples for omic and PDX
studies have been approved by the University Health Network Research Ethics
Board and the Animal Care Committee.

Proteome analysis. Fresh tissue samples were placed in cryovials, were rapidly
frozen with liquid nitrogen and were stored at � 80 �C. Upon retrieval from the
University Health Network Biobank, aliquots of tissue (B50mg) were mixed with
lysis buffer (1ml buffer per 10mg tissue; 20mM HEPES, pH 8.0, 9M urea, 1mM
sodium orthovanadate, 2.5mM sodium pyrophosphate and 1mM beta-glycer-
ophosphate) and sonicated for 1min, followed by centrifugation (20,000g) for
20min (ref. 43) The concentration of clarified lysates was typically B2mgml� 1

(protein). Equal amounts of the lysate were reduced with dithiothreitol, alkylated
with iodoacetamide, further diluted with (HEPES buffer) and then digested with
trypsin overnight at 23 �C. Peptides were then passed through a C-18 column and
were eluted with 50% acetonitrile. The eluted peptides were dried under vacuum
and stored at � 80 �C. The digested peptides were loaded onto a 75 mm inside
diameter� 50 cm (2 mm C18) analytical column (EASY-Spray, Thermo Fisher
Scientific, Odense Denmark). The peptides were eluted over 2 h at 250 nlmin� 1

with a 0–35% acetonitrile gradient in 0.1% formic acid by using an EASY nLC 1000
nano-chromatography system (Thermo Fisher Scientific). The eluted peptides were
introduced by nano-electrospray into a LTQ Velos-Orbitrap Elite hybrid mass
spectrometer (Thermo Fisher, Bremen, Germany) operated in a data-dependent
mode. Mass spectra were acquired at 240,000 full-width at half-maximum reso-
lution in the FTMS Orbitrap (with a target value of 5� 105 ions) and tandem MS
(MS/MS) was carried out in the linear ion trap. Ten MS/MS scans were obtained
per MS cycle using a target of 1� 104 ions and a maximum injection time of 50ms.
All ions passing the monoisotopic precursor selection filter were fragmented.

Raw MS files were analysed by MaxQuant14 version 1.3.0.5. MS/MS spectra
were searched by the Andromeda search engine58 against the decoy Human
SwissProt database (version 2013.1) containing forward and reverse sequences. In
addition, the database included 248 common contaminants. MaxQuant analysis
included an initial search with a precursor mass tolerance of 20 p.p.m., the results
of which were used for mass recalibration. In the main Andromeda search
precursor mass and fragment mass had an initial mass tolerance of 6 and 20 p.p.m.,
respectively. The search included variable modifications of methionine oxidation
and N-terminal acetylation, and fixed modification of carbamidomethyl cysteine.
Minimal peptide length was set to seven amino acids and a maximum of two
miscleavages was allowed. The FDR was set to 0.01 for peptide and protein
identifications. In the case of identified peptides that are all shared between two
proteins, these are combined and are reported as one protein group. Proteins

Table 2 | KEGG pathway analysis and dysregulated proteins
in NSCLC.

Process* Identifierw Identified
proteins

Dysregulated
proteinsz

Metabolism
Arginine and proline
metabolism

hsa00330 37 15

Fructose and mannose
metabolism

hsa00051 21 10

Glycolysis/
gluconeogenesis

hsa00010 42 17

Pentose phosphate
pathway

hsa00030 20 7

Pyruvate metabolism hsa00620 27 8
Propanoate metabolism hsa00640 22 7
Butanoate metabolism hsa00650 22 8
Amino sugar and
nucleotide sugar
metabolism

hsa00520 35 12

Valine, leucine and
isoleucine degradation

hsa00280 37 11

Glutathione metabolism hsa00480 37 11
Cysteine and methionine
metabolism

hsa00270 22 6

Fatty acid metabolism hsa00071 32 8
Citrate cycle (TCA cycle) hsa00020 25 3
Oxidative phosphorylation hsa00190 72 9

