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Kinetic modulation of a disordered protein
domain by phosphorylation
Nathaniel Stanley1, Santiago Esteban-Martı́n2 & Gianni De Fabritiis1,3

Phosphorylation is a major post-translational mechanism of regulation that frequently

targets disordered protein domains, but it remains unclear how phosphorylation modulates

disordered states of proteins. Here we determine the kinetics and energetics of a disordered

protein domain the kinase-inducible domain (KID) of the transcription factor CREB and that of

its phosphorylated form pKID, using high-throughput molecular dynamic simulations. We

identify the presence of a metastable, partially ordered state with a 60-fold slowdown in

conformational kinetics that arises due to phosphorylation, kinetically stabilizing residues

known to participate in an early binding intermediate. We show that this effect is only

partially reconstituted by mutation to glutamate, indicating that the phosphate is uniquely

required for the long-lived state to arise. This mechanism of kinetic modulation could be

important for regulation beyond conformational equilibrium shifts.
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P
ost-translational modifications in proteins participate in
many fundamental cellular processes1–3 and affect at least
one-third of all eukaryotic proteins4,5. In particular, protein

phosphorylation plays key roles in many signal-transduction
processes4–8, preferentially targeting intrinsically disordered
protein domains (IDPs)4,5. IDPs remain largely unstructured
under native conditions9, resembling random-coil polymers akin
to the unfolded states of proteins. Being present in 450% of
eukaryotic proteins10,11, IDPs perform a plethora of biological
functions12–14 and are commonly associated with a variety of
human diseases15–18.

The effect of phosphorylation in proteins is manifold. For
example, it can induce conformational changes19, promote order–
disorder transitions20 and modulate binding via electrostatic
interactions with partners21. However, it remains largely
unexplored whether phosphorylation can regulate the
conformational kinetics of proteins, and what effect this may
have on molecular recognition with other partners. This is
especially interesting for protein domains that do not have a
native folded conformation, and also difficult to address as it
requires the characterization of low populated, transient states.

In an attempt to understand how phosphorylation modulates
disordered states of proteins, we determined the conformational
kinetics and energetics of a disordered protein domain before and
after phosphorylation at atomic resolution. We chose to study an
experimentally well-characterized disordered fragment of the
kinase-inducible domain (KID) of transcription factor CREB22

(residues 116–147). KID includes the binding motif to the KIX
domain of the coactivator CBP23 (Fig. 1b). KID is known to be
disordered in solution and form two alpha helices on binding23, a
process that involves binding intermediates24. Molecular
recognition of KID is regulated via phosphorylation of serine

133 in the aB helix, which increases its binding affinity 40-fold25

(binding of residues 119–147 to KIX). Interestingly,
phosphorylation barely affects the fraction of folded aA and aB
helices26. Regulation of binding affinity is mostly ascribed to
phosphate electrostatic and hydrogen bonding interactions with
KIX. However, mutation of serine 133 to a negatively charged
residue such as glutamate (often considered to mimic interactions
with amide NH, lysine and arginine residues27) cannot
recapitulate pKID activity28.

All-atom, explicit solvent micro to millisecond MD simula-
tions29–31 have in recent years significantly contributed to our
understanding of disordered states of proteins29,30,32,33.
Computational studies on KID protein using replica exchanged
implicit solvent MD simulations34, and short all-atom MD
simulations35 showed that KID is largely unstructured and
phosphorylation barely affects its helical propensity. Moreover,
coarse grain and short, high-temperature all-atom simulations
suggested that binding of KID to KIX initiates at the aB
helix35–38. However, difficulties in resolving the micro to
millisecond timescale using all-atom, unbiased MD simulations
impeded the assessment of the effect of phosphorylation on
long-time scales and thus on conformational kinetics.

