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Modelling the influence of photospheric turbulence
on solar flare statistics
M. Mendoza1, A. Kaydul1, L. de Arcangelis2, J.S. Andrade Jr3 & H.J. Herrmann1,3

Solar flares stem from the reconnection of twisted magnetic field lines in the solar photo-

sphere. The energy and waiting time distributions of these events follow complex patterns

that have been carefully considered in the past and that bear some resemblance with

earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting

flux tubes anchored in the plasma and the energy ejections resulting when they recombine.

The mechanism for energy accumulation and release in the flow is reminiscent of self-

organized criticality. From this model, we suggest the origin for two important and widely

studied properties of solar flare statistics, including the time–energy correlations. We first

propose that the scale-free energy distribution of solar flares is largely due to the twist

exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and

time–energy correlations appear to arise from the tube–tube interactions. The agreement

with satellite measurements is encouraging.
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P
arker conjectured that solar flares are driven by the random
continuous motion of the footprints of the magnetic field in
the photospheric convection1,2. This conjecture and the

experimental observations of power laws in the energy3–6 and
waiting time7–9 distributions stimulated a new way of looking at
violent bursts. In particular, the fact that the energy distribution is
a power law, a property that flares share with diverse physical
phenomena10, such as avalanches and earthquakes11, led to the
formulation of flare occurrence models inspired in self-organized
criticality (SOC)12–22. Although these models reproduce the
power-law behaviour in the distribution of flare energies, they
predict a Poissonian distribution waiting times, which implies
that flares result from an uncorrelated process, contrary to
experimental observations7–9. This point was stressed by Boffetta
et al.7 who, by implementing shell models for turbulence,
reproduced the observational power-law decay of the waiting
time distribution. However, their exponents are not universal,
depending instead on the model parameters.

On the basis of a different approach, the waiting time
distribution can also be reproduced in terms of a piecewise
Poissonian process23. More recently, the existence of correlations
between flare energies and waiting times has also been
investigated9,24–26. In particular, Lippiello et al.26 found that the
observed time–energy correlations are not simply attributable to
obscuration effects. Here, the term obscuration indicates an
observational limitation that can be at the origin of the
incompleteness of the catalogue, for example, the occurrence of a
large flare can hide the detection of smaller flares occurring nearby.

An approach more closely inspired in magnetic reconnection
was adopted by Hughes et al.15, who proposed a dynamical model
of solar flares as cascades of reconnecting magnetic loops, with
multiple loops that are randomly driven at their footprints and
interact with each other. Despite some discrepancy with
experimental observations, they showed a relation of the
distribution of magnetic loops with a scale-free network, which
conceptually supports SOC.

The formulation of a theoretical model able to reproduce both
the flare statistics and the behaviour of time–energy correlations
remains unsolved. A complete model would require a fully
developed realistic convection zone, a stratified atmosphere above
it and the study of the interplay between magnetic fields and
flows. In addition, the model must be three-dimensional,
including explicit resistivity to control the reconnection between
the colliding magnetic fields. At present, a numerical study of
such a model is far out of reach due to the excessive requirement
in computing time. On the other end, simplified models
considering magnetic reconnections based on a purely statistical
approach and neglecting completely the photospheric flow, fail in
reproducing a variety of observational data12–22.

In this study, we present an approach that represents a
compromise between these two different scenarios. Here, we
introduce and study numerically a theoretical model of solar flare
occurrence in terms of reconnection of magnetic flux tubes
twisted by the photospheric turbulent flow, which reproduces
satisfactorily the flare statistics and the behaviour of time–energy
correlations. The motion of the tubes in the solar corona is
mainly rooted in the photosphere, which is aboutB500 km thick,
corresponding to an extremely thin layer as compared with the
solar radius. Therefore, in the model proposed here, we consider
the photospheric flow as a two-dimensional turbulent system
following Kolmogorov scaling.

Results
Model description. The turbulent fluid dynamics of the photo-
sphere is simulated through a lattice Boltzmann model27 on a

square lattice of size L, with a forcing term that specifically
reproduces the Kolmogorov energy spectrum regime (see
Methods).