Macromolecular synthesis and stability
Ribosome hsa03010 77 59
Spliceosome hsa03040 104 78
DNA replication hsa03030 22 15
RNA degradation hsa03018 35 21
Aminoacyl-tRNA
biosynthesis

hsa00970 28 17

Proteasome hsa03050 38 16
Regulation of actin
cytoskeleton

hsa04810 97 32

Lysosome hsa04142 61 14

Cell/extracellular interactions
Focal adhesion hsa04510 107 46
ECM-receptor interaction hsa04512 51 33
Tight junction hsa04530 67 19
Adherens junction hsa04520 40 11

FDR, false discovery rates; KEGG, The Kyoto Encyclopedia of Genes and Genomes; NSCLC,
non-small cell lung carcinoma.
*DAVID enrichment analysis; Benjamin-adjusted P valueo0.01; human genome as background
and 4,030 quantified proteins as the gene list.
wThe KEGG Pathway classification code.
zRelative to patient-matched normal lung (FDR o0.05, |fold change|42).
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annotated as ‘only identified by site’, ‘reverse’ and ‘contaminant’ were filtered out
by using Perseus tools within the MaxQuant environment. For comparison
between samples, we used label-free quantification (LFQ) with a minimum of two
ratio counts to determine the normalized protein intensity and retained the
proteins quantified in at least two samples. Proteins without gene names (for

example, isoforms) were removed, as well as immunoglobulins, human leukocyte
antigens and blood proteins. Finally, 4,030 proteins were quantified according to
log2 LFQ intensity. Zero protein values were filled with intensities from the lower
part of a normal distribution (imputation width¼ 0.3 and shift¼ 1.8) by using
Perseus. Complete identified and quantified protein tables are provided in

Table 3 | DNA alterations and prognostic impact associated with metabolism proteome clusters in various cancers.

MPCI Cancer
type

Log-rank
P value*

HR Patients
with DNA
alterationsw

Cluster
sizez

DE
proteinsy

Cluster proteins (gene names)||

C1 LSCC 0.0055 0.50 63% 111 56 59% BLVRB, BPGM, CA1, CA2, CAT, CP, HAGH, LYZ, PON1, PRDX2, SLC4A1, SULT1A1, TF
LPCAT1, SLC27A3, HSDL2
ACOT2, PCBD1, PTGDS, SOD1, HPGD, ACAA2, CBR1, FN3KRP, PPAP2B,
SLC25A11
ADH1B, AOC3, MAOB, PGM5, SOD3, ALDH2, DPYSL2, AK1, AQP1, CLIC6, CYB5A,
CYBRD1,CYP27A1, ENTPD1, MARC2, SULT1A3, ABHD14B, ALDH3B1, ATP2B4,
CLIC4, CYB5R1, CYB5R3, KCTD12, LIPA, LPCAT3, MPO, NPC2, PPT1, PTGIS,
SLC34A2

C2 LSCC 0.0053 0.51 53% 94 43 21% ATP13A1, GYS1, MBOAT7, PAPSS1, PRPSAP2, AMPD2, LYPLA1, PGM3,
SLC2A3, UGGT1
GALK1, KCNAB2, MOGS, TCIRG1
ACOX1, COX1, IAH1, MAT2B, MPI, NSDHL, PFKP, RDH11, SLC25A13
IDH2, ADA, ALDH1B1, ALDOC, ECI2, GAA, GALK2, GUSB, H6PD, NAGA,
NDUFA6, NDUFS1,
NDUFV1, NUDT16, OXCT1, PCCA, PGK1, PLCG1, SHMT1, UGP2

GBM 0.0003 0.33 35% 31
AML 0.0406 1.64 18% 28

C3 LSCC 0.0475 0.61 42% 73 6 0% COASY, FAH, MGST1, NCEH1, OGDH, SLC44A1
C4 LSCC 0.0068 0.43 24% 43 6 0% AGPAT9, CTH, GK, HGD, UGT1A6, SLC12A7
C5 LSCC 0.0439 0.54 24% 42 9 0% ATP1B1, CYP2S1, GALNS, GAMT, MOCS3, NAPRT1, NOS2, NPR3, SLC12A2
C6 LSCC 0.0070 0.40 22% 40 11 0% ACBD5, ACLY, ACOX3, CERS2, DHCR24, GPX8, LSS, MAN2A1, RRM2B,

