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Single yeast cells vary in transcription activity
not in delay time after a metabolic shift
Anne Schwabe1 & Frank J. Bruggeman1

Individual cells respond very differently to changes in environmental conditions. Stochasticity

causes cells to respond at different times, magnitudes or both. Here we disentangle and

quantify these two sources of heterogeneity. We track the adaptation dynamics of single

Saccharomyces cerevisiae cells exposed to a nutrient shift from methionine to sulphate and

back. Using single-molecule RNA fluorescence in situ hybridization, we count the number

of transcripts of a methionine-biosynthesis enzyme in single cells during adaptation. The

variation of response times between cells is small, yet we find a high transient variability

in the messenger RNA copy numbers. Surprisingly, single cells display strongly delayed

transcription induction, as we could induce transcription fourfold quicker by direct activation

and bypassing the cellular control circuitry. Transcription repression occurs rapidly within

several minutes. This study indicates that small variability in response timing combined with

high, stochastic transcription activity can cause large cell-to-cell variability in dynamic

adaptation responses.
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A
period of reduced growth rate, a so-called lag phase, after
a nutrient shift is a common phenomenon in micro-
biology; a famous example is the glucose–lactose diauxie

of Escherichia coli, discovered by Monod and coworkers1. The
general interpretation is that a lag phase results from the time that
it takes for the microorganism to adapt its metabolism. Several
single-cell studies indicate that the cause for the lag phase can also
involve stochasticity: either only a small fraction of the
population grows under the new condition2–6, and the lag
phase derives from the time that it takes until those cells reach a
significant fraction of the total population; or cells start to grow
only after a fluctuation in gene-expression activity has occurred
that is large enough to kick-start the induction of the nutrient
uptake pathway7–9. In both these cases, the lag phases of
individual cells vary greatly. The fact that many different
adaptation mechanisms can occur may explain the great
variation in lag phase durations that have been experimentally
observed, which range from minutes to days2–4,7,8.

Large variability in response times can occur when cells cannot
sense the environmental change, as they lack dedicated sensors.
Then they have to rely on stochasticity-induced adaptation
mechanisms. This applies for instance to E. coli with respect to
lactose and for S. cerevisiae in the case of galactose4,7–9. In such a
case, the organism has to rely on leaky gene expression of
dedicated permeases.

Alternatively, cells sense the nutrient change and subsequently
adjust metabolism without having to resort to stochastic
adaptation mechanisms10,11. Even in this case, stochasticity still
plays a role. The inherent stochasticity of molecular reactions and
cell growth12–15 can still cause cell-to-cell variation in the lag
phase of single cells. It is at present much less understood how
variable the responses of individual cells are when they are
confronted with a condition shift that they can sense.

In this work, we study the response of single cells to a shift in
their sulphur source from methionine to sulphate and back. This
nutrient shift has the advantage that yeast exploits various
signalling mechanisms for amino-acid sensing and the initiation
of adaptive responses16,17. This system is therefore ideally suited
to answer the question how variable single cells are in their
response time (lag phase) when they actively monitor their
environment for changes and do not rely on spontaneous
stochasticity-induced adaptation mechanisms.

Sulphate uptake and assimilation in S. cerevisiae is mainly
regulated by the transcriptional activator Met418–20

(Supplementary Fig. 1). In the presence of a high-quality
sulphur source, such as cysteine, methionine or
S-adenosylmethionine (SAM), Met4 is ubiquitinated by the SCF
(Skp1-Cullin-F-box)/Met30 complex. Depending on media
conditions, this either targets Met4 for degradation by the
proteasome or inhibits its activity as a transcriptional regulator of
a set of genes, including the MET genes21,22. One of those MET
genes is MET5, which encodes the beta subunit of a sulphite
reductase required for growth on sulphate to synthesize
methionine and related amino acids. The recognition of Met4
as a substrate of the ubiquitin ligase depends on the presence of
intracellular cysteine (or a related metabolite) placing the
expression of methionine and cysteine biosynthetic genes under
negative-feedback control23. In the absence of a high-quality
sulphur source, Met4 activates the transcription of sulphur
uptake, glutathione (GSH) and SAM biosynthesis genes. Among
the activated genes is also Met30, which introduces a second
negative-feedback loop. Interestingly, cadmium can be used to
bypass this complex regulation. It causes dissociation of the SCF
(Skp1-Cullin-F-box) ubiquitin ligase and the substrate
recognition protein Met30, thereby inhibiting the ubiquitination
of Met4 and activating de-ubiquitination of the existing Met4-

