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PP2A and Aurora differentially modify Cdc13
to promote telomerase release from telomeres
at G2/M phase
Zih-Jie Shen1, Pang-Hung Hsu2,3, Yu-Tai Su1, Chia-Wei Yang1, Li Kao1, Shun-Fu Tseng1,

Ming-Daw Tsai2,4 & Shu-Chun Teng1

In yeast, the initiation of telomere replication at the late S phase involves in combined actions

of kinases on Cdc13, the telomere binding protein. Cdc13 recruits telomerase to telomeres

through its interaction with Est1, a component of telomerase. However, how cells terminate

the function of telomerase at G2/M is still elusive. Here we show that the protein phos-

phatase 2A (PP2A) subunit Pph22 and the yeast Aurora kinase homologue Ipl1 coordinately

inhibit telomerase at G2/M by dephosphorylating and phosphorylating the telomerase

recruitment domain of Cdc13, respectively. While Pph22 removes Tel1/Mec1-mediated Cdc13

phosphorylation to reduce Cdc13–Est1 interaction, Ipl1-dependent Cdc13 phosphorylation

elicits dissociation of Est1–TLC1, the template RNA component of telomerase. Failure of these

regulations prevents telomerase from departing telomeres, causing perturbed telomere

lengthening and prolonged M phase. Together our results demonstrate that differential and

additive actions of PP2A and Aurora on Cdc13 limit telomerase action by removing active

telomerase from telomeres at G2/M phase.
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T
elomeres are dynamic DNA–protein complexes that
protect the ends of linear chromosomes, prevent detri-
mental chromosome rearrangements and defend against

genomic instability and the associated risk of cancer1–5.
Telomeres, consisting of tandem repeats of short G-rich
sequences, are synthesized by the enzyme telomerase6,7. The
catalytic core of telomerase is composed of a reverse transcriptase
and an RNA subunit. The reverse transcriptase utilizes the RNA
component as a template to add the G-rich repeats onto the 30-
ends of the chromosome6–8.

In budding yeast Saccharomyces cerevisiae, genes encoding
components of telomerase have been identified and mutations in
these genes cause a gradual loss of telomere length9,10. EST2 and
TLC1 encode the reverse transcriptase catalytic protein subunit
and the templating RNA, respectively9,11,12. In addition, the
protein encoded by EST1 is associated with the RNA component
of telomerase, TLC1 (refs 13–16). Other accessory factors, such as
Cdc13, are required for the in vivo action of telomerase. Cdc13 is
a single-stranded telomere-binding protein17,18, which forms a
complex with Stn1 and Ten1. This replication protein A-like
heterotrimeric complex19 specifically binds single-strand
telomeric sequences and is required for both telomere
protection and telomerase recruitment17,18,20. It recruits
telomerase to its site of action through an electrostatic
interaction between Cdc13 and Est1 (refs 20,21). Some recent
studies have suggested that Cdk1, Tel1 and Mec1 may
phosphorylate the telomerase recruitment domain of Cdc13 to
promote this Cdc13–Est1 interaction at the late S phase22–27.

Most somatic cells exit G1 to stay in quiescent stage, while
cancer cells actively undergo cell cycles. Cell cycle is controlled by
numerous mechanisms to ensure precise DNA replication and
cell division. G2/M is the stage to terminate DNA replication and
execute cell division. CDK, Aurora and Polo-like kinases are three
major kinases to coordinate G2/M phase progression28. Aurora
kinases are master controllers that manage multiple processes
during cell division29. These mitotic Ser/Thr protein kinases
mediate cellular reorganization through a spatially and
temporally confined pattern of phosphorylation30. On the other
hand, mitotic exit regulation requires inactivation of mitotic
kinases and activation of counteracting protein phosphatases.
Protein phosphatase 2A (PP2A) phosphatases are abundant in
cells and are involved in many processes, including cell
growth, differentiation, apoptosis, cell motility, DNA damage
response and cell cycle progression31. It is capable of reversing
the effects of CDK-mediated positive regulation through
dephosphorylating Cdc25 and Wee1 (refs 32,33). In addition,
PP2A is particularly important for timely dephosphorylation of
various CDK substrates during mitotic exit34. PP2A, thus,
opposes not only CDK activation but also its activity by
dephosphorylating downstream effectors to promote efficient
cell cycle progression.

Cdc13 binds Est1 to recruit telomerase35–37, and recent reports
have suggested that the phosphorylations on the telomerase
recruitment domain of Cdc13 may promote telomerase
recruitment22,26,27. However, this proposed signalling has been
controversial38,39. Here, we investigated the effects of Cdc13
phosphorylation on the Cdc13–Est1–telomerase signalling. We
provided further evidence that phosphorylations of S249 and
S255 of Cdc13 contribute to Est1-mediated telomerase
recruitment at the late S phase. Phosphorylated S249 and S255
of Cdc13 are subsequently dephosphorylated by PP2A
phosphatase and Cdc13 is phosphorylated by Aurora kinase at
S314. Inactivation of these two regulations delays telomerase
departure at the G2/M phase, which causes elongated
telomeres and prolonged M phase. Interestingly, PP2A
phosphatase and Aurora kinase use distinct mechanisms to

remove telomerase from telomeres: while PP2A phosphatase
alleviates the Cdc13–Est1 interaction, Aurora kinase reduces the
Est1–TLC1 interaction. Therefore, cells use multiple pathways to
differentially and additively remove telomerase from telomeres at
the G2/M phase to terminate telomere replication.