SLC35B2, ST3GAL1
BRCA 0.0049 1.84 40% 293

C7 LSCC 0.0208 0.46 21% 37 14 14% FDXR, IDH3G, SDHB, CHID1, GNS, ITPR3, NDUFA13, NDUFA5, NDUFB9,
NDUFS2, NDUFS3, NDUFS8, STT3B, NDUFS6

C8 LSCC 0.0138 0.36 13% 23 7 0% DHRS2, DHRS9, FMO3, GFPT2, HSD17B13, PLCB3, RHCG
C9 LSCC 0.0166 2.13 13% 22 6 0% AMPD3, ATP11A, CDA, CRAT, SDSL, TSTA3

OSC 0.00116 0.67 41% 126
C10 LSCC 0.0039 0.25 11% 20 7 100% ADSS, ATP2A2, CTPS1, IMPDH2, PKM2, PTGES3, SGPL1

HNSC 0.0103 2.47 11% 18
C11 LSCC 0.0134 0.26 11% 19 6 0% GSTK1, HIBADH, PPCS, SCCPDH, SLC25A24, SUCLG2

OSC 0.0077 0.64 31% 95
C12 LSCC 0.0293 0.34 10% 18 7 0% CS, DCK, GPD2, IDH1, NDUFB7, NIT1, PPA1
C13 LADC 0.0089 2.76 73% 149 87 0% GGT5, NDUFB4, PLCG2, TBXAS1

ACO2, BDH1, CA12, NDUFA10, NDUFA8, NDUFA9
ABCD1, ACADM, AGPAT1, AHCYL1, AKR1A1, ALDH16A1, ALDH3A2, ALOX15,
APIP, ATP6V0A1, ATP6V0D1, ATP6V1D, ATP6V1E1, CLC, CNDP2, COLGALT1,
COX2, COX4I1, COX5A, COX5B, COX6A1, COX6B1, COX6C, COX7A2, CRYM,
CRYZ, CYBA, DBT, DERA, EPX, FDX1, FOLR2, GALM, GBE1, GCDH, GLA,
GLOD4, GLUL, GNPAT, GPX1, GSTO1, GUK1, GYG1, HADH, HADHA, HADHB,
HIBCH, IL4I1, IMPA1, LAP3, ME1, ME2, MICAL1, NAGK, NDUFA12, NDUFA4,
NDUFA7, NDUFB10, NDUFB11, NDUFB5, NNMT, NPL, PAFAH1B2, PFKL, PGLS,
PPA2, PPOX, PRDX1, PTGS1, RDH14, RENBP, SCP2, SDHA, SOD2, TAP1, TAP2,
TYMP

C14 LADC 0.0175 2.06 13% 26 4 0% GGT5, NDUFB4, PLCG2, TBXAS1
OSC 0.0113 0.6 20% 62

C15 LADC 0.0003 2.76 22% 45 13 100% NAT10, NME2, OAT, PPAT, SHMT2, GART, PAICS, SRM, UMPS, QARS,
ABCE1, ABCF2, ACOT7

C16 LADC 0.0059 2.06 32% 65 14 0% FDFT1, GCLC, IMPA2, NPC1, PSPH, ABCC5, ADI1, ALDH3A1, CD38, CYB5R2,
ELOVL5, GPX3, GSTA1, GSTA4

C17 LADC 0.0354 2.01 12% 25 3 0% AKR1B10, DLD, G6PD
C18 LADC 0.0084 0.28 16% 33 10 30% ACOT2, PCBD1, PTGDS, HPGD, SOD1, ACAA2, CBR1, FN3KRP, PPAP2B,