ubiquitin24,25. Thus, cadmium allows for the direct induction of
gene expression by effectively bypassing the cellular decision
process. We use cadmium for this purpose to determine the
contribution of cellular decision making to the adaptation delay
of single cells.

We exploit single-molecule fluorescence in situ hybridization
(smFISH)26 to monitor the dynamics of transcription induction
and repression of MET5 in single cells. The advantage of smFISH
is that it allows for counting of the exact number of transcript
molecules per cell. Most importantly, it allows for exact
monitoring of transcription repression. Since the lifetime of
fluorescent reporter proteins is typically not the same as the
protein it is reporting, the applicability of fluorescent reporter
proteins to study transcription repression is limited. Single-
molecule RNA FISH has been applied to yeast before to address a
wide variety of transcription and cell-to-cell heterogeneity-related
questions27–34.

Our results demonstrate that the regulatory systems respon-
sible for metabolite sensing and transcriptional control of the
metabolic enzymes can operate very similarly in individual cells,
leading to precise timing of the induction of adaptation responses.
However, cell-to-cell variability in adaptation dynamics can still
be significant. The explanation is that the little variation in
response times combined with a steep increase in transcriptional
activity causes large differences in transcript copy numbers
between cells during their adaption dynamics. Therefore, cell-to-
cell variation in response timing and magnitude cooperatively
cause large heterogeneity in cellular adaptation dynamics.

Results
Nutrient downshift causes a 40-min lag phase in growth. We
subjected S. cerevisiae to a nutrient downshift from a defined
medium containing methionine, and sulphate to the same med-
ium without methionine. With downshift, we mean a change
from a preferred nutrient (methionine) to a nutrient (sulphate)
that reduces growth rate. Figure 1a (blue markers) indicates that,
at the level of the cell population a lag phase of about 40min
occurs in cell growth. During this period, the intracellular
methionine concentration (Fig. 1b) decreases very slowly. After
40min, cells resume growth on sulphate at a slightly lower rate.
The intracellular methionine concentration remains at a lower
level (Fig. 1b). The growth rate drops by about 12% when the cells
shift from methionine to sulphate growth, indicating the pre-
ference of yeast for methionine. The duration of the generation
times on methionine (2.1 h) and sulphate (2.5 h) indicates that the
lag phase is much shorter than the generation time.

The fact that growth stops immediately upon the switch to
medium without methionine (Fig. 1a, blue line), that is, before the
intracellular methionine concentration depletes significantly,
could hint at growth control via extracellular signalling of amino
acids35,36. The intracellular methionine concentrations during the
nutrient downshift decreases from 1 to 0.3 nmol per mg dry
weight. This reduction is not enough to sustain measurable
growth as the sulphur requirement of yeast is E90 nmol per mg
dry weight37, indicating rapid sulphur limitation. Even if GSH
reserves, with GSH concentrations about 10-fold higher than
methionine concentrations38,39, would be used as a sulphur
source this would not lead to significant growth. So, cells need to
activate the sulphate assimilation pathway to synthesize
methionine before they can continue growing. They take about
40min to do so, which is long in comparison with the durations
of messenger RNA (mRNA) and protein synthesis; we estimate
that synthesis of the first protein takes about 2min and the
steady-state rate depends on the promoter and ribosome-binding
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site strength, but several transcription initiations per minute have
been found experimentally (http://bionumbers.hms.harvard.edu).