Here, we use all-atom, explicit solvent molecular dynamic
(MD) simulations and resolve equilibrium by performing 1.7ms
of aggregated simulation time on the distributed computing
network GPUGRID.net39 with ACEMD40. We identify a
metastable, partially ordered state with a 60-fold slowdown in
conformational kinetics, exchanging at the multi-microsecond
time regime, present only in phosphorylated KID. This post-
translational modification kinetically locks residues in helix aB
that participates in an early binding intermediate, while no
significant change in the population of the ordered state was

KID domain No
transcription

TATA
Phosphorylation

by
PKA/PKC

Trans
complex

CREB

CREB

CRE

CRE

CBP
Trans

complex

Transcription
activated

TATA

KIX
domain

P

147133116

1

2
3

–2

–1
0

50 mM NaCI

50 mM NaCI
50 mM NaCI

315K

315K
315K

0.5 ms

Sim.
time

Temp.Salt conc.Charge
at 133

Sequence

0.5 ms
0.5 ms

Helix A Helix B
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observed. Our results are in line with previous experimental
NMR analyses. We suggest that long-lived states favoured by
phosphorylation are partially responsible for the increased
binding affinity of pKID to KIX and propose that kinetic
modulation of disordered protein domains may be an important
mechanism of regulation by phosphorylation at the biochemical
level beyond conformational equilibrium shifts.

Results
Induction of slow conformational exchange by phosphorylation.
To study the effect of phosphorylation on the KID domain of
CREB we performed all-atom, explicit solvent MD simulations
with 1.7ms of total aggregated data for the following systems:
phosphorylated KID at serine 133 (pKID), KID domain and a
S133E mutant (gKID) used as a control (Fig. 1; see Methods).
For each system, the data were analysed by constructing
a Markov state model (MSM) of the entire ensemble of
trajectories (see Methods). MSMs have been used previously to
successfully calculate several slow processes from ensemble MD
simulations41–45. We used inter-residue Ca-Ca distances and f/c
backbone dihedral angles as general metrics to build the kinetic
model. The conformational space was discretized into 1,000
clusters and then projected on a 5-dimensional space using a new
dimensionality reduction technique (time-sensitive independent
component analysis46), which identifies the slow coordinates in the
dynamics.

The characteristic relaxation timescales of the first and second
slowest processes for pKID, KID and gKID proteins, as
determined from the Markov model, are reported in Table 1.
The slowest relaxation process of pKID and KID differs by 60-
fold (37 versus 0.6 ms). The second slowest process of pKID is also
an order of magnitude slower than the slowest process observed
in KID. To assess whether that slowdown in conformational
kinetics was specific of the phosphate, we mutated the serine 133
to glutamate to partially mimic the negatively charged phosphate
group27. The slowest process in gKID was found well below that
of pKID (Table 1). Therefore, phosphorylation induced a slow
exchange process in the multi-microseconds time regime, a
kinetic fingerprint of pKID that could not be recapitulated by
S133E mutation.

Identification of a metastable state in phosphorylated KID. As
the slowest process for all systems is well separated from the rest,
we used a simple, two-state kinetic model to analyse conforma-
tional transitions in KID, called D (disordered) and O (ordered),

D Ð
1=t1

1=t� 1

O ð1Þ

where t1 and t� 1 are the forward and backward mean first
passage times. The relaxation time (tex) is defined as tex¼
(t1� 1þ t� 1

� 1)� 1. We obtained a kinetic clustering over just two
states using the Perron-cluster cluster analysis47. The slowest
exchange process identified in pKID, that occurs at 37±1 ms
(Table 1), had a forward (t1) and backward (t� 1) transition time

of 463±22 and 37.0±0.8 ms (Fig. 2, Supplementary Fig. 1). The
stationary (equilibrium) populations obtained from the Markov
model are 95±1 and 5±1%. Statistical errors were determined
using a bootstrapping procedure of the data (see methods).

For the case of non-phosphorylated KID, we found a large state
that accounted for most of the population (99±0.1%, Fig. 2). The
slowest transitions in KID occurred at 0.6±0.01 ms (Table 1),
with forward and backward transition times of 5.7±0.2 and
0.6±0.1 ms (Fig. 2, Supplementary Fig. 1). Control simulations
with gKID (S133E) protein also showed a largely populated
state (99±0.1%) and a slow exchange process of 1.8±0.01 ms
(Supplementary Fig. 1). Phosphorylation of KID resulted in a 60-
fold slowdown exchange process (texB37 ms) as compared with
KID domain (texB0.6 ms) and affected the forward (state D to
state O) and backward (state O to state D) transition times by a
factor of 80 and 60, respectively.

