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Ultraviolet and visible range plasmonics in the
topological insulator Bi1.5Sb0.5Te1.8Se1.2
Jun-Yu Ou1,*, Jin-Kyu So1,*, Giorgio Adamo2, Azat Sulaev3, Lan Wang3,4 & Nikolay I. Zheludev1,2

The development of metamaterials, data processing circuits and sensors for the visible and

ultraviolet parts of the spectrum is hampered by the lack of low-loss media supporting

plasmonic excitations. This has driven the intense search for plasmonic materials beyond

noble metals. Here we show that the semiconductor Bi1.5Sb0.5Te1.8Se1.2, also known as a

topological insulator, is also a good plasmonic material in the blue-ultraviolet range, in

addition to the already-investigated terahertz frequency range. Metamaterials fabricated from

Bi1.5Sb0.5Te1.8Se1.2 show plasmonic resonances from 350 to 550nm, while surface gratings

exhibit cathodoluminescent peaks from 230 to 1,050 nm. The observed plasmonic response

is attributed to the combination of bulk charge carriers from interband transitions and surface

charge carriers of the topological insulator. The importance of our result is in the identification

of new mechanisms of negative permittivity in semiconductors where visible range

plasmonics can be directly integrated with electronics.
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P
lasmons are coupled excitations of electrons in solids and
electromagnetic fields, and they are responsible for the
brilliant colours of some Roman vases and medieval church

vitrages delivered by the colloidal suspension of gold particles
in glass1. They are the key to nanophotonic applications and
form responses of nanostructured metal surfaces and artificial
metamaterial photonic structures. Plasmons can localize electro-
magnetic energy in the nanoscale, which is crucial for the next
generation of ultra-high density optically assisted magnetic data
storage technology2,3. Plasmons are exploited for enhancement
of light-harvesting applications, in particular photovoltaics4.
Plasmon resonances are used in biological sensors such as the
pregnancy test5. Plasmon polaritons propagating on the surface
are seen as a promising information carrier for ultra-compact
inter-chip interconnects6–8 and all-optical data processing chips9.
However, only a narrow class of materials can support plasmons,
most notably noble metals like silver and gold. In recent years,
there has been a surge of research aiming to identify new
plasmonic media and substantial progress has been made in the
search and characterization of infrared (IR) plasmonic materials,
most notably conductive oxides, nitrides and graphene10–12. The
ultraviolet (UV)-visible part of the spectrum remains an
extremely challenging domain for plasmonics as gold and silver
have losses there, while this spectral range remains unattainable
for artificially doped semiconductors and graphene11. The search
for plasmonic metals in this spectral range is still ongoing,
where aluminium surfaces as the most appealing one among
them given that a controlled preparation and material analysis
are accompanied to regulate the unavoidable oxidation13,14. If a
low-loss plasmonic medium existed for the blue-UV part of the
spectrum, this would open a plethora of important applications
that could include a long-awaited metamaterial suitable for
making a super-lens at optical frequency with resolution beyond
the diffraction limit15,16; a sensor sensitive to specific near-UV
resonances in proteins and DNA; or an enhanced light
concentrator for even further improvement of the density of
optical and optically assisted data storage17, just to mention a few
applications.

In this work, using Bi1.5Sb0.5Te1.8Se1.2 (BSTS) single crystals18–20,
we identify a new mechanism of visible and UV plasmonic
response, which is a combination of surface optical conductivity
residing in a nanoscale layer of topologically protected surface
states of the crystal and bulk optical conductivity related to the
dispersion created by the interband transitions in the medium. In a
series of optical and cathodoluminescence (CL) experiments with
unstructured and nanostructured surfaces of the alloy, we show
that its plasmonic properties are very well pronounced. In
particular, on nanostructured metamaterial surfaces of BSTS we
demonstrated plasmonic absorption peaks from 350 to 550 nm,
and on grating arrays with periods from 150 to 800nm
we observed peaks of plasmonic CL in the wavelength range
from 230 to 1,050 nm.