Anchored in the photospheric flow, the footprints of the
magnetic flux tubes follow the local velocity field, and are twisted
by the vorticity. The magnetic lines are modelled as lines (see
green and pink lines in Fig. 1) wrapped around the semi-circular
flux tubes (see semi-transparent grey tori in Fig. 1), forming,
when twisted, a spring-shaped bundle. This representation, which
is conceptually consistent with previous realistic models for the
kink instability28, leads to an explicit relation between the length
of the spring and the magnetic energy stored in the
corresponding flux tube (see equation (6) in Methods).

Observational evidence supports the kink instability as the
triggering mechanism for magnetic reconnection, and conse-
quently, for solar flare occurrence29–32. The kink instability is an
ideal magnetohydrodynamical instability, where magnetic
reconnection is not a necessary ingredient, as a flux tube can
destabilize by converting twist into writhe. However, in an active
region (which is our region of interest), the kink instability will
trigger a flare (due to the accumulated free energy), and therefore,
we assume that each time a kink instability occurs in a magnetic
tube, a flare is released. Accordingly, the kink instability of a flux
tube occurs as soon as the intensity of its cumulative twist reaches
a given critical value. In our model, the tube releases its total
energy (vanishing from the simulation), and a new magnetic flux
tube is inserted with the initial condition and located at a random
position inside the simulated zone (see Methods). The critical
twist Fc, at which the magnetic reconnection occurs, can be
obtained from stability analysis. Several values have been
proposed from numerical simulations, theoretical models28 or
deduced from experimental observations30,31, ranging from 2p to
12p, depending on the particular plasma conditions in the
corona.

Every time a magnetic flux tube reconnects and releases its
energy, we implement two possible scenarios: the reconnection
heats up the surrounded plasma increasing the local coronal
pressure, and therefore, increasing the critical twist of the
surrounding magnetic flux tubes28. This causes a delay in the
reconnection process, which is taken into account here by
multiplying the cumulative twist of neighbouring tubes by a
positive factor lRo1, while keeping the critical twist constant.
This procedure implements tube–tube interactions and in our
simulations we consider either random values or a constant value
for lR, obtaining the same results. Conversely, we also consider
the case lR41 that induces an avalanching process in the

Figure 1 | Configuration of magnetic tubes in the solar corona. The

photospheric plasma is in a turbulent state, where yellow (black) areas

denote high (low) vorticity regions. The green and pink lines represent the

magnetic lines enclosed in the magnetic flux tubes (semi-transparent grey

tori). The pink magnetic lines indicate a magnetic flux tube that has reached

the critical twist and, therefore, is at the onset of reconnection, about to

release its energy as a flare.
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occurrence of solar flares. In this case, every time a magnetic flux
tube releases, its energy it increases the twist of the surrounded
tubes, triggering new flares and generating a cascade of events. In
both cases, the parameter lR has the important role of tuning the
level of tube interactions, whereas non-interacting tubes
correspond to lR¼ 1. We are therefore able to detect how
interactions affect the flare waiting time distribution. In what
follows, we show that tube–tube interaction is the most relevant
ingredient to reproduce the correct temporal organization and the
experimentally observed time–energy correlations. We will also
show that changing the value of the critical twist within the range
of the experimentally meaningful values, does not affect the
statistics of solar flares. Our model takes into account the well-
known SOC mechanism of slow energy storage by changing the
flaring threshold of tubes that are neighbours to the reconnected
tube. This mechanism is equivalent to tuning the critical tube
twist, a procedure usually implemented in SOC models12–22.
More precisely, by increasing the critical twist (lRo1), the
photospheric flow has more time to add energy to the respective
magnetic flux tubes before they release their energy as a flare. For
the case lR41, the similarity with SOC models is more evident,
since our model can generate a cascade of events by increasing the
twist of surrounded magnetic flux tubes, each time a flare is
released. Finally, we should mention that our approach does not
account for a number of additional features of flare occurrence
and flaring active regions33,34, for example, systematic peculiar
flows on top of the heavily suppressed quiet-Sun Kolmogorov
flow velocity field, the presence of intense magnetic polarity
inversion lines in the photosphere, and slip-running magnetic
reconnection in flares. However, the excellent agreement between
numerical and observational data suggests that these features
are not relevant to produce the observed statistical properties,
even if they may be necessary for the complete understanding of
solar flares.