Results
PP2A dephosphorylates Cdc13 serine 249 and 255. Previous
studies imply that phosphorylation of Cdc13 may promote telo-
merase recruitment (Fig. 1a)22–27. To examine the possibility
that recruitment of telomerase by Cdc13 may be repressed by
phosphatases, we determined the phosphorylation level of Cdc13
throughout the cell cycle for wild type (WT) and various
phosphatase deletion strains. As shown in Fig. 1b and
Supplementary Fig. 1, WT Cdc13 is hyper-phosphorylated at
late S phase (40min) and then decreased at G2/M (60–140min)
after a-factor synchronization. If Cdc13 is dephosphorylated by a
phosphatase, phosphorylations should accumulate at the G2/M
phase when the relevant phosphatase is eliminated. Some Tel1/
Mec1 substrates were previously reported to be removed by the
phosphatases Pph3, Pph21, Pph22, Ptc2 and Ptc3 (ref. 40).
We therefore tested the Cdc13 protein mobility in these
corresponding deletion strains by western blot analysis. As
shown at the lower panel of Fig. 1b, Cdc13 in the pph22 strain
displayed a higher mobility shift than that in WT and other
phosphatase mutant strains at the 60min time points. The
deletions did not significantly perturb the steady-state levels of
Cdc13 (Fig. 1c). These results suggest that Pph22, a catalytic
subunit of PP2A, may regulate the function of Cdc13.

Our previous study showed that Cdc13 is phosphorylated at
S225, S249, S255 and S306 by Tel1 and Mec1, and that S249 and
S255 are two important residues to promote telomerase
recruitment22. To test whether Pph22 targets these two
phosphorylation sites, we raised a Cdc13 S249/S255 phospho-
specific polyclonal antibody and the antibody exhibited higher
binding affinity to phospho-S249/S255 and phospho-S255 than
phospho-S249 (Supplementary Figs 2a, b and d). Meanwhile, this
phospho-specific antibody could detect slight phosphorylation of
Cdc13-S249/S255 in cdc13-Q250/Q256A cells, suggesting that
other kinases might phosphorylate Cdc13-S249/S255
(Supplementary Fig. 2c). As shown in Fig. 1d, this antibody
could recognize endogenously expressed WT Cdc13-Myc9
protein immunoprecipitated from nocodazole-arrested yeast
cells (lane 1). Reduction of phosphorylation was clearly
observed in mec1, tel1 and mec1 tel1 mutant strains (lanes 2–4).
Importantly, phosphorylation on S249/S255 accumulates in the
G2/M arrested pph22 mutant (Fig. 1e). These data demonstrate
that Pph22 can antagonize Tel1/Mec1-catalysed Cdc13
phosphorylation at pS249/pS255 in vivo.

To determine whether Pph22 can directly regulate Cdc13
phosphorylation, we phosphorylated recombinant Cdc13(227–
277), Cdc13-S249A(227–277) and Cdc13-S255A(227–277) by
immunoprecipitated Mec1 and performed phosphatase assays
with IgG-precipitated Pph22-TAP. Three IgG-precipitated tan-
dem affinity purification (TAP) tagged proteins, Vps74, Pph3 and
Pph21, were used as controls. Vps74 is required for Golgi
localization of glycosyltransferases41; Pph3 was reported to
dephosphorylate Cdc13 pS306 (ref. 42); and Pph21 is another
nuclear phosphatase in the PP2A complex43. As shown in Fig. 1f,
Pph21 and Pph22 efficiently dephosphorylated Cdc13 on single
phosphorylated S249 or S255, or double S249/255
phosphorylations in vitro. Pph3 only dephosphorylated
phosphorylated S249, whereas Vps74 showed no phosphatase
activity on Cdc13 S249/S255 phosphorylations. Therefore,
in vivo and in vitro data both demonstrate that Pph22 can
dephosphorylate Cdc13 at S249 and S255.
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Loss of PPH22 leads to delayed telomerase departure. To
examine how telomeric functions are affected by Pph22, we
analysed the effect of pph22 mutation on telomere replication.
Heterozygous pph3/PPH3, pph21/PPH21 and pph22/PPH22
diploid strains (YPH501 background) were sporulated and dis-
sected. The telomere length of each individual yeast colony
derived from the dissected spores was measured after B100
population doublings. Southern blot analysis showed that pph22,
but not pph3 and pph21, mutation resulted in telomere length-
ening (Fig. 2a), and this Pph22-mediated regulation was telo-
merase- and Tel1/Mec1 dependent (Supplementary Fig. 3),

suggesting that Tel1/Mec1 and Pph22 participate in the same
pathway. Telomere shortening was observed in cdc13-S249A,
cdc13-S255A and cdc13-S249/S255A cells from solid plates
(Fig. 2b,c). In a liquid culture assay, when cultures starting from
freshly dissected spores were repeatedly diluted, telomere short-
ening and marked telomere lengthening from survivor formation
could be observed in telomerase pathway-defective strains after
several dilutions44. Similarly, cdc13-S249/255A cells displayed
gradual telomere shortening, survivor formation and cellular
senescence phenotypes, and these phenotypes were recovered in
cdc13-S249/255D cells (Supplementary Fig. 4). All these findings
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Figure 1 | Pph22 dephosphorylates phosphorylation of Cdc13 at Serine 249 and 255 in vivo and in vitro. (a) Schematic diagram of Cdc13 illustrates its

domain structure, phosphorylation sites and kinases that phosphorylate these sites. The telomerase recruitment domain (RD) and DNA-binding

domain (DBD) are indicated. (b) Cell cycle-dependent phosphorylation of Cdc13. Overnight culture was grown to early log phase in YPD, arrested at G1

by a-factor, and released into cell cycle. Cells were collected at 20-min intervals for 140min and Cdc13 was analysed by western blot analysis (WB).

Cdc13 mobility in WT and different mutant strains was specifically compared at 60 and 80min. SDS–PAGE (5%) was used to separate the hyper- and

hypo-phosphorylated Cdc13, which are indicated by double (**) and single asterisk (*), respectively. (c) The steady-state levels of Cdc13 are not

significantly affected in different phosphatase mutants. Endogenously expressed Cdc13 was chromosomally tagged with Myc9. Pgk1 is a loading control.