Results
Retrieved dielectric function of BSTS. Plasmonics is often
defined as electromagnetism at the interface between dielectrics
and conductive media with negative value of the real part of
dielectric permittivity e where external field E induces displace-
ment field D of essentially opposite direction (D¼ eE, Re{e}o0
and –Re{e}4Im{e}). Under such conditions, the interfaces can
support highly localized oscillation and confined surface waves
known as localized plasmons and surface plasmon-polariton
waves21. Plasmons derive their name from plasma of free
electrons in metals or heavily doped semiconductors22–24 at
interfaces of which they are often observed. Despite the huge

success of modern plasmonics, the limitation of noble metals as a
plasmonic material has led to the search for alternative plasmonic
materials10,11. In general, there are two approaches to obtaining
plasmonic behaviour at the desired frequencies. One is to
heavily dope semiconductors to increase their charge carrier
concentration, but this approach has been successful only up to
the near-IR regime due to the difficulty in achieving the required
doping level and additional losses at such a high doping
level24–29. The other is to mix metals with non-metals or other
metals. Titanium nitride that has been revisited recently as a
promising plasmonic material for the visible and near-IR
wavelengths falls into this category10,30–34. Apart from the bulk
plasmonic materials, two-dimensional plasmonic materials such
as 2D electron gas systems35–37 or, recently, graphene in the mid-
IR regime38,39 have been attracting a huge interest due to their
unusual properties such as the extreme field confinement40.
Topological insulator is a material that behaves as an insulator in
its interior but whose surface contains conducting states, meaning
that electrons can only move along the surface of the material.
Thus, it also falls into this category of 2D plasmonic materials41

and the plasmons on this 2D electron gas system has been
observed at terahertz frequencies recently42.

BSTS shows a large bulk resistivity due to its ordered Te-Bi-Se-
Bi-Te quintuple layers18,20 in contrast to the prototypical
topological insulators such as Bi2Se3 and Bi2Te3. Our BSTS
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Figure 1 | Plasmonic properties of the BSTS topological insulator

semiconductor in the visible and UV. (a) Dielectric function of the crystal

retrieved from spectroscopic ellipsometry. The inset shows a sketch of the

layer-on-bulk model of the crystal with a layer of topological phase of

thickness d¼ 1.5 nm. Experimental points are presented together with the

modelling data (solid lines). (b) An attempt to fit experimental data by the

bulk contribution only (Tauc–Lorentz dispersion formula) show the

discrepancy that is attributed to the presence of surface conductivity of

topological surface state with a Drude-like dispersion (inset).
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single crystals were synthesized by melting high-purity
(99.9999%) Bi, Sb, Te and Se with molar ratio 1.5:0.5:1.8:1.2 at
950 �C in an evacuated quartz tube. The temperature was then
gradually decreased to room temperature over a span of 3
weeks19. The BSTS single crystal was then cleaved along the (100)
family of planes to a thickness of B0.5mm.

We first investigated the optical properties of the unstructured
surface by multiple-angle spectroscopic ellipsometry in the
range from 200 to 1,600 nm. The measured dielectric function
values before the modelling are shown in Fig. 1 as data points.
The measurement results were then fitted based on the model
that was successfully developed to represent low frequency
conductivity of this material19: we assumed a material structure
consisting of a bulk semiconductor with a thin metal film
on top as shown in the inset of Fig. 1a. (As the BSTS crystal
used in our experiments is optically thick, the bottom conducting
layer can be ignored in the modelling and interpretation of
our optical experiment results.) The semiconductor bulk
substrate supporting the thin film was modelled using the
Tauc–Lorentz43 model that has been successfully applied to this
class of materials in the past44, while conductivity of the
topological insulator film was assumed to obey the Drude
dispersion45. From our analysis of the spectroscopic data, we
found that the best-fit parameters such as band gap of the bulk
component, 0.25 eV, thickness of the topological insulator layer,
d¼ 1.5 nm and plasma and collision frequencies of Drude model,
7.5 and 0.05 eV, respectively, are close to previously reported
values found for this material from the independent d.c.

conductivity measurements19 and corroborate very well with
the results of ab initio calculations of dielectric functions of
similar alloys46,47. We therefore conclude that the proposed layer-
on-substrate material structure adequately describes optical
properties of BSTS and use it for the interpretation of
plasmonic response of the material (see Supplementary Table 1
and Supplementary Note 1 for details).