Peak and total energy distributions. Following the described
dynamics, the occurrence time and energy released by each flare
quantify the statistical properties of our model and are compared
with observational data. We perform extensive numerical simu-
lations for different system sizes L¼ 128, 256, 512, 1,024 and
2,048. For each value of L, we first let the fluid evolve without the
magnetic flux tubes until it reaches the turbulent regime at
Reynolds numbers between 104 and 105. The Reynolds number is
computed by the relation Re¼ urmsL/n, where urms is the root
mean square velocity and n the kinematic viscosity (values of the
Reynolds number and kinematic viscosity for each simulation can
be found in the Supplementary Table 1). The fully developed
turbulence condition is established when the energy spectrum of
the flow follows the classical power-law behaviour with Kolmo-
gorov exponent � 5/3 (see Supplementary Fig. 1). At this point,
we add N magnetic flux tubes at random positions and with
random initial energies, and record the occurrence time and
energy of flares. From previous studies of satellite data by the
Solar and Heliospheric Observatory, deviations from the Kol-
mogorov exponent have been observed depending on the activity
of a solar region35. However, we show that the choice of the
exponent of the spectrum of the turbulent flow does not change
appreciably our results (see Supplementary Fig. 2).

As shown in Fig. 2, the distribution of peak flare energies
follows a typical power-law behaviour, n(E)pE� a, with an
exponent a¼ 1.68±0.02. As expected, this scaling regime extends
up to a cutoff energy that gradually increases with system size
L. We compare our results with soft and hard X-ray data from the
GOES36 and the BATSE37 catalogues, respectively. From the
GOES catalogue, only flare events of class C and above (peak flux

E4E0¼ 10� 6Wm� 2) observed between 1992 and 2013 are
considered, which leads to a total of 19,703 events, covering
nearly two solar cycles. In the case of the BATSE catalogue, 7,242
events in the period between 1991 and 2000 were considered,
with a peak flux larger than E0¼ 0.5 counts s� 1 cm� 2. The
Kolmogorov–Smirnov test ensures that both samples, numerical
and observational data, follow the same scaling behaviour with a
P value of 95% (confidence level of 99%). The excellent agreement
between numerical and observational data shown in Fig. 2
confirms the validity of the theoretical approach. The exponent of
the power law for our numerical results is also in excellent
agreement with previous experimental studies11,24. Notice that in
our model for lRo1, flares are instantaneous events; therefore,
we cannot measure separately the peak energy and the total
energy associated to each event, or else the energy of a flare is a
peak flux energy. Different is the case lR41, where avalanching is
induced and events are therefore not instantaneous. To
implement a unified procedure for models with different lR,
numerical data are compared to peak flux energies from
experimental observations. For the case of lR41, one can also
study the total energy distribution and the duration of each event. In
Fig. 3, we can see that the numerical results are in very good
agreement with observations, showing the correct duration and total
energy distributions. The exponents for the total energy distribution
and the duration of flares, � 1.95±0.04 and � 3.0±0.1,
respectively, are also in good agreement with previous studies16.

Note that our model results in steeper distribution functions
for the total energy than for the peak released energy of the
modelled events. On the other hand, numerous observational
works report the opposite, that is, clearly flatter distribution
functions for the total energy. Theoretical works, at least those
relying on SOC, seem also to predict analytically that total energy
distributions functions are flatter than those of the peak energy
released.
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Figure 2 | Solar flare energies exhibit scale-free behaviour. The

distribution of peak flare energies evaluated with our numerical model for

different system sizes L and lRo1 shows a power-law regime which

increases with L. The solid line is a fit for the largest system size, L¼ 2,048,

providing an exponent of a¼ 1.68±0.02. Observational data from GOES

and BATSE catalogues36,37 exhibit the same scaling behaviour. Energies are

expressed in units of a lower energy cutoff, which is E0¼ 10� 6Wm� 2

(GOES) and E0¼0.5 counts s� 1 cm� 2 (BATSE) for observational data and

E0¼ 10 for the numerical catalogues. We have verified that different cutoff

values do not affect the scaling behaviour.
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Waiting time distributions. We also investigate the statistical
patterns of the waiting time, defined as the distribution of time
delays between the end of an event and the beginning of the next
one. As shown in Fig. 4, the numerical results from our theore-
tical approach are also in very good agreement with experiments.
The distribution is not a simple exponential, suggesting that flare
occurrence is not a purely uncorrelated Poisson process. To
closely compare the different numerical and observational cata-
logues, we have rescaled the waiting times, Dt, by the average
event rate in each catalogue38, that is, by the inverse of the
average waiting time, L¼Ne/(tmax� tmin), where Ne is the
number of events in the respective catalogue. Here tmax and
tmin are the times at which the last and first events in the
catalogue occur, respectively. As shown in Fig. 4, rescaled
distributions for numerical and observational data collapse onto