Phosphorylation kinetically locks binding residues. To further
investigate the slowdown observed on conformational exchange
in pKID as compared with both KID and gKID proteins, we
computed the autocorrelation function (ACF) for helix folding
and unfolding at the residue level and determined the char-
acteristic relaxation times (Fig. 3a, see Methods, Supplementary
Fig. 3). We found that residues 131–136 at the N-terminal part of
aB helix undergo slow multi-microsecond conformational

Table 1 | Timescales of 1st and 2nd slowest processes for the
systems studied.

System 1st slowest process (ls) 2nd slowest process (ls)

pKID 37.0±0.8 10.0±1.2
KID 0.6±0.01 0.2±0.01
gKID 1.8±0.01 0.4±0.01

See also Supplementary Fig. 1. Errors were determined by a bootstrapping technique (see
Methods).
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exchange (texB40ms) and, therefore, participate in the slowest
process observed in pKID (Table 1). NMR experiments identified
an early intermediate complex in which N-terminal aB region is
engaged with KIX24. This region maps on top of residues
undergoing slow exchange in phosphorylated KID (Fig. 3a). It is
plausible, therefore, that the state O identified in this work and
the early binding intermediate detected by NMR have common
structural details.

Structural analysis. As expected for an IDP, the most populated
state in pKID, KID and gKID is largely unstructured
(Supplementary Fig. 2). We observed an increase in the popula-
tion of the minor state from 1±0.1 to 5±1% when serine 133
was phosphorylated and no change on S133E mutation (Fig. 2).
In all cases the state was characterized by an increase in helical
content of residues in aB helix (Supplementary Fig. 2). This
minor state is referred herein as ordered or state O. This effect
was most notable for the case of pKID, in which B80% of the
conformers in this state had the N-terminal residues 131–135 of
aB helix folded. An interesting structural feature of states O and
D is that they group conformations in which residue 131 is either
forming part of the aB helix or unfolded, respectively. This
structural signature separates states that exchange slowest in all
three systems. Interestingly, NMR relaxation experiments showed
that residue 131 in pKID folds one to two orders of magnitude
slower than the rest of residues in the complex with KIX24. The
helicity of residues in aB helix tends to increase in this state with
respect to the disordered state D (Supplementary Fig. 2). Overall,
the slow exchange processes involved disordered (state D)–
ordered (state O) transitions.

Inspection of state O in pKID revealed additional features
beyond secondary structure formation (Fig. 3b). The phosphate
moiety, located within residues undergoing slow exchange, serves
as a staple that locks pKID into a conformation with the aA helix
partially folded (B35%) and the N terminal of aB helix mostly
folded (B80%) (Supplementary Fig. 2). In addition, a turn
bridging helix aA and aB is held by electrostatic interactions and
hydrogen bonds between the phosphate in helix aB and lysine
and arginine residues in the C-terminal region of aA helix. Note
that similar states are also observed for KID and gKID proteins,
but these states exchange fast with the rest of the conformations.

Other types of secondary structural arrangements were also
present, such as beta sheets, but these were low populated

(o0.1%) and exchanged rapidly with other states (faster than
500 ns for the case of pKID, for example).