In the complementary nutrient upshift experiment (sulphate to
methionine and sulphate), no lag phase is observed (Fig. 1; red
markers) and the intracellular methionine concentration returns
to its higher value in o10min. Methionine can be taken up by
several specific and non-specific amino-acid transporters40–42

that are already expressed, which likely explains the quick rise in
intracellular methionine concentration after the nutrient upshift.

Single-molecule mRNA FISH shows that all cells respond. We
used smFISH to measure the single-cell dynamics of the MET5
mRNA during the transitions described in the previous section.
MET5 encodes the b-subunit of sulphite reductase required for
synthesis of methionine during sulphate growth. Cells were fixed
at different time points after the medium change, and the MET5
mRNA copy numbers per cell were determined for each time
point for on average 1,170 cells per time point (Fig. 2).

The distributions for the induction time course (Fig. 2b;
nutrient downshift) show transient bimodality at the 40–60min
time points, indicating that some cells respond later than others
(also shown in Fig. 3b). We note that the final distributions for
both time courses are unimodal. The overlap between the initial
and final distribution is small for both time courses, indicating
that those states are nearly identical. Figure 3a indicates that cells
without any transcripts exist. However, this does not mean that
those cells have not responded in the past, as it cannot be ruled
out that they have and also experienced significant transcript
degradation. In the following sections we will show that all cells
do respond to the nutrient shift, using a deconvolution analysis of
the dynamics of transcript distributions.

The lag phase observed in the growth profile during the
nutrient downshift (Fig. 1; blue markers) is also observed in the
transcriptional response: during the first 30min after induction,
the average mRNA copy number per cell increases only slightly,
followed by a sharp rise between 30 and 50min. We speculate
that the two negative-feedback loops, occurring in the gene
network controlling MET5 transcription (see Introduction and
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Figure 1 | Physiological response of a population of yeast cells. (a) Changes in OD600 before and after the change in medium at time zero

(average±s.d.). Blue circles denote the induction time course (nutrient downshift), red triangles the repression time course (nutrient upshift). (b) Changes

in intracellular methionine concentration after the change in medium (average±s.e.m.). Trend lines were added to guide the eye. Concentrations

in nmol per mg dry weight can be converted to mM by a conversion factor of E0.2 assuming a cell volume of 70mm3 and dry weight of 15 pg per cell.
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Figure 2 | Dynamics of the probability distributions of mRNA copy numbers per cell. The induction time course (nutrient downshift) is shown in

a and b, and the repression time course (nutrient upshift) in c and d. In a and c, the dynamics of the average copy number per cell, /nmRNA per cellS, is

shown. In b and d, the probability distribution for the mRNA copy number per cell is shown as function of time. In a–d, black dots denote the

measured average copy numbers, the solid lines indicate the trend lines for average copy numbers per cell and the dashed lines the 25 and 75% quantiles.

For each time point, 800–1,500 cells were analysed.
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Supplementary Fig. 1), are responsible for the overshoot observed
in the mRNA copy numbers per cell observed during the
nutrient downshift experiment. As these feedback loops involve
transcriptional regulation, they occur on a slower timescale than
the metabolic system that they control and therefore constitute
delayed negative feedbacks. The nutrient upshift experiment
(Fig. 2c,d) indicates hardly any delay in transcription repression
Fig. 2b.

In Fig. 3a, we illustrate the reversibility of nutrient shift as the
start and the end state of nutrient shift experiments are nearly
identical. Figure 3c shows the transient bimodality of the
probability distribution for MET5 transcripts during the induc-
tion experiment. Thus, at time point 50min the population
consists of two subpopulations, those cells that have responded
and those that have not yet done so.