a universal curve well fitted by39, n DtLð Þ=L ¼ a= 1þ bDtLð Þat ,
where a and b are constants, and at¼ 2.8±0.2 denotes the
exponent of the power-law regime of the distribution for large
waiting times. This result is reasonable when compared with
previously reported observational values, at¼ 2.16±0.05 (ref. 39)
and at¼ 2.4±0.1 (ref. 7). We have also performed the
Kolmogorov–Smirnov test, finding that both samples, numerical
and observational data, come from the same distribution with a
P value of 92% (confidence level of 99%).

It is interesting to investigate the role of different ingredients of
the theoretical model on the statistical properties of energy
released and waiting times, to identify the main triggering
mechanisms for the occurrence of solar flares. We start by
considering that, instead of being driven by the turbulent flow,
the magnetic flux tubes might move along purely random
trajectories and the cumulative twist is calculated by assigning a
random vorticity at each footprint. Results in Fig. 5 show that the
suppression of the turbulent flow leads to an energy distribution
that is exponential rather than a power law. Next, we consider the
case where there is a single magnetic flux tube evolving in the
turbulent flow, eliminating the possible role of interactions
among tubes. We observe in Fig. 5 that the power-law regime in
the peak energy distribution is recovered. These two results
strongly suggest that the ingredient responsible for the power-law
in the energy distribution is the turbulent motion of the
footprints anchored into the photosphere, and not tube–tube
interactions. We finally consider the case of several tubes having
different degree of interaction, that is, either interacting (lRo1
and lR41) or non-interacting (lR¼ 1) tubes. Results shown in
Fig. 5 confirm that interactions do not modify the distribution of
solar flare energies. Interestingly, models with and without
avalanching exhibit the same scaling exponent for the peak flare
energy distribution, suggesting that indeed small flares share
similar statistical properties with major flares.

We now consider the waiting time distribution for the previous
cases. Indeed, in Fig. 6, we see that the case of random footprint
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motion and the case of a solitary tube are well described by a
Poissonian distribution (dashed line). This implies that, although
essential to the recovery of a scale-free energy distribution, the

turbulent fluid flow alone is not able to provide the right temporal
organization of solar flare occurrence. If more tubes are
considered, the distribution starts to deviate from a Poissonian
one. For coexisting but non-interacting tubes (N41, lR¼ 1), the
turbulent flow in the photosphere is able to induce time
correlations between them, although not sufficiently to reproduce
the observational results. Indeed, the physical correlations are
fully recovered only for interacting tubes (N41, lRo1 and
lR41). From our results, we can conclude that, whereas the
turbulent photospheric flow is the main mechanism responsible
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Figure 6 | Physical ingredients leading to flare organization in time.

Different cases are compared to extract the crucial ingredients of the

observed waiting time distribution. The system size is L¼ 512 for all curves.

(a) Waiting time distribution for simulations where a single flux tube

(N¼ 1) evolves in the turbulent flow and reconnects at the twisting

threshold. The distribution exhibits an exponential decay (dashed blue line).

Conversely, for different degrees of interaction (interacting tubes, lRo1 and

lR41) and non-interacting tubes (lR¼ 1), one recovers the behaviour

measured in Fig. 4. (b) Distributions evaluated for the evolution of N¼400

tubes in the two cases: Interacting tubes (lRo1), whose footprints diffuse

by random motion (denoted by ‘R.M.’) and evolution in the turbulent flow

w/o twist. In both cases, deviations from the observational result are

observed (the dash blue line denotes an exponential decay). The solid line

in a and b represents the best fit for the largest system size, L¼ 2,048.

Results indicate that tube interactions rule the temporal organization of

flares.
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for the energy distribution, the interaction between magnetic
tubes is what introduces the right temporal correlations in the
process.