(d) Endogenously expressed Cdc13 was chromosomally tagged with Myc9. Cells were nocodazole-arrested and Cdc13 was immunoprecipitated. The

pS249/pS255 phospho-specific antibody detected phosphorylations were decreased in mec1, tel1 and mec1 tel1 mutants. (e) Western analysis of

immunoprecipitated Cdc13 from nocodazole-arrested phosphatase mutants using the pS249/pS255 phospho-specific antibody. Both long and short
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indicate that phosphorylation/dephosphorylation of these two
residues modulate telomerases recruitment. To further investigate
whether one dephosphorylation site is more critical than the
other in the Pph22-mediated function, the telomere length was
analysed in spores from diploid yeast strains harbouring pph22 in
combination with cdc13-S249A, cdc13-S255A or cdc13-S249/
S255A. Telomere was longer in pph22 and pph22 cdc13-S249A
strains than that in WT and cdc13-S249A, respectively (Fig. 2b,c
and Supplementary Fig. 5), but these phenotypes were eliminated
in cdc13-S255A and cdc13-S249/S255A. Therefore, we conclude
that dephosphorylation at Cdc13 S255 is more critical for Pph22-
mediated regulation. Finally, we wish to address whether Pph22-
mediated Cdc13 dephosphorylation is essential for de novo
telomere addition. We tested the sudden telomere elongation by
the de novo telomere addition assay (Supplementary Fig. 6a)45.
Cells that were arrested by a-factor at G1 phase were released into
the cell cycle and the pph22 strain displayed faster kinetics of
telomere addition than WT and pph21 cells in the subsequent
generations (Supplementary Fig. 6b). This result indicates that
dephosphorylation of Cdc13 at amino acids 249 and 255 reduces
de novo telomere addition.

Cdc13 recruits telomerase mainly through binding to a
telomerase subunit Est1 to recruit the RNA subunit of telomerase,
TLC1 (ref. 35). Since S249 and S255 lie in the Est1-interacting
region20,36,37, we next asked whether Tel1/Mec1/Pph22-
dependent phosphorylation/dephosphorylation of Cdc13 plays a
role in coordinating the interaction between Cdc13 and Est1. To
this end, the chromosomal copy of CDC13 and EST1 was tagged
with hemagglutinin (HA3) and glutatione S-transferase (GST),
respectively, and expressed under the control of galactose-
inducible promoters. Overexpressed GST-Est1 was precipitated
by anti-GST antibodies and precipitates were detected by western
blot analysis for HA3-Cdc13. We first verified the interaction
between Cdc13 and Est1 (Fig. 2d, lanes 1 and 4). Mutation of
S249 and S255 to alanine decreased the interaction between
Cdc13 and Est1 (lane 5) but mutation to phosphomimetic
aspartic acid maintained the interaction (lane 6). Chromatin
immunoprecipitation (ChIP) assays showed that cell cycle-
dependent departures of Est2 and Est1 from telomeres were
also delayed in yeast harbouring pph22 mutant compared with
those in WT and pph21 strains (Fig. 2e,f and Supplementary
Figs 7 and 8). Since cdc13-S255A mutation caused a more
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prominent effect on telomere shortening, we examined whether
cdc13-S255A mutation abolished the recruitment of telomerase
(Supplementary Fig. 9). Cell cycle-dependent recruitment of Est2
and Est1 was compromised in cdc13-S255A and cdc13-S255A
pph22 cells, suggesting that the S255 phosphorylation plays a
critical role in telomerase recruitment. Together, these data
indicate that Pph22-dependent dephosphorylation of Cdc13
provides a negative regulation on the Cdc13–Est1 interaction
and telomerase recruitment during cell cycle progression
(Fig. 2g).

Aurora phosphorylates Cdc13 serine 314 at G2/M phase. After
obtaining the above results, we wondered whether there are
additional critical regulations that might be essential to stop tel-
omere replication at the G2/M phase. Since multiple phosphor-
ylations on Cdc13 promote telomerase recruitment, we surmised
that distinct Cdc13 phosphorylations may also modulate telo-
merase departure. Using mass spectrometry (MS) to analyse
phosphorylation sites of overexpressed Cdc13-Myc9 in S. cerevi-
siae, we identified new phosphorylation sites S314, S324 and S333
on Cdc13 (Fig. 3a) that have not been well studied pre-
viously22,26,27,42 (Supplementary Fig. 10). We then used Southern
blot analysis to examine whether these phosphorylations would
affect telomere replication (Fig. 3b). Interestingly, an apparent

telomere lengthening was observed in cdc13-S314A cells. By
bioinformatic analysis, we found that S314 fits into a consensus
sequence of Aurora kinase substrates (Fig. 3c)46. We thus raised a
pS314-specific antibody to examine Cdc13 phosphorylation
and its regulation in vivo. Western blot analysis of immuno-
precipitated Cdc13-Myc9 showed that this antibody was
phospho-specific and the antibody recognized signal was
abolished when immunoprecipitants was prepared from the
S314A mutant (Supplementary Fig. 11). Phosphorylation of
S314 was largely dependent on Aurora kinase because the signal
was greatly reduced in immunoprecipitants prepared from
nocodazole-arrested temperature-sensitive ipl1-4 mutant
following growth at non-permissive temperature (Fig. 3c). To
identify at which cell cycle stage Cdc13 is phosphorylated,
cultures synchronized with a-factor were analysed by phospho-
specific antibodies. As shown in Fig. 3d, phosphorylation of
S249 and S255 was detected at 40min after release in WT
but the signal accumulated from 60 to 100min in the pph22
mutant strain. On the other hand, phosphorylation of S314
accumulated after 60min and reached maximum at G1.
Immunoprecipitation (IP) kinase assay further demonstrated
that Ipl1 phoshporylates Cdc13 in vitro using recombinant
Cdc13 (Fig. 3e). These data suggest that Ipl1 directly
phosphorylates Cdc13.
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Given the fact that both S249/S255 and S314 are located at the
telomerase recruitment domain, we wondered whether there is an
interplay between phospho-S249/S255 and phospho-S314. Wes-
tern blot analysis demonstrated that phosphorylations on S249
and S255 were only slightly altered in cdc13-S314A cells
(Supplementary Fig. 11d). On the other hand, a 33% reduction
on S314 phosphorylation was observed in cdc13-S249/S255A cells
(Supplementary Fig. 11d). These results indicate that the
phosphate groups on S249 and S255 may have an influence on
the Aurora kinase-mediated S314 phosphorylation.