Large cell-to-cell variation during induction and repression.
Figure 2 indicates significant cell-to-cell variability in the
response to the nutrient up- and downshift. We characterize the
magnitude of the cell-to-cell variability in the mRNA number per
cell in Fig. 4 with the fano factor, as well as the correlation
between the copy numbers in the nucleus and the cytoplasm. The
fano factor is defined as the copy-number variance divided by the

mean copy number. A fano factor equal to one corresponds to a
simple model, where mRNA is synthesized by a zero-order
reaction and degraded by a first-order reaction43. Fano factors
higher than one can indicate temporal fluctuations in the
synthesis rate, either through transcriptional bursting or due to
noise in the concentrations of molecules that influence
transcription rate such as, for instance, RNA polymerases and
transcription factors44. We note that the use of the fano factor is
most informative when applied to unimodal distributions; hence,
its application at time points 35–70min is an approximation.
However, already at time 50min most probability mass lies
around the higher transcript levels.

Fluctuations in transcription activity lead also to positive
correlations between mRNA numbers in the nucleus and the
cytoplasm. This can be understood intuitively in the regime of
fluctuations that are slow in comparison with the rate of export to
the cytoplasm and the rate of transcript degradation. In this
regime, the copy numbers in the nucleus and in the cytoplasm
reach a quasi steady state before the synthesis rate changes
significantly. While the synthesis rate is higher than its time-
averaged value, both quasi steady-state averages are also higher
than their time-averaged values (and vice versa for a synthesis
rate below its time average), leading to a positive correlation
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Figure 4 | Peaks in the fano factor and correlation profiles in the induction time courses indicate a delay in transcription induction. (a,d): averages of
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the profiles that would be obtained if all cells started induction at the exact same time. Note that the scale of the axes differs between the time courses.
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between the transcript numbers in the nucleus and the cytoplasm.
Experimentally observed correlations are shown in Fig. 4c,f.
The magnitude of the correlation depends on the timescale and
magnitude of the fluctuation and the shape of its autocorrelation
function, as well as the rate of mRNA export from the nucleus
and the lifetime of transcripts (see Supplementary Fig. 2 for an
illustration). All experimentally observed correlations are positive
or zero. In contrast, variations in the rate of nuclear export would
lead to a negative correlation. Again, this can be understood
intuitively since high export rates lead to transiently lower than
average transcript numbers in the nucleus and higher than
average numbers in the cytoplasm. Variations in the rate of RNA
degradation (in the cytoplasm) by themselves do not introduce
correlations between numbers in the nucleus and the cytoplasm:
they reduce the magnitude of correlations introduced by other
mechanisms (Supplementary Fig. 2) (assuming that the degrada-
tion rate fluctuations are independent of fluctuations in synthesis
and/or export). Copy number per cell is positively correlated with
volume, therefore some of the correlation could be explained if
also the cytoplasmic and nuclear volume are positively correlated,
which is expected for a population in balanced growth. When a
subset of cells with defined volume is considered instead
of the whole population, the magnitudes of the correlations do
indeed decrease by B30% but the profile remains the same
(Supplementary Fig. 3).

For both experiments, we observe fano factors 41 during all
time points (Fig. 4b,e). The correlations between mRNA numbers
in the nucleus and the cytoplasm are positive throughout the up-
and downshift experiment. At the steady states, the fano factor of
the transcript copy number distribution, as well as the correlation
between the numbers of mRNA in the nucleus and in the
cytoplasm are higher in the induced state than in the repressed
state (Fig. 4d,e). This indicates that either the magnitude of the
extrinsic fluctuations is higher during the induced state or that
the timescale of these fluctuations relative to the lifetime of
mRNA is slower in the induced than in the repressed state.

The nutrient upshift experiment can be used to estimate the
half-life of the mRNA. By fitting a delayed exponential decay to
the average number of mRNA per cell over time in this
experiment (Supplementary Fig. 4), we calculate a half-life of
about 7min, that is, much shorter than one generation time.
Previously, values between 13 and 18min were reported for the
half-life of MET5 mRNA45–47). Therefore, the intrinsic
fluctuations in transcript levels can be expected to have a
corresponding autocorrelation time, such that such fluctuations

in mRNA persist with a characteristic lifetime of about 7min.
Assuming that the protein lives much longer and, therefore,
responds in level at much slower timescales, we expect that the
intrinsic fluctuations in mRNA have no influence on protein
levels and on metabolic flux. However, the fano factor of
transcripts indicated the occurrence of extrinsic noise, for
instance from promoter switching, and this can occur on
timescales close to the protein lifetime. Hence, we cannot
exclude from this data that the extrinsic noise in mRNA
propagates to protein and causes fluctuations in enzyme activity.