Time–energy correlations. We further investigate the statistical
features of time–energy correlations26. For each catalogue, we
analyse how the flare energies are organized in time, by evaluating
the probability that a flare with energy Ei is followed by a flare
with energy larger than lEi under the conditions that their
temporal distance Dt is smaller than a certain threshold tth,
P(l|tth)¼P(Eiþ 1/Ei4l|Dtiotth). For each catalogue, this
probability fluctuates wildly due to statistical noise. Therefore,
to eliminate this noise, we evaluate the same probability also in a
synthetic catalogue generated by reshuffling the flare energies
with respect to their occurrence time, such that energy and time
are uncorrelated by construction. We then consider the difference
between the conditional probabilities, dP(l|tth), evaluated in the
two data sets. This difference is different from zero only if
significant time–energy correlations are present in the original
catalogue. In particular, if |dP(l|tth)| is larger than zero, it is more
likely to find two consecutive flares satisfying both conditions
(Eiþ 1/Ei4l and Dtiotth) in the real rather than in the reshuffled

catalogue (see Methods). By using the same technique, we also
compute the conditional probability difference dP(Eth|tth) to
observe a flare energy larger than a given threshold Eth after an
waiting time smaller than tth. We consider the behaviour of both
conditional probability differences for a range of parameters l, tth
and Eth.

In Fig. 7, we see that the probability differences are very well
described by our model with lRo1. In particular, for both,
numerical and observational results, dP(l|tth) is different from
zero beyond error bars. This implies that it is very likely that for
close-in-time flares the second one will have slightly larger energy
than the previous one (the maximum is for l\1), as far as their
separation in time is shorter than approximately 25 h. These
energy correlations decrease as the temporal separation increases.
Conversely, it is very unlikely to observe in real catalogues close-
in-time flares where the second one has a smaller energy (dPo0
for (lo1)). Furthermore, in Fig. 7b, curves for dP(Eth|tth) are
different from zero beyond error bars and decrease with
increasing tth. This implies that the probability to find couples
of successive flares with the second flare having energy higher
than Eth decreases, if one includes events separated by a larger Dt
in the analysis. For large Eth, numerical results deviate from the
observational ones. This can be due to the finite size of our
simulation, which imposes an upper limit to the flux tube sizes,
and therefore limits the maximum energy of flares (see also Fig. 2,
where finite-size effects in the energy distribution are analysed).
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Note that the agreement between observational and numerical
data is very good, suggesting that, in fact, the turbulent flow and
magnetic flux tube interactions induce correlations between
energy and time in the occurrence of solar flares.

It is important to notice that agreement with observational data
is only obtained for interacting tubes (lRo1), not for non-
interacting tubes, single tube and random motion of tube
footprints, where dP(Eth|tth)C0 and dP(l|tth)C0 are found. For
the case lR41, we do not obtain full quantitative agreement with
time–energy correlations measured in experimental catalogues
(see Fig. 8). Data still predict that the next flare statistically has
slightly larger energy than the previous one but in a narrower l
range and with a smaller probability. Moreover, the case lR41 is
not able to reproduce the anticorrelations for lo1. These results
suggest that the relaxation mechanism corresponding to lRo1
seems to be more appropriate to reproduce time–energy
interaction, as compared with the avalanche process characterized
by lR41.

Finally, we have performed extensive simulations varying every
parameter of the model, namely, the critical twist Fc, the
magnetic flux tube density via N and the size ratio of the magnetic
flux tubes rc/R (where rc and R are the inner and outer radii of the
magnetic flux tubes). For all cases, results for flare statistics and
time–energy correlations remain unchanged as shown in the
Supplementary Figs 3–5.

Discussion
It is well accepted in the literature that solar flare occurrence is a
process driven by magnetic reconnection. Since high-quality
satellite data became accessible, several studies have evidenced
that the statistics of this phenomenon is complex: it exhibits
scale-free energy distribution and a nontrivial waiting time
distribution. A number of theoretical models attempted to
reproduce such statistics with different approaches. This study
implements magnetic reconnection in a model framework that
enables us to test the role of the different physical ingredients on
observed statistical patterns. In particular, we have shown that the
energy distribution are ruled by the turbulent features of the flow
in the photospheric plasma.