To identify the potential cellular functions for Cdc13 S314
phosphorylation, we tested whether other telomere-related
mutations would affect S314-mediated phenotypes. Telomere
length was analysed in cdc13-S314 strains in combination with or
without deletion of known factors involved in the telomerase
pathway (Fig. 4a–c and Supplementary Fig. 12). In WT and mec1
strains, single mutation serine to alanine caused telomere
lengthening. These results indicate that the negative charge on
this residue at a particular timing is necessary for telomere length
homeostasis. Moreover, no additional or synergistic effect on
telomere lengthening was observed in cdc13-S314 tel1, cdc13-
T308A-S314 and cdc13-S314 tlc1 strains. These data suggest that
the S314 phosphorylation-mediated telomere regulation depends
on telomerase. Besides, in the absence of Tel1/Cdk1-dependent
phosphorylation on Cdc13, Ipl1-mediated phosphorylation on
S314 does not modulate telomere replication.

Aurora accelerates eviction of telomerase at G2/M phase. Since
serine 314 is located in the Est1- and Stn1-interacting region of
Cdc13 (Fig. 3a)20,36,37,47, we next asked whether Ipl1-dependent
phosphorylation of Cdc13 plays a role in coordinating the
interaction of Cdc13 with Est1 or Stn1. When GST-Est1, GST-
Stn1 and HA3-Cdc13 were overexpressed using galactose-
inducible promoters, we detected the Cdc13–Est1 and Cdc13–
Stn1 interactions. Mutation of S314 to alanine or aspartic acid did
not affect the interaction of Cdc13 with Est1 or Stn1
(Supplementary Fig. 13). Furthermore, mutation of S314 to
alanine or aspartic acid did not affect the cell cycle-dependent
departure of Est1 (Fig. 5a). However, cell cycle-dependent
departure of Est2 from telomeres was delayed in yeast
harbouring cdc13-S314A mutant compared with that in WT

(Fig. 5b and Supplementary Fig. 14). Mutation of S314 to alanine
resulted in a twofold increase of TLC1 RNA co-
immunoprecipitated with Cdc13 (Fig. 5c). Conversely, co-
immunoprecipitated TLC1 was reduced in the cdc13-S314D
mutant (Fig. 5c). The interaction between Est1 and TLC1 was
increased in the cdc13-S314A mutant compared with that in WT
(Fig. 5d), and co-immunoprecipitated TLC1 was reduced in the
cdc13-S314Dmutant (Fig. 5d). We could not detect a difference in
Est2–TLC1 association in cdc13-S314 mutation background
(Fig. 5e). On the other hand, cell cycle-dependent Cdc13/Est1-
mediated TLC1 association was increased in yeast harbouring
cdc13-S314A mutant compared with that in WT (Fig. 5f and
Supplementary Fig. 14). Together, these data indicate that Ipl1-
dependent phosphorylation of Cdc13 plays a role to telomerase
RNA departure during cell cycle progression. This regulation on
telomerase departure is not through perturbing the Cdc13–Est1
interaction, but through alleviating the Est1–TLC1 interaction.

PP2A and Aurora act independently but additively. Finally, we
asked whether PP2A phosphatase and Aurora kinase work
through independent pathways. Cell cycle progression and telo-
mere length were examined in WT, single and double mutants.
Additive effects in cell cycle delay and telomere lengthening were
observed in the pph22 cdc13-S314A strain (Fig. 6a,b). These
phenotypes were not observed in the pph22 ipl1-4 strain
(Supplementary Fig. 15), probably because Ipl1 regulates too
many downstream substrates and all these regulations may
engender a combinatively dominant effect on telomeres. Cell
cycle-dependent departure of Est2 from telomeres was further
delayed in the pph22 cdc13-S314A double mutant compared with
that in pph22 and in cdc13-S314A strains (Fig. 6c and
Supplementary Fig. 7), as observed that Est2 binding to telomeres
was 70, 34 and 44 percentage higher at the 70-min time point in
pph22 cdc13-S314A, pph22 and cdc13-S314A mutants, respec-
tively, compared with that in the WT (Fig. 6c). Previous studies
have shown that G2/M delay alone is not sufficient to trigger
telomere lengthening (Supplementary Table 1), indicating an
active role of Pph22 and Ipl1 in removing telomerase. These
results suggest that Pph22 and Ipl1 control telomere replication
through different pathways and each contributes to telomerase
departure.
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Discussion
We previously found that Tel1 and Mec1 phosphorylate Cdc13 at
S249 and S255 in vitro22. Several laboratories also discovered
genetic and physical evidence of the importance of Tel1 in
telomerase recruitment23–25. In this study, our phospho-specific
antibody detected in vivo S249 and S255 phosphorylation in a
Tel1/Mec1-dependent and cell cycle-dependent manner and the

signal was abolished in the cdc13 S249S255A cells. Moreover,
gradual telomere shortening and cellular senescence were
observed in cdc13-S249/S255A cells, but partly recovered in
cdc13-S249/S255D cells. All these findings suggest that the
negative charges at the telomerase recruitment domain of
Cdc13 facilitate the Cdc13–Est1 salt-bridge formation26,48.
Contrary to expectations, a two-hybrid assay38 found that the
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Est2-Myc18 in vivo. Co-immunoprecipitated TLC1 RNA was quantified by real-time RT–PCR. (f) IP of Cdc13-Myc9 through cell cycle progression in vivo.