Negative permittivity of BSTS is clearly seen between the
wavelengths, 200 and 670 nm (Fig. 1a). It is instructive to observe
that the negative epsilon regimes in this spectral range are
characteristic to both components of the structure, the Drude
layer and underlying bulk semiconductor, as shown in Fig. 1b.
However, the bulk contribution alone is not sufficient to explain
dielectric properties of the material especially in the long
wavelength regime as illustrated in Fig. 1b. The topologically
protected surface charge carriers are forming the response of the
top metallic layer: if such conductivity would exist in the bulk
medium, plasmonic properties of such hypothetical material
would be better than that of any known plasmonic material in
this spectral range (see Supplementary Figs 1 and 2 and
Supplementary Note 2). Here we see that even a thin layer of
the topological phase has a profound impact on plasmonic
response of the structure even when placed on a lossy substrate.
Our analysis of the ellipsometry data shows that it adds up to 8%
to the reflectivity of the nanostructured surface (see
Supplementary Fig. 3 and Supplementary Note 3).

The bulk plasmonic response here largely originates from the
interband absorption dispersion in this material, not from the
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bars, 500nm (left), 200nm (right). (d) Plasmonic colours can be seen in optical images of nano-slit array with polarized light illumination perpendicular to

the slits (left) and are not seen for parallel polarization (right). Light polarization is indicated by the arrow. Individual sample have sizes of 40�40 mm. The
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bulk free carriers. Its origin is similar to that of the negative
dielectric permittivity area at the higher frequency wing of the
isolated absorption peak that corresponds to the peak in joint
density of states in case of semiconductor. It can be understood as
an inevitable consequence of the Kramers–Kronig relations that
link the real and imaginary parts of permittivity near a strong
absorption peak, as has been observed near IR phonon lines48,49.
Negative permittivity due to interband transitions has been
theoretically predicted for a similar material of Bi2Se3 in
electronic structure calculations within the density function
theory based on full potential linearized augmented plane wave
and local orbitals46,47. However, to our knowledge, BSTS
represents the first example of material where negative
permittivity due to interband electronic absorption is seen at
the optical frequencies experimentally. We argue that negative
permittivity due to the strong interband absorption can only be
seen in semiconductors where background or zero-frequency
permittivity is small enough to be overcome by negative resonant
contribution and BSTS is the first known example.

Polarization-dependent absorption of nanostructures on BSTS.
To verify the plasmonic behaviour of BSTS in nanostructures, we
manufactured a series of metamaterials, nano-slit antenna arrays
with linear grooves cut into the surface of the crystal, and gratings
on the crystal surface using focused ion-beam milling (Fig. 2).
In the nano-slit antenna array, the slit length D was varied from
100 to 400 nm and the period of the slit arrays (unit cell size, UC)

was kept at 300 nm for D¼ 100–225 nm and UC¼ 1.5D for
D¼ 250–400 nm. The fabricated nano-slits’ profile is close to
V-shape, as shown in Fig. 2b.