More precisely, that, if tube footprints simply diffuse in the
corona in absence of turbulent flow, the observed distribution of
flare energies would be exponential, namely it would exhibit a
characteristic flare size. Moreover, the turbulent flow alone is not
sufficient to fully reproduce the statistical patterns of real data.
Indeed the evolution of a single tube or several non-interacting
tubes in the corona, exhibiting the observed energy distribution,
is not sufficient to account for temporal correlations.

The detailed analysis of the energy organization in time
indicates that turbulence and tube interactions are the essential
physical ingredients controlling solar flare occurrence. Proving
time–energy correlations is the first step towards any forecasting
model. This could be formalized by implementing the phenom-
enological laws, as done for earthquakes40 (ETAS model), and
would open a novel field of investigation.

Methods
Evaluation of the turbulent flow. For modelling the two-dimensional turbulent
flow, we have used a two-dimensional lattice Boltzmann model of size L with a cell
configuration D2Q9 (2 dimensions and 9 discrete velocity vectors)27. To induce
turbulence, we have included the following forcing term in the 2D Navier–Stokes
equation

F ¼ A0 sinðkfxÞ cosðkf yÞ; � cosðkfxÞ sinðkf yÞð Þ; ð1Þ
where A0 is a constant, kf¼ 2pq and q varies in time such that each value of q is
used during an interval of time s¼ (4q/L)� m, and then is increased by one. As an
initial value, we take q¼ 2. Here, m is a tuning parameter to control the spectrum of
the energy of the turbulent flow (in our simulations, m¼ 5/3). The coefficient 4
defines the minimum wave number (due to space discretization limitations). This

forcing term satisfies the incompressibility condition r F¼ 0. The kinematic
viscosity of the fluid is set to n¼ 10� 3 and the forcing coefficient to A0¼ 10� 8. As
initial conditions for the fluid, we choose density r¼ 1, and velocity u¼ (0,0).
Furthermore, we also impose a large-scale dissipation mechanism to avoid vortex
condensation41. All the values are in numerical units.

Once the fluid has reached the turbulent regime, we insert N magnetic flux
tubes in random positions. The position of the respective footprints for each tube l,
denoted by xlþ for the positive footprint and xl� for the negative one, is a function
of time and evolves as,

xl� ðtþ dtÞ ¼ xl� ðtÞþ uðxl� Þdt; ð2Þ
where u(x) is the velocity of the fluid at position x.

Then, we can define wlþ and wl� as the cumulative twist in the positive and
negative footprint, respectively, evolving according to the equation,

wl� tþ dtð Þ ¼ wl� tð Þþ r�uð Þzdt ð3Þ

Note that the component used to twist the magnetic flux tubes is the z-component
of the vorticity, since the velocity lies on the two-dimensional space.

As initial conditions, the flux tubes have an outer radius of R¼ 4 cells and zero
twist, wl±¼ 0. If the positive footprint of a tube comes very close to its negative
partner (less than two lattice nodes), we reset the tube to the initial condition
(initial length and zero twist) and relocate it at a random position inside the
simulated zone. The vanishing of these tubes can be seen as small reconnection
processes with negligible released energy. Because of space discretization in our
numerical simulations, the position of each footprint is, in general, not located at a
fluid grid point, therefore we use bilinear interpolation to calculate the velocity at
the footprint position. Note that the motion of the footprints, see equation (2), as
well as the twist, see equation (3), are additive (See Supplementary Fig. 6), in the
sense that they systematically inject electric currents and associated magnetic
energy in the system.

The magnetic field lines are modelled as lines wrapped around semi-circular
flux tubes, forming, when twisted, a spring-shaped bundle (see Fig. 1). Therefore,
we can assume that the total energy of a tube is given by the length of the magnetic
line, which depends on the twisting and the size of the semi-circular tube. Thus,
when a flux tube is not twisted, its energy equals El¼ pR (here and throughout the
following calculation, we have omitted the proportionality constant to get the right
units of energy). On the other hand, if a flux tube is twisted, the spring-shaped
bundle can be parametrized by

RlðoÞ ¼ ð½ðRþ rcÞþ rc cosðoÞ�cosðxÞ; rc sinðoÞ; ½ðRþ rcÞþ rc cosðoÞ� sinðxÞÞ;
ð4Þ

where rc is the cross-section radius of the semi-circular tube. The value x depends
on o as follows: x¼Yo, where Y is a constant that controls the number of turns
that the magnetic line makes around the semi-circular tube. In this coordinate
system (x, y, z), the photosphere is located at the plane x� y. The length of this
parametric curve is given by the integral,