Co-immunoprecipitated TLC1 RNA was quantified by real-time RT–PCR. TLC1 binding to Cdc13 is increased in the cdc13-S314A strain (n¼6, P values at
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NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6312 ARTICLE

NATURE COMMUNICATIONS | 5:5312 | DOI: 10.1038/ncomms6312 | www.nature.com/naturecommunications 7

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Cdc13 and Est1 interaction is Tel1 independent. Lack of in vivo
evidence of Cdc13 S249 and S255 phosphorylation previously has
caused some reasonable speculation and debate in this field.
However, all these arguments are understandable and explainable.
For example, the interaction between Cdc13 and Est1, as
monitored by the two-hybrid assay, is S255 dependent but Tel1
independent38. In that case, two-hybrid assay might measure a
basal level interaction between Cdc13 and Est1, and
phosphorylation may stimulate their interaction in vivo only at
the late S phase. However, this Tel1-mediated enhancement
may not be detectable owing to the excess amounts of Cdc13 and
Est1 throughout the whole-cell cycle in the two-hybrid system,
which may be over the enzymatic loading for the endogenous
Tel1 kinase. Here we present evidence for the first time that
Cdc13 S249 and S255 are phosphorylated in vivo at the late S
phase (Fig. 3c). Cdc13 S249 and S255 are partially phosphorylated
in cdc13-Q250/Q256A mutant cells (Supplementary Fig. 2c),
and the cdc13-Q250/Q256A mutation causes slight telomere

shortening38. Therefore, we hypothesize that other protein
kinases might phosphorylate Cdc13 S249 and S255, especially
in the absence of Tel1/Mec1 kinases. The phosphorylation of
Cdc13-S249/S255 is critical for telomerase recruitment and this
action cannot be completely recovered by aspartate replacement
in vivo. However, Cdc13-S249/S255D retains its ability to interact
with Est1 in our in vitro co-IP assay. A possible explanation is
that the S249/S255D mutation may bind to Est1 with the same
affinity, but this binding leads to some allosteric effect on Est1–
TLC1 association. Alternatively, in vitro co-IP assay using
overexpressed and tagged proteins may not completely reflect
the exact affinity between Cdc13 and Est1 in vivo, and Cdc13-
S249/S255D does contain a little defect in Est1 binding.
Our findings further strengthens the detailed mechanism
of Tel1/Cdc13/Est1-mediated telomerase recruitment in
S. cerevisiae20,22,23,25. The collective functions of Ccq1,
Tpp1and Pot1 in Schizosaccharomyces pombe are analogous to
the telomeric role of Cdc13 in S. cerevisiae49,50. Consistently,
ataxia telangiectasia mutated (ATM)/ATM- and Rad3-related
(ATR)-promoted Ccq1–Est1 interaction was recently revealed51.
It will be interesting to know whether ATM/ATR promotes the
TPP1–POT1 complex-mediated telomerase recruitment in
mammals52,53 as observed in yeasts.

Adequate and timely regulation of DNA replication is critical
for optimal progression of cell cycle. Telomere replication is
facilitated by Cdk1/Tel1/Mec1-mediated Cdc13 phosphorylation
at late S phase22–27. G2 phase is well known as the pre-mitotic
phase to prepare for M phase entry. Another critical task at G2/M
is to completely terminate DNA replication. Aurora is a master
G2/M phase kinase28, and PP2A phosphatase counteracts ATM
and ATR functions in DNA damage54. Here we demonstrate that
both PP2A phosphatase and Aurora kinase promote the
termination of telomere replication through modifications on
Cdc13. A recent study also identifies that S314 of Cdc13 is a
phosphorylation site and this phosphorylation might provide a
critical regulation in telomere replication55. It is interesting that
PP2A phosphatase and Aurora kinase use distinct mechanisms to
remove telomerase. PP2A phosphatase directly removes the
phosphorylations on Cdc13 S249 and S255 to reduce the
electrostatic interaction between Cdc13 and Est1. On the other
hand, Aurora kinase-mediated Cdc13 phosphorylation does not
disturb the Cdc13–Est1 interaction but may lead to an allosteric
modulation on Est1–TLC1 interaction that dissociates telomerase
RNA. It may be possible that in a single cell, PP2A phosphatase
helps to remove telomerase on some telomeres, whereas Aurora
kinase promotes telomerase departure on other telomeres.
Compromising PP2A phosphatase- and Aurora kinase-mediated
regulations trigger unnecessary telomere elongation, which
should be a waste of energy and lead to cell cycle delay.
Moreover, although at G1 phase Aurora kinase-mediated
S314 phosphorylation may provide an inhibitory effect on the
Cdc13–Est1–TLC1 interaction, as previously suggested56 at
G1 phase the telomerase complex may be further recruited by
the Ku complex.

We previously identified that Cdk1-mediated Cdc13 phos-
phorylation also controls the stability of Cdc13 (ref. 27). This
kind of modulation may send a signal for the AAA
ATPase Cdc48-facilitated Cdc13 degradation57. Sequential
phosphorylation and dephosphorylation on Cdc13 therefore
offer a great platform to modulate telomerase function in vivo.
Moreover, Pif1 helicase is a negative regulator of telomere
replication58. Its helicase function facilitates cells to remove
telomerase RNA from telomeres59. All these regulations may
additively contribute to telomerase departure and serve as
gatekeepers to maintain efficient cell cycle (Fig. 7), and our
findings provide evidence that not only initiation but also
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termination of telomerase recruitment plays an important role in
telomere maintenance and cell cycle progression.