Homogeneous time delay in transcription induction. To assess
the delay times in transcription responses, we determined at each
time point the fraction of cells that has not yet (transcriptionally)
responded. The method we used is described in detail in
Supplementary Note 1. Briefly, we assume that the copy-number
distribution at a given time point after the nutrient shift is the
convolution of the steady-state distribution before the shift, and
the distribution for the net new synthesis (nutrient downshift) or
degradation (nutrient upshift) of transcripts. The fraction of cells
that have not (yet) responded to the nutrient shift at that time
point then corresponds to the probability for a net new synthesis/
degradation of zero transcripts. This assumes that the number of
newly synthesized molecules does not depend on the number of
molecules that a cell has at time zero. Since molecule numbers
depend on volume, we repeated this analysis for subsets of cells
with similar volumes (Supplementary Fig. 5). The result obtained
with this approach did not change the conclusions of this section.
From the change in the fraction of cells that have not yet
responded over time, we can deduce the response time distribu-
tion (Fig. 5; method explained in Supplementary Fig. 6).

For the nutrient downshift the, delay times can only be fitted
with peaked distributions (Fig. 5a). The shape of the delay time
distribution for the nutrient upshift was not well constrained by
the data and could be fitted by either exponential or peaked
(gamma) distributions (Fig. 5b). Remarkably, the nutrient
downshift is fitted best with delay time distributions with a very
small coefficient of variation (o0.1), indicating that the response
time is very homogenous across the cell population. Different
peaked distributions (gamma, normal and lognormal) fit the data
equally well. Direct determination of the transcription rate from
the data gave similar average delay times (Supplementary Note 2;
Supplementary Fig. 7).

In Supplementary Note 3 and Supplementary Figs 8 and 9, we
show that part of the delay time heterogeneity during the nutrient
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upshift can be explained by a dependence of the delay time on the
cell volume at the time of nutrient shift. To assess to what extent
the heterogeneity in the delay time causes cell-to-cell variability in
the response, we calculated the time profiles of the average copy
and its variance that would be obtained if there was no delay time
heterogeneity (described in Supplementary Note 4). The fano
factor profile obtained in this way for the nutrient downshift
experiment (Fig. 4b, dashed line) is no longer peaked and shows a
monotonous increase from the repressed to the induced state.
This suggests that the small heterogeneity in the delay time is
sufficient to cause the peaked fano-factor profile observed in the
experimental data. An analogous analysis could also be applied to
the correlations between nuclear and cytoplasmic mRNA copy
numbers, but did not yield insightful results due to error
propagation.

Next, we calculated from the data the exact contribution of
delay time variability and response magnitude variability to
variability in the adaptive response of the cells. To achieve this,
we decompose the cell-to-cell variability, as quantified by the
copy-number variance, at each time point into one part caused by
the heterogeneity in delay times and another that captures
stochastic mRNA synthesis and degradation:

d2nðtÞ
� �

¼ hd2hnðtÞ jtii|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
variability caused by the heterogeneity in delay time

þ hhd2nðtÞ jtii|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
variability due to stochasticmRNA synthesis and degradation

ð1Þ

Fig. 6 shows this decomposition for the nutrient downshift
experiment. While the population consists of a mixture of cells
that already have induced transcription and cells that have not,
the variance is dominated strongly by the contribution deriving
from delay time heterogeneity. This is mainly caused by the steep
rise in mRNA copy numbers upon induction, so that small
differences in response time cause large differences in the
expected copy number at individual time points. But due to the

small delay time heterogeneity (CVo0.1), this regime only lasts
for E15–20min after which the variance contributions from
transcript synthesis and degradation become dominant again.