Comparison with NMR. We assessed the structural properties
of our equilibrium simulations by a direct comparison with
backbone chemical shifts (CS) measured by NMR spectroscopy
for KID and pKID proteins26. CS allows mapping secondary
structure propensities in disordered states of proteins. Overall,
results were found in agreement with experimental CS (Fig. 4,
Ca/Cb RMSDNMR-MD for pKID and KID is 0.6/0.4 and
0.5/0.4 p.p.m., error in the prediction algorithm is B0.5 p.p.m.
for SHIFTX2 (ref. 48) and B1 p.p.m. for SPARTAþ (ref. 49)). A
deviation between calculated and measured Ca CS was observed
for residues 120–128 (Fig. 4a), indicating an increased population
of helix aA present under experimental conditions (288 versus
315K used for simulations). However, there is a known a-helical
induction of structure in KID at low temperatures50, so the
difference might be due to this or limitations of the force fields.
We note that CS could not be calculated for pSer133, which was
then mutated to serine, affecting prediction of neighbouring
residues 132 and 134. Comparison of CS changes induced by
phosphorylation (Fig. 4b) showed a similar pattern between
calculated and measured CS. These findings suggested common
structural rearrangements of KID on phosphorylation as
determined by simulation and NMR.

Experimental NMR measurements detected similar inter-
proton NOE distance patterns for the phosphorylated and
non-phosphorylated forms of the domain except in the vicinity
of the phosphorylation site. Six weak or very weak NOEs that
involved residues 127, 131, 134 and 137 were only observed
for pKID26. Overall, NOE distances are similar for KID and
pKID (4.8±0.6 Å). NOEs involving I127HN-R130HN and
I131HN-R133HN nuclei showed smaller distances for KID
(Ddist¼ 0.3±0.1 Å). NOE distances involving residues R131Ha-
Y134HN and Y134Ha-I137HN were by contrast smaller for the
case of pKID (Ddist¼ 0.5±0.1 Å). These additional NOEs bridged
up to seven residues. This NOE pattern suggested an increase in
helical content near the N-terminus of the aB helix, in agreement
with NMR.

Discussion
We have described the conformational kinetics and energetics of
an intrinsically disordered protein domain, the KID domain of
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the transcription factor CREB, before and after a post-transla-
tional phosphorylation. We identified the presence of a
metastable, partially ordered state with at least 60-fold slowdown
in conformational exchange that arises due to phosphorylation,
involving folding and unfolding of residues in the N-terminal
region of aB helix. Previous NMR studies investigating
conformational dynamics of KID in its unbound state24 can
detect exchange processes in theB0.3–10ms time window51 and,
therefore, the process we observe in this work (tens of
microseconds) remained hidden.

Phosphorylation induced a minor shift (in absolute terms) in
the equilibrium distribution of folded aA and aB helices, in
agreement with NMR data24. However, an 80- and 60-fold
increase in the folded and unfolded residence time for residues at
the N-terminal aB helix was observed. These N-terminal aB
residues were found by NMR experiments to participate in an
early binding intermediate24. Binding of kinetically locked
regions can give other transient interactions time to form,
potentially increasing the number of productive binding events
and thus the overall affinity for the binding partner. Similarly,
kinetically locked regions that participate in molecular recogni-
tion could frustrate the unbinding process. This would result in a
shift of the binding equilibrium towards the bound state.

We devised a toy kinetic model to show that, at least in
principle, a slowdown in conformational kinetics of both forward
and backward transition rates by the same amount can translate
into a 40-fold increase in binding affinity (Fig. 5). In an analogy
to the binding mechanism of KID (D) to KIX (X), in our model

the bound complex (XD) is formed via an intermediate24. A key
element of the model is the presence of productive (XDp) and
nonproductive (XDnp) intermediates, for which phosphorylation
induces a 100-fold slowdown in conformational exchange. It is

Activated

X + Dp

107 (M–1s–1)

107 (M–1s–1)

103 (s–1)

102 (s–1)
XDXDp

10 (s–1)

104 (s–1)
X + Dnp XDnp

k 1 k 2

k
–1

k
–2 Non-activated

103/104k1/k–1 (S
–1)

k2/k–2 (S
–1)

kd exp. (μM)

kd model (μM)

101/102 103/104

105/106
x100

x100

12

3

530

120

Figure 5 | Illustrative example on the potential role of conformational

kinetics in overall binding affinity. In this example unbound species

exchange between two states, labelled Dp and Dnp. Phosphorylation induces

a 100-fold slowdown in conformational kinetics, affecting forward (k1) and

backward (k� 1) rates by the same amount. A key element of the model is

binding via productive (XDp) and non-productive (XDnp) intermediates, for

which phosphorylation induces a 100-fold conformational exchange

slowdown (k2 and k� 2). Unbinding of non-productive (XDnp) intermediate

is faster than unbinding of XDp (1,000-fold, a leakage route). Exchange for

productive and nonproductive intermediates is set 100 times slower than

that in their free state. This example results in 40-fold increased binding

affinity for activated (for example, phosphorylated) protein.