Methods
Strains and plasmids. All yeast operations were performed by standard meth-
ods60. Strains and plasmids used in this study are listed in Supplementary Tables 2
and 3. Mutant strains pph3D, pph21D and pph22D are isogenic to BY4741 (MATa
his2D1 leu2D0 met15D0 ura3D0) and were obtained from yeast deletion library
(Invitrogen, 95401.H2). The yeast strains carrying tlc1, mec1, sml1, tel1, cdc13 and
CDC13-Myc9 are isogenic to YPH499 (MATa ura3-52 lys2-801_amber ade2-
101_ochre trp1-D63 his3-D200 leu2-D1) (ref. 61). ipl1-4 is isogenic to Y300 (MATa
trp1-1 ura3-1 his3-11,15 leu2-3,112 ade2-1 can1-100). PPH3-TAP, PPH21-TAP and
PPH22-TAP are isogenic to W303 (MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1
his3-11,15). pRS304CDC13-Myc9 was obtained from Dr Virginia Zakian37 and
pRS306CDC13 was constructed by PCR containing the CDC13 open read frame and
the downstream 200 nucleotides. Point mutations were introduced into CDC13
using QuickChange site-directed mutagenesis (Stratagene). To generate
chromosomal cdc13 mutants, pRS306cdc13 mutants were XhoI-digested and
transformed into CDC13 strains, and the URA3 pop-out mutants were selected from
the 5-fluoroorotic acid (5-FOA)-resistant colonies using PCR analysis. The ipl1-4
strain was constructed by a recombination-mediated two-step gene replacement
procedure62, replacing the IPL1 with the ipll-4 mutant allele of pCC321. The
pph22::KanMX4 and pph22::HIS3 mutants were constructed by transforming
pph22::KanMX4 and pph22::HIS3 PCR fragments, respectively, into the strains.
Plasmids pGEX-4T-Cdc13(227–277) were constructed by ligating a PCR product
containing amino acids 227–277 of Cdc13 from pRS314CDC13 into BamHI- and
SalI-treated pGEX-4T. Plasmids pGEX-4T-Cdc13(276–332) were constructed by
ligating a PCR product containing amino acids 276–332 of Cdc13 from
pRS314CDC13 into BamHI- and XhoI-treated pGEX-4T. Plasmid pYES2-Cdc13-
Myc9 was constructed by ligation of a PCR product from pRS314Cdc13-Myc9 into
KpnI-Klenow-treated pYES2. All primer sequences for PCR and mutagenesis are
provided in Supplementary Table 4.

Gel electrophoresis and western blot analysis. Cells were grown at 30 �C in
yeast extract peptone dextrose (YPD) broth. Cell lysates were prepared with lysis
buffer (150mM NaCl, 1% Nonidet P-40, 1% deoxycholate, 0.1% SDS, 50mM Tris–
HCl, pH 7.5, and protease inhibitors) or trichloroacetic acid (TCA) precipitated63.
Whole proteins were extracted and resolved by 10% (except Fig. 1b) SDS–
polyacrylamide gel electrophoresis (SDS–PAGE). For the supershift of Cdc13
phosphorylations, SDS–PAGE was performed by Bio-Rad PROTEIN II System.
Myc9-tagged Cdc13 protein was detected by an anti-Myc antibody (Roche, working
condition 1: 2,000). HA-tagged Cdc13 protein was detected by an anti-Myc

antibody (Covance, working condition 1:2,000). GST-tagged overexpressed Cdc13,
Est1 and Stn1 were detected by an anti-GST antibody (Roche, working condition
1:3,000). TAP-tagged phosphatase Pph3, Pph21 and Pph22 were detected by an
anti-TAP antibody (Thermo Fisher Scientific, working condition 1:3,000). FLAG-
tagged Ipl1 was detected by an anti-FLAG antibody (Sigma, working condition
1:1,000). Affinity-purified rabbit anti-Cdc13 pS249/pS255 and pS314 phospho-
specific antibodies (raised against phosphopeptides SGSGYIESpQNEFNSpQLMC
and TPERKTSpVPNNWHC, respectively) were used to detect phosphorylations. A
cysteine residue was added to the C terminus to facilitate conjugation with a carrier
protein for greater immunogenicity. To generate antibodies, rabbits were boosted
with carrier-conjugated phosphopeptides once per month. Pre-immune serums
were collected before boost. Injection was conducted every 4 weeks and blood
samples were collected every 2 weeks. Blood samples were incubated at 37 �C for
30min, and serum and blood cells were separated via high-speed centrifugation.
Clarified serum was incubated at 56 �C for 30min to remove complements. The
specificity of antibodies was verified by means of peptide dot blot analysis. Images
were captured and quantified by a bioluminescence imaging system (UVP
BioSpectrum AC Imagine System, UVP). Uncropped plots are provided in
Supplementary Fig. 16.

IP and co-IP. IP of Cdc13-Myc9 was conducted by 9E10 monoclonal antibodies
(Roche). GST-Est1 and GST-Stn1 were immunoprecipitated by 2 mg of a GST
antibody (GE). Immunoprecipitated GST-Est1 and GST-Stn1were detected by the
same GST antibody (GE, working condition 1:3,000) and co-immunoprecipitated
HA3-Cdc13 was detected by an HA antibody (Covance, working condition
1:2,000). Images were captured and quantified by a bioluminescence imaging
system (UVP BioSpectrum AC Imagine System, UVP).

Dot blot analysis. A quantity of 50 ng of the phosphorylated or unphosphorylated
peptides were spotted on nitrocellulose membranes. Dot blot analysis was con-
ducted by standard protocol using phospho-specific antibodies.