SLC25A11

AML, acute myeloid leukemia; BRCA, breast invasive carcinoma; DE, differentially expressed; GBM, glioblastoma multiforma; HNSC, head and neck squamous cell carcinoma; HR, hazard ratio; KIRP,
kidney renal papillary cell carcinoma; LADC, lung adenocarcinoma; LSCC, lung squamous cell carcinoma; MPCI, metabolism-proteome cluster index; OSC, ovarian serous cystadenocarcinoma; TCGA, The
Cancer Genome Atlas.
*Cancer patient survival and DNA alteration data obtained from TCGA through the cBioPortal.
wPercent of cases (410%) with DNA Alteration (mutation, deletion, amplification) and absolute number of affected cases.
zNumber of proteins (41).
yPercentage of differentially expressed proteins relative to normal lung; fold change 42, Po0.05.
||DE proteins are shown in bold (upregulated) or italics (downregulated). Cancer genes from the Catalogue of Somatic Mutations in Cancer database are underlined.
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Supplementary Data 1 and 5. We note that proteome coverage, approaching 10,000
identifications, has been achieved in the analysis of colon cancer materials by using
filter aided sample preparation (FASP) coupled with extensive off-line peptide
fractionation before liquid chromatography tandem MS59–61.

Mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium (http://www.proteomexchange.org) via the
PRIDE partner repository 62 with the data set identifier PXD000853.

Genome and transcriptome analysis. Illumina platforms were used for DNA
copy number (Human Omni1 SNP) and mRNA analyses (whole-genome DASL
HT)63–65. The Illumina GenomeStudio (version 20120.1) genotyping module
(version 1.6.3) was used to calculate B Allele Frequency (BAF) values and the Log R
ratio (LRR) for each probe, and copy number alterations were inferred from these
values by using the R-Gada package65. Microarray data were analyzed and
normalized by using the LUMI package of R. If a gene was measured using multiple
probe sets in the microarray, the one with largest variance across the samples was
selected to present the expression of this gene66.

Integrated Omics polygon array. The array of polygons (hexagons) was gener-
ated by using an algorithm and perl script termed Visygon for visualization of
polygons, wherein the ‘GD’ graphics library was used to draw graphics. The
integrated DNA/RNA/protein data were arranged as a matrix sorted by gene
location chromosome and by tumour type, that is, primary tumour followed by
PDX, and sorted by histology subtype. The matrix was pre-processed by com-
parison of tumour data with matched normal lung and by application of thresholds
that were used to define differential values: 1, upregulation; � 1, downregulation;
and 0, no change. After reading the matrix, the script was used to generate hexagon
arrays and with the six quadrants of each hexagon coloured according to the values:
1, red; 1, blue; 0, grey; no data, white. The omic array was generated for individual
chromosomes in gene order according to nucleotide number, and with a space
added to denote centromere location separating p and q arms for clarity.

Statistical analysis. Statistical analysis was conducted by using R (http://www.R-
project.org). A paired moderated t-test in the Limma package was applied for testing
of differences in LFQ protein and gene intensities in clinical samples with the
threshold value FDR (that is, adjusted P value) of 0.05 and fold change cutoff as 2.

Testing proteome clusters for prognostic impact. Clinical annotation of patient
cohorts was retrieved from TCGA through cBioPortal for Cancer Genomics29

(www.cbioportal.org). We included patients that were screened for DNA
alterations and excluded patients with missing values. For each tumour type, we

iteratively searched with clusters of genes, defined by each node of the clustering
dendrogram, for patients bearing a DNA alteration in one or more of the genes.
The search progressed through each node of the dendrogram from the entire set of
838 down to individual proteins/genes (Supplementary Data 3). The clinical signals
(log-rank P value for overall survival) for the cohorts of patients with and without
DNA alterations, for which we arbitrarily set a lower limit at 10%, were compared
and a likelihood ratio test was performed. Nodes with a global or local minimal
likelihood ratio test P value o0.05 were initially selected for further analysis. Local
minimum was defined as a node wherein contiguous nodes (that is, having more or
fewer proteins) had relatively higher P values. The statistical significance of initially
selected groups was assessed by using an internal validation algorithm to evaluate
the non-random association between clusters of a given number of proteins and
clinical outcome. For each cluster, 1� 104 mock clusters of the same number of
proteins from the 838 detected metabolism proteins were randomly generated and
their log-rank P values were calculated for each of the indicated cancer types. Only
clusters for which the log-rank P value was in the top fifth percentile (0.05) of the
corresponding mock clusters were accepted.
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