116

–0.6
–1

–0.5

0

0.5

1.5

1

–0.4
pKID - KID (NMR)NMR - MD (pKID)

NMR - MD (KID)

C
he

m
ic

al
 s

hi
ft 

di
ffe

re
nc

e 
(p

.p
.m

.)

C
he

m
ic

al
 s

hi
ft 

di
ffe

re
nc

e 
(p

.p
.m

.)

pKID - KID (MD)

–0.2

0.2

0.4

0.6

0.8

1.2

1

0

121 126 131 136 141 146

116

–0.6
–0.4

–0.5

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

–0.8

–1

–0.4

NMR - MD (pKID)
NMR - MD (KID)

pKID - KID (NMR)
pKID - KID (MD)

C
he

m
ic

al
 s

hi
ft 

di
ffe

re
nc

e 
(p

.p
.m

.)

C
he

m
ic

al
 s

hi
ft 

di
ffe

re
nc

e 
(p

.p
.m

.)

–0.2

0.2

0.4

0.6

0.8

1

0

121 126 131
Residue

136 141 146 116 121 126 131
Residue

136 141 146

116 121 126 131 136 141 146

Experiment versus simulation pKID versus KID

C
α

C
β

Figure 4 | Comparison against NMR data. (a) Chemical shift (CS) difference between experimentally measured (NMR, 288K) and calculated (MD,

315K). Calculations were performed with SPARTAþ (ref. 49) and SHIFTX2 (ref. 48), which rendered equivalent results. Dashed lines correspond to the

intrinsic error in the prediction estimated from SHIFTX2 (Ca and Cb errors are 0.4 and 0.5 p.p.m., for SPARTAþ the estimated errors are B1 p.p.m.).

Ca/Cb RMSD for pKID and KID is 0.6/0.4 and 0.5/0.4 p.p.m. (b) Experimental (NMR, blue) and calculated (MD, red) CS differences between pKID

and KID systems. Note that calculations in pKID were performed with serine 133 instead of phosphorylated serine 133, affecting prediction of neighbouring

residues 132 and 134.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6272 ARTICLE

NATURE COMMUNICATIONS | 5:5272 |DOI: 10.1038/ncomms6272 |www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


therefore reasonable to propose that the slowdown in
conformational exchange we observed offers an additional
mechanism to increase binding affinity. The fact that the
glutamate mutation cannot sustain long-lived states and
disrupts25 the binding is consistent with this proposed
mechanism of modulation.

Previous studies have shown that pSer133 contributes to
binding via specific intermolecular contacts, and a loss of affinity
is seen when mutating specific residues in KIX25,28,52. The exact
atomistic mechanism and whether these contacts are also
sufficient alone for binding is less clear. In our kinetic model,
multiple routes are possible. A mutation destabilizing some
important contacts would reduce the residence time of the bound
form (1/k� 5 in the kinetic diagram). The effect can be easily
simulated, and a 10 times increase in k� 5 corresponds to 10 times
lower affinity. However, the additional kinetic route is also
mathematically viable, that is, the binding affinity can be
modulated controlling the time spent in productive versus non-
productive intermediates. Both routes can play a role in general,
and usually there is a complementary effect in such complex
processes. The fact that it is generally possible to modulate
binding of a disordered domain in a kinetic way is novel and
practical. In our case, it was indeed suggested by the fact that we
see a slowdown in conformational kinetics of pKID, which is not
seen in gKID.

It has also been proposed that pSer133 could reduce the
conformational entropy of the unbound state of KID34,53. This is
compatible with the results presented here. Phosphorylation of
KID could change conformational entropy due to altered kinetics,
but compensate in conformational enthalpy producing similar
overall populations.