In vitro phosphatase assay. In vitro phosphatase experiments were conducted
using affinity-purified TAP-tagged Vps74, Pph3, Pph21 and Pph22 complexes.
Recombinant Cdc13 substrates Cdc13(227–277), Cdc13-S249A(227–277) and
Cdc13-S255A(227–277) were purified and pre-phosphorylated by immunopreci-
pitated Mec1 kinase. The kinase assay was initiated in 40 ml of kinase buffer by the
addition of 10mCi [g-32P]ATP (3,000 Cimmol� 1, Amersham Pharmacia Bio-
tech), substrate (2 mg of recombinant Cdc13) and ATP to 100mM (ref. 22). In vitro
phosphatase experiments used affinity-purified, TAP-tagged Pph3, Pph21 or
Pph22 complexes. The immunopurified phosphatase64 were incubated with
recombinant Cdc13 proteins previously created in vitro by phosphorylating with
Mec1 kinase. Sample buffer (2� ) was added, and reactions were separated by 10%
SDS–PAGE and subjected to autoradiography using an X-ray film. Images were
captured and quantified by a bioluminescence imaging system (UVP BioSpectrum
AC Imagine System, UVP).

Southern blot analysis and telomere length measurement. When DNA was
examined from individual colonies, the colony was expanded in 2ml of liquid
medium to obtain enough DNA for Southern analysis65. Genomic DNAs were
digested with KpnI, separated by 1.2% agarose gel electrophoresis, and transferred
to Genescreen Plus membrane (PerkinElmer). The blot was probed by a 341-bp
32P-labelled (Invitrogen) XhoI-KpnI fragment from the 30-end of Y0 element. Spore
cells were serially diluted into or restreaked onto YPD medium. Liquid cultures
were generated by inoculating spore colonies from the tetrad plate into 10ml of
liquid YEPD medium. Cultures were diluted repeatedly 1:10,000 into fresh medium
at 48 or 72 h (refs 22,65). Genomic DNAs were digested with XhoI, separated by
1% agarose gel electrophoresis and transferred to Genescreen Plus membrane
(PerkinElmer). The blot was probed by a 550-bp 32P-labelled (Invitrogen) EcoRI
fragment of TG1–3 sequence.

De novo telomere addition assay. De novo telomere addition assay was per-
formed as previously described45. UCC5706 strain was kindly provided by Dr
Daniel Gottschling. The pph21::KanMX4 and pph22::KanMX4 mutants were
constructed by transforming pph21::KanMX4 and pph22::KanMX4 PCR fragments,
respectively, into UCC5706. Equal number of cells was collected for DNA
preparation, enzyme digestion and Southern blot analysis.

Chromatin IP. ChIP analysis was performed as described25. In brief, cells were
grown, G1 arrested and released at 24 �C in YPD broth. After crosslinking in 1%
formaldehyde, cells were lysed and sonicated. IPs were carried out with anti-Myc
9E10 (Roche) and Protein G Dynabeads (Dynal) against C-terminally Myc18-
tagged Est2 and Est1. Both an aliquot of sonicated cleared extract (input) and the
immunoprecipitated material were de-crosslinked in Tris/EDTA buffer (TE) plus
1% SDS for at least 8 h at 65 �C. Quantification of immunoprecipitated DNA was
obtained by real-time PCR using SYBR Green detection (Kappa) on an Applied
Biosystems HT7500 machine and software, and was expressed as percent of
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Figure 7 | Schematic model of PP2A phosphatase and Aurora kinase-

promoted telomerase departure. (a) Cdc13 is phosphorylated by Cdk1, Tel1

and Mec1 at late S phase to recruit Est1 and the telomerase complex. (b)

Pph22 dephosphorylates Cdc13 and dissociates Est1 to promote the

departure of the telomerase complex. (c) Ipl1 phosphorylates Cdc13 serine

314. It may lead to an allosteric modulation on Est1–TLC1 interaction that

dissociates telomerase from telomeres. (d) Pif1 helicase removes

telomerase RNA from telomeres59. (e) Cdk1 and AAA ATPase Cdc48 (ref.

57) facilitate Cdc13 degradation. Pathways b–d may occur on different

telomeres to completely inactivate telomerase recruitment at M phase.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6312 ARTICLE

NATURE COMMUNICATIONS | 5:5312 | DOI: 10.1038/ncomms6312 | www.nature.com/naturecommunications 9

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


starting (input) material. Primers used in this study are listed in Supplementary
Table 4. In a given synchrony, samples from each time point were amplified in
duplicate or triplicate to obtain an average value for each sample. In addition, each
synchrony was repeated six times; the data are presented as the mean of the three
or more synchronies plus or minus s.d.’s. Where applicable, a two-tailed Student’s
t-test was used to determine statistical significance (P value r0.05)

Cell cycle analysis of ChIP samples. For ChIP assay, cells were grown at 30 �C in
raffinose and arrested by a-factor. Galactose was added for an additional 3 h. Cells
were then transferred to glucose medium with a-factor for 15min before the a-
factor was removed by centrifugation. Cells were released into cell cycle at 24 �C by
the addition of protease. Samples were taken at 0, 45, 60, 70, 80 and 90min, and
were processed for fluorescence-activated cell sorting and ChIP analyses.