The plasmonic response of the fabricated nano-slit metama-
terials and gratings were studied by measuring their reflection
spectra R(l) and their corresponding absorption spectra
A(l)¼ 1–R(l) for two incident polarizations perpendicular and
parallel to the nano-slits (Fig. 3a,b). The nano-slit arrays clearly
exhibited plasmonic colours for light polarized perpendicularly to
the slits, as can be seen in the optical microscope images (see
Fig. 2d). A profound resonance in plasmonic absorption can be
seen for this polarization (Fig. 3a). Indeed, if a wire dipole is
resonant for light polarized along the dipole, according to the
Babinet principle, slits in the conductive surface, the ‘anti-dipole’,
will be resonant for perpendicular polarization. Here, the
resonant wavelength increases monotonously with the length of
the slit as can be seen in Fig. 3c. As expected, no plasmonic
resonance can be found in the polarization along the slits (see
Fig. 3b). On all graphs presented in Fig. 3b, an absorption peak
near 400 nm is seen. It is due to a feature in the bulk interband
absorption and is also observed from unstructured surfaces. For
short slits, the plasmonic peaks overlap with the interband
absorption feature and became distinct for D4175 nm. Full
three-dimensional Maxwell calculations of the reflectivity spectra
obtained on the basis of ellipsometry data strongly corroborate
with experimental results (see Supplementary Note 3). In the
numerical calculations, slits were modelled as in Fig. 3d and their
shape is much more difficult to reproduce for shorter slits, than
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for longer slits. The fabrication process finesse is limited by the
spot size of the focused ion beam (B16 nm) and this explains
some mismatch between the simulation and experiment seen for
shorter slits in Fig. 3c.

In another series of experiments, we investigated the optical
response and CL spectra of gratings fabricated on the surface of
topological insulator. The periods P of gratings were chosen for
their diffraction peaks to be located at different wavelengths from
the UV to visible parts of the spectrum. The width of the grating
ridge was maintained to be the half the grating period P. Deep
gratings (70 nm) with the periods, P from 200 to 1,500 nm, were
fabricated on the surface of a bulk BSTS crystal as shown in
Fig. 2c. The plasmonic response was found in the gratings when
they were illuminated with the polarization perpendicular to the
grating rulings as shown in Fig. 4a. In contrast to the featureless
absorption spectra for the parallel polarization, the formation and
evolution of 1st and 2nd-order peaks were clearly seen for the
perpendicular polarization in the wavelengths range between 350
and 670 nm. Moreover, peaks were also visible for wavelengths
longer than 670 nm.

CL spectroscopy of nanogratings. These results should be
compared with our CL data that have also been successfully used
in the past to identify plasmonic response50. The gratings were
excited with electron beam (waist diameter B50 nm; electron
energy 40 keV; beam current B10 nA) of a scanning electron
microscope. The electron beam was raster scanned on an
area of about 10� 10 mm of each grating. Figure 4b shows the

normalized CL spectra from each grating where the CL from the
unstructured crystal surface was subtracted. Peaks in the range
from 230 to 1,050 nm can be observed. The emission peaks and
their red-shift with increase of the grating period are clearly
observed. Importantly, CL peaks’ positions accurately match that
of the absorption peaks emphasizing their common plasmonic
nature of the responses (Fig. 4c). Here, we argue that the
observation of the CL peaks for wavelengths beyond 670 nm, that
is, beyond the range of wavelengths where dielectric permittivity
of the bulk is negative, is a clear evidence of plasmonic
contribution of the topological surface conducting state.

To further illustrate the contribution from the surface
conducting state, the same CL experiment was conducted on
another set of gratings with constant period P but variable width
of the grating ridge, w. Since the plasmon wavelengths of the
topological surface conducting layer and bulk layer are drastically
different (wavelength of the surface plasmon polariton on the
topological surface conducting layer is about hundred times
shorter than that on the surface of the semiconductor), we shall
expect that optical response of the gratings with ridge that is
much narrower than the plasmon wavelength should be
dominated by the plasmonic response of the topological surface
conducting layer, in particular outside of the bulk negative
permittivity regime. This is exactly what we saw in our additional
experiments (see Fig. 5).