With disordered domains taking part in 450% of proteins
responsible for signalling in the cell54, this kinetic mechanism of
modulation highlights a further possible mechanism by which
post-translation modifications may affect disordered domains
and their interactions with binding partners.

Methods
Simulation setup. The sequence corresponding to residues 116–147 of CREB was
used in this work (Fig. 1). Initial coordinates were built using VMD software55.
CHARMM22* (ref. 56) force field was used for the peptides. The phosphate group
on pKID (bearing two negative charges) was patched using that provided in the
CHARMM27 (ref. 57) force field with serine parameters from CHARMM22*.
TIP3P model was used for the water molecules.

The peptides were placed in a cubic water box of 64-angstrom sides and
equilibrated for 2 ns at 315 K in the NPT ensemble at 1 bar. The peptides were
simulated at 500K for 120 ns to decorrelate from the initial conformation at
constant volume (no cis conformations of peptide bonds were observed). For each
of the three simulated systems, 100 starting structures were taken from each
nanosecond of the last 100 ns of the high-temperature run. For each of those 100
starting structures, 10 replicas were submitted to GPUGRID.net39 using
ACEMD40. An additional 200 simulations were later performed for each system to
ensure adequate sampling of the process described, for a total of 1,200 for each
system. Production runs lasted 480 ns and were performed at 315 K in the NVT
ensemble. For all simulations, the particle mesh Ewald algorithm58, rigid hydrogen
bonds, hydrogen mass repartitioning59 and a time step of 4 fs were employed.

MSM analysis. We built a MSM from the molecular simulation trajectories.
MSMs have been successfully used to reconstruct the equilibrium and kinetic
properties in a large number of molecular systems41,44,60–62. By determining the
frequency of transitions between conformational states, we construct a master
equation that describes the dynamics between a set of conformational states.
Relevant states are determined geometrically by clustering the simulation data onto
a metric space (for example, contact maps). The projected space used in this work
is formed by the distances between all 32 Ca pairs plus f/c backbone dihedral
angles of the KID peptide. This high-dimensional data were then projected into five
dimensions using the time-sensitive independent component analysis method46

with a 2-ns lag time, which selects the slowest varying variables. The data were then
clustered into 1,000 states using the k-means clustering algorithm. Results
remained consistent with changes in the number of clusters (for example, 104) and
on the projected dimensions (for example, 10 dimensions).

The master equation is then built as

_P1 tð Þ ¼
XN

j¼1

kijPj tð Þ� kjiPi tð Þ
� �

¼ KijPj tð Þ; ð2Þ

where Pi(t) is the probability of state i at time t, and kij are the transition rates from
j to i, and K¼ (Kij) is the rate matrix with elements Kij¼ kij for iaj and
Kii¼ �

P
jai ki. The master equation dP/dt¼KP has solution with initial

condition P(0) given by P(t)¼T(t)P(0), where we defined the transition
probability matrix Tij(t)¼ (exp[Kt])ij¼ p(i,t|j,0), that is, the probability of being in
state i at time t, given that the system was in state j at time 0. In practical terms,
pij(Dt) is estimated from the simulation trajectories for a given lag time Dt using a
maximum likelihood estimator compatible with detailed balance63. The eigenvector
p with eigenvalue 1 of the matrix T(Dt) corresponds to the stationary, equilibrium
probability. Higher eigenvectors correspond to exponentially decaying relaxation
modes62 for which the relaxation timescale is computed by the eigenvalue as
ts ¼ Dt

log lsð Þ, where ls is the largest eigenvalue above 1. For long enough lag times

Dt the model will be Markovian; however, every process faster than Dt is lost.
Therefore, the shortest lag is chosen for which the relaxation timescales do not
show a dependence on the lag time Dt anymore (See Supplementary Fig. 1). In our
case, we chose a 100-ns lag time as it showed the least dependence for the slowest
processes in all systems. Furthermore, the initial N microstates can be lumped
together into macrostates using kinetic information from the MSM eigenvector
structure47. This allows one to obtain a limited number of important, kinetically
distinct states. Mean first passage times and commitor probabilities can also be
calculated to obtain the relevant kinetics of the system64.