MS analysis. In order to identify the phosphorylation sites of Cdc13, Cdc13-Myc9
was overexpressed from pYES2-Cdc13-Myc9 in nocodazole-arrested yeast, isolated
by pull-down and SDS–PAGE and followed by the in-gel enzyme digestion. The
tryptic peptides of Cdc13 were analysed by nanoscale liquid chromatography
coupled to tandem mass spectrometry (nano LC-MS/MS) instrument (LTQ-FT,
Thermo Fisher Scientific). The MS/MS spectra data were converted as mgf
format from experiment RAW file by MM File Conversion Tools66 (http://
www.massmatrix.net) then analysed by MassMatrix67 for MS/MS ion search. The
search parameters in MassMatrix including the error tolerance of precursor ions
and the MS/MS fragment ions in spectra were 10 p.p.m. and 0.6Da. The enzyme
for digestion was assigned to be trypsin with the miss cleavage number two. The
variable post-translational modifications in search parameters were assigned to
include the oxidation of methionine, carbamidomethylation of cysteine and the
phosphorylation of serine/threonine/tyrosine. The phosphorylation sites of Cdc13
identified by MS were S306, T308, S314, S324, S333 and S336 (Supplementary
Fig. 10).

In vitro kinase assay. For IPs, 50ml cultures of mid-log-phase cells were collected
and lysates were prepared in 500 ml lysis buffer (100mM NaCl, 50mM Tris–HCl,
pH 7.5, 50mM NaF, 50mM b-glycerophosphate, pH 7.4, 2mM EDTA, 2mM
EGTA, 0.1% Triton X-100, 1mM DTT and protease inhibitors)68. A total of 450 ml
of supernatant was incubated with 50 ml protein G-coated Dynabeads (Invitrogen)
and 2 mg of M2 anti-Flag antibody (Sigma) for 2 h at 4 �C. The beads were washed
five times with 500 ml lysis buffer and once with 100 ml kinase buffer without ATP
(50mM Tris-HCl, pH 7.4, 1mM DTT, 25mM b-glycerophosphate and 5mM
MgCl2) and then resuspended in buffer with 10 mM ATP, 5 mCi [32P]ATP and 2 mg
recombinant Cdc13(276–332) proteins for 30min at 30 �C. Sample buffer (2� )
was added, and reactions were separated by 10% SDS–PAGE and subjected to
autoradiography using an X-ray film. Images were captured and quantified by a
bioluminescence imaging system (UVP BioSpectrum AC Imagine System, UVP).

Co-IP of TLC1 RNA. For studies of nocodazole-arrested cell cultures, yeast cells
were grown at 30 �C in complete media to OD660¼ 0.8 and treated with nocodazole
for 3 h. Extracts were prepared as previously described69. One Complete EDTA-free
protease inhibitor tablet (Roche) was added for each 10ml of TMG-50. Typically,
3mg of total protein was adjusted to 0.5% (v/v) Tween-20 and 200Uml� 1 of
RNasin (Promega) and RNaseOut (Invitrogen) before our hour incubation at 4 �C
with monoclonal anti-Myc antibody (Roche). Dynabeads Protein G (Invitrogen)
equilibrated with TMG-50 plus 0.5% (v/v) Tween-20 was then added and incubated
for 1 h at 4 �C. Beads were washed three times with TMG-50 plus 0.5% (v/v)
Tween-20, once with TMG-50 and resuspended in TMG-50. For the IP of Est1,
nocodazole-arrested cells were treated with zymolyase to create spheroplasts, which
were then resuspended in 1ml lysis buffer (0.4M sorbitol, 150mM potassium
acetate, 2mM magnesium acetate, 20mM HEPES/KOH, pH 6.5, 100mgml� 1

phenylmethylsulfonyl fluoride, 1mgml� 1 pepstatin A and 0.5mgml� 1 leupeptin).
Spheroplasts were washed three times in lysis buffer, with centrifugation at
4,200 r.p.m. for 3min between each wash. Triton X-100 was added to 1% final
concentration and the insoluble fraction was pelleted at 14,000 r.p.m. for 15min at
4 �C (ref. 70). The chromatin pellet was resuspended in 1ml TMG-50 buffer for
further IP. For studies involving synchronous cultures, yeast cultures were grown at
30 �C in complete media to OD660¼ 0.5. Cultures were then arrested to late G1
phase by the addition of 0.015mgml� 1 a-factor. After arrest, a-factor was removed
and cells were allowed to progress synchronously through the cell cycle at 24 �C.
Samples were taken at 0, 45, 60, 70, 80 and 90min for fluorescence-activated cell
sorting and co-IP analysis. Extracts were prepared for each time point exactly as
described. The amount of TLC1 and Actin mRNA copurified were quantified using
real-time reverse transcription PCR; Kappa). The enrichment of TLC1 was
expressed as the ratio of TLC1 amount co-immunoprecipitated in the presence of
anti-Myc 9E10 antibody in samples versus lysate from untagged control strain
(background) after normalization to total input (TLC1 test IP/TLC1 test
input)(TLC1 no tag input/TLC1 no tag). The enrichment of Actin mRNA was also
calculated in the same way and used as a control. The results show an average of
three experiments. Statistically significant differences in data sets were established by
using a Student’s t-test. The error bars represent s.d.
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Corrigendum: PP2A and Aurora differentially
modify Cdc13 to promote telomerase release from
telomeres at G2/M phase
Zih-Jie Shen, Pang-Hung Hsu, Yu-Tai Su, Chia-Wei Yang, Li Kao, Shun-Fu Tseng, Ming-Daw Tsai

& Shu-Chun Teng

Nature Communications 5:5312 doi: 10.1038/ncomms6312 (2014); Published 12 Nov 2014; Updated 10 Jul 2015

This Article incorrectly cites ref. 51 at the end of the penultimate sentence of the first paragraph of the Discussion: ‘Consistently,
ataxia telangiectasia mutated (ATM)/ATM- and Rad3-related (ATR)-promoted Ccq1–Est1 interaction was recently revealed51.’
The correct citation is as follows:

Moser, B. A., Chang, Y. T., Kosti, J. & Nakamura, T. M. Tel1ATM and Rad3ATR kinases promote Ccq1-Est1 interaction to maintain telomeres in fission yeast. Nat. Struct.
Mol. Biol. 18, 1408–1413 (2011).
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