El ¼
Zp

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dRl

do
� dRl

do

r
do : ð5Þ

According to the kink instability theory28, the twist is defined as F¼ pRBy/rcBz,
where By and Bz are the tangential and perpendicular components of the magnetic
field to the plane x� y at the footprint (o¼ 0). Therefore, the ratio By/Bz is
equivalent to the ratio between the y and z components of the derivative of the
parametric curve, By/Bz¼ (dRly/do)/(dRlz/do) with o¼ 0, and we can conclude
that F¼pRY/(2rcþR) is the twist. In our model, Y denotes the cumulative total
angle due to the vorticity of the fluid, Y¼wlþ þwl� .

The integral in equation (5) does not possess an analytical solution. However,
we can assume that rcooR, obtaining a very simple expression:

El ¼ pR: ð6Þ
Note that this expression is identical to the expression for an untwisted flux tube
for any values of rc and R.

Once a magnetic flux tube reaches the critical twist Fc, the tube releases its
entire energy and vanishes. To keep the tube density in a stationary state and
produce a sufficient statistics, a new tube is placed at a random position inside the
simulated zone with the initial condition (wl±¼ 0 and R¼ 4 cells). When several
magnetic flux tubes reach the critical twist within the same temporal interval
dt¼ 1, we sum the energies of the tubes into a single event. For the case lRo1, we
have also evaluated the distributions keeping simultaneous events separate (see
Supplementary Fig. 5) and verified that the main properties of solar flare statistics
remain unchanged. For the case of lR41, since flaring occurs through an
avalanching process, we perform the measurement of events as follows. Once a
flare occurs, we stop the fluid and observe if it triggers other flares. We measure the
peak flux energy as the largest flare that occurs within the avalanche process, and
the total energy as the sum of all flares. The duration of flares is taken as the total
number of released flares. Afterwards, the dynamics of the photospheric flow is
restarted. Our model cannot accommodate helicity conservation during the
magnetic reconnection process42. Therefore, it is assumed that each helical kink
instability ejects the unstable flux tube out of the simulation volume to infinity
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(physically, that would mean that each flare is eruptive). However, it seems that this
effect is not relevant to reproduce the solar flare statistics.

Note that the energy stored by a tube scales with the tube length and therefore
has an upper cutoff controlled by the system size. We have also run the simulations
for different initial conditions, finding that our statistical results remain unchanged.
In particular, for the cases where rc/Ro1 (but not necessarily rc/Roo1), we have
solved numerically the integral in equation (5) considering terms up to order
(rc/R)10.

We have implemented our numerical code using CUDA C. The simulations for
a fixed set of parameters run 3 weeks on a cluster of 12 graphic cards, Nvidia Tesla
M2075, each one containing 448 GPU cores.

Conditional probability analysis. Each flare i in the numerical and observational
catalogues is characterized by its starting time ti and its peak flux energy Ei. From
each catalogue, we evaluate the conditional probability P(l|tth)¼ P(Eiþ 1/Ei4l|D
tiotth) to find the energy of the next flare (Eiþ 1) being larger than l times the
energy of the previous flare (Ei), if their temporal distance, Dt�tiþ 1� ti, is smaller
than a certain threshold, tth. For comparison, the same conditional probability is
evaluated from a reshuffled sequence of the same energy–time series. In such
synthetic catalogues, we expect that flare energies and occurrence times are totally
uncorrelated. Keeping l and tth fixed, we compute the quantity P*(l|tth) for 105

independent realizations of the reshuffled catalogue, obtaining an ensemble of
values which follows a Gaussian distribution with mean value Q(l|tth) and s.d.
s(l|tth). We then define dP(l|tth)�P(l|tth)�Q(l|tth). If the absolute value
|dP(l|tth)|4s(l|tth), a significant difference in the number of pairs of sequential
energies (Ei, Eiþ 1) satisfying both conditions exists between the real and the
reshuffled catalogue. By using the same technique, we also compute the conditional
probability difference dP(Eth|tth)�P(Eiþ 14Eth|Dtiotth)�Q(Eth,tth).
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