Autocorrelation analysis. A MSM-based trajectory of 10ms effective time (100 ns
lag time) was built for each system by sampling conformations according to
transition probabilities between microstates (MSM trajectories are distributed on
request to the authors). Relaxation times were calculated by fitting exponentials to
ACFs. The fitting procedure included three exponentials. We used a time constant
o100 ns for the first, which is the lag time used to build the kinetic model, to
account for the initial fast decay in the ACF. The fitting was limited to the first
100 ms of the ACF. See Supplementary Methods for details.

Error estimation. We estimated errors for all properties using a bootstrapping
technique. We performed 10 independent runs in which 20% of the trajectories
were randomly eliminated and a new MSM was built before properties were
recalculated.

NMR calculations. We calculated expected CS from the simulation using 10,000
frames of the MSM trajectory for each of the three simulations. Calculations with
SHIFTX2 (ref. 48) and SPARTAþ (ref. 49) provided consistent results. Average
NOE distances (r) were calculated from the MSM trajectories as or� 64� 1/6.

Kinetic model. We built a kinetic model based on five coupled reactions (Fig. 5
and Supplementary Methods). As with a previously described mechanism for KID
binding to KIX24, we used an intermediate step. Unlike previous models, our model
contains an additional state for both the unbound and intermediate states, such
that a binding competent and incompetent conformer (termed productive and
non-productive, respectively) can be accounted for. We label the exchange between
these states reaction 1 (rate k±1) in the unbound state and reaction 2 in the
intermediate state (rate k±2). Kinetic rates for the other step reactions 3, 4 and 5
(rates k±3, k±4, k±5) were taken from those determined by NMR. The coupled
equations were solved numerically using MATLAB. The equilibrium dissociation
constant was calculated as Kd¼ [Dfree][Xfree]/[XD].
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Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol.
323, 573–584 (2002).

16. Cheng, Y., LeGall, T., Oldfield, C. J., Dunker, A. K. & Uversky, V. N.
Abundance of intrinsic disorder in protein associated with cardiovascular
disease. Biochemistry 45, 10448–10460 (2006).

17. Raychaudhuri, S., Dey, S., Bhattacharyya, N. P. & Mukhopadhyay, D. The role
of intrinsically unstructured proteins in neurodegenerative diseases. PLoS ONE
4, e5566 (2009).

18. Uversky, V. N. et al. Unfoldomics of human diseases: linking protein intrinsic
disorder with diseases. BMC Genomics 10(Suppl 1): S7 (2009).

19. Jiang, Z. G. & McKnight, C. J. A phosphorylation-induced conformation
change in dematin headpiece. Structure 14, 379–387 (2006).

20. Volkman, B. F., Lipson, D., Wemmer, D. E. & Kern, D. Two-state allosteric
behavior in a single-domain signaling protein. Science 291, 2429–2433
(2001).

21. Lubman, O. Y. & Waksman, G. Dissection of the energetic coupling across the
Src SH2 domain-tyrosyl phosphopeptide interface. J. Mol. Biol. 316, 291–304
(2002).

22. Chrivia, J. C. et al. Phosphorylated CREB binds specifically to the nuclear
protein CBP. Nature 365, 855–859 (1993).

23. Radhakrishnan, I. et al. Solution structure of the KIX domain of CBP bound to
the transactivation domain of creb: a model for activator:coactivator
interactions. Cell 91, 741–752 (1997).

24. Sugase, K., Dyson, H. J. & Wright, P. E. Mechanism of coupled folding and
binding of an intrinsically disordered protein. Nature 447, 1021–1025 (2007).

25. Zor, T., Mayr, B. M., Dyson, H. J., Montminy, M. R. & Wright, P. E. Roles of
phosphorylation and helix propensity in the binding of the KIX domain of
CREB-binding protein by constitutive (c-Myb) and inducible (CREB)
activators. J. Biol. Chem. 277, 42241–42248 (2002).
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