Direct transcription activation reduces delay time fourfold.
The delay time of about 35min for induction of gene expression
(Fig. 2) and resumption of growth (Fig. 1) appears long, given
that mRNA and protein synthesis times are expected to be of the
order of a few minutes. To test whether cells can initiate tran-
scription faster and that the delay is due to delayed induction of
gene expression by pre-transcription control mechanisms, we
performed a time course experiment using cadmium to induce
transcription of the MET genes. Cadmium is a known strong and
direct activator of the sulphate assimilation pathway24,25. We
added cadmium to the medium with methionine and sulphate.
The induction of MET5 transcription after addition of cadmium
chloride displays a delay of about 8min, which is considerably
shorter than the transcription induction after the nutrient
downshift (Fig. 7). This shows that cells can activate
transcription much faster than the delay time of 40min
observed during the nutrient downshift. Supplementary
Figure 10A indicates that cell growth slows down more and
more over time until it stops after about 100min, presumably due
to the toxic effects of cadmium. We therefore only consider the
cadmium response up to a time point of 45min. Supplementary
Figures 10–13 illustrate that the qualitative stochastic properties
of the delay time distribution and transcription stochasticity are
preserved when cadmium is added. The intracellular methionine
concentration (Supplementary Fig. 10B) decreases in a manner
very similar to the nutrient downshift experiment (although the
medium still contains high concentrations of methionine). A
similar decrease has been observed previously by Lafaye et al.39

and is likely explained by a shift in the pools of sulphur-
containing metabolites after cadmium treatment to increase the
GSH concentration.

Discussion
Unicellular organisms have to adapt to environmental changes to
sustain fitness and thereby prevent being out-competed by other
species. They do so by adjusting their metabolic machinery upon
nutrient changes. We studied the single-cell response of yeast to a
shift in their sulphate source. The interpretation of our findings is
that, since S. cerevisiae can attain a higher growth rate on
methionine than on sulphate, it ‘prefers’ methionine when
growing on both sulphur sources (Fig. 1). When suddenly
confronted with a lack of methionine (a nutrient downshift) it has
to adjust its metabolism causing a growth delay (Fig. 1). Only
after an unexpectedly long delay of about 35min does yeast
induce the expression of the methionine synthesis pathway
(Fig. 2) that feeds on sulphate. When from this condition
confronted with methionine addition (nutrient upshift), yeast
immediately assimilates it and stops transcription of the
methionine synthesis pathway (Fig. 2). These findings are in
agreement with earlier findings on sulphur-source shifts with
yeast48–50.

Earlier studies on different nutrient shifts have reported the
existence of a subpopulation of cells that does not respond at
all2,3,5,6 or the occurrence of very dispersed response times4,7,8

across a range of microbial species. In these cases, stochasticity in
the cell population is large, mostly due to stochasticity in response
times, leading either to a bimodal or very broad distribution of
cell responses. In contrast, we find that all yeast cells responded
(to the up- and downshift) with remarkably similar response
times for transcription induction (Fig. 2). These findings agree
with the fact that S. cerevisiae uses a dedicated signalling network
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to sense methionine absence and subsequently induce
transcription of the MET genes16,17. The existing studies that
have reported widely dispersed response times, that is, for the gal
regulon in S. cerevisiae4 and the lac operon in E. coli2,7,8, are all
cases where nutrient signalling is absent. The case that we report
here is more similar to the study of Muzzey et al.51 on the
hyperosmotic shock response of single yeast cells where also all
cells responded quickly and a dedicated sensing network is
involved. Our study therefore indicates that we should distinguish
between single-cell responses to environmental (including
nutrient) changes that involve active sensing mechanisms and
those that lack sensing mechanisms.

Although we found that the single yeast cells induced a
response at almost the same time, the subsequent transient
transcription activity proved very heterogenous between cells
(Figs 2–4