The peak intensity of CL peaks was monitored as the filling
factor of grating, w/P, was varied between 0 to 1 for fixed grating
periods of 400, 500 and 600 nm. Peak CL wavelengths of those
gratings were at 600, 750 and 900 nm, respectively. For 400 nm
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period gratings, peak is located at 600 nm within the epsilon-
negative regime, but, for gratings with period of 500 (Fig. 5b) and
600 nm (Fig. 5c), peaks are located at 750 and 900 nm outside of
the bulk epsilon-negative regime. Without a geometry-dependent
plasmonic field enhancement mechanism, the peak CL intensity
would simply depend on the diffraction efficiency of the grating,
which has its optimum at w/PB0.5 and falls down as this filling
factor becomes closer to 0 or 1.

For the 400 nm period gratings with peak at 600 nm, the CL
peak intensity clearly follows the diffraction efficiency curve as
the filling factor is varied (Fig. 5a), indicating that bulk plasmonic
effects dominate in the response. However, for gratings with
period of 500 (Fig. 5b) and 600 nm (Fig. 5c) whose peaks are
located at 750 and 900 nm outside of the bulk epsilon-negative
regime, the decrease of the grating ridge width, w, does not lead to
a fall in the diffraction intensity: even gratings with very narrow
ridges, down to 50 nm show profound diffraction. This remark-
able robustness of diffraction can only be explained by a
prominent presence of plasmonic enhancement mechanism in
narrow ridges. It can only be provided by a plasmonic medium
with the wavelength of the surface plasmon that is much shorter
than that of free-space wavelength at 750 nm and 900 nm. (For
example, plasmon wavelengths of topologically protected surface
carriers51 and bulk carriers are 0.83 and 597 nm at free-space
wavelength of 600 nm, see Supplementary Note 4.) In the material
sample under study, this can only be explained by the plasmonic
response of the topological surface conducting layer with the
plasmon wavelength that is short enough to form localized
plasmonic resonances in narrow, deeply subwavelngth ridges. We
argue that this CL data unambiguously corroborate with our
ellipsometry data regarding the presence and substantial role of
the topologically protected surface layer in the optical response of
the material.

Discussion
In summary, we have demonstrated the plasmonic behaviour of a
topological insulator semiconductor, BSTS, at optical frequencies.
It resulted from a combination of contributions from the
topologically protected surface conducting state and a strong
dispersion due to the interband transition. In contrast to the
prejudice that plasmonic behaviour is not attainable around the
interband transition both in semiconductors and metals, the
optical and electron beam excitation of the material demonstrated
the existence of the plasmonic response in such a case. Such bulk
plasmonic properties could also be found in more simple
semiconductors. Further band engineering might be able to tune
the negative epsilon regime with moderate loss to the longer
wavelengths than that of BSTS reported in this manuscript.
However, the big advantage of topological insulators is that they
provide additional, robust way of achieving optical Dirac
plasmons compared with those in graphene or other 2D
materials. We believe that the importance of our results is in

the identification of new class of materials with high-frequency
plasmonic response where plasmonic functionality can be directly
integrated with electronics thanks to the semiconductor nature of
the material.

Methods
Sample fabrication. Arrays of nano-slit antennas and gratings were patterned on
the top surface of a 0.5mm thick BSTS crystal with a focused ion-beam system (FEI
Helios 600 NanoLab). The lateral dimension of each fabricated sample was
40� 40 mm.

Optical measurements. The reflection spectra of the nano-slit antenna arrays and
gratings were recorded using a microspectrophotometer (CRAIC QDI2010). The
optical microscope image of Fig. 2d was taken via the microspectrophotometer.
The dielectric function of the bulk BSTS crystal was obtained with a spectroscopic
ellipsometer (Horiba UViSEL2, spot size B1� 1.2mm).

CL measurements. The CL spectra of nanostructures were acquired in a scanning
electron microscope (Camscan) equipped with a UV–visible spectrometer and a
liquid nitrogen cooled charge-coupled device detector. The electron beam excita-
tion (spot diameter B50 nm; electron energy 40 keV; beam current B10 nA) was
carried out by raster scanning on the area of 10� 10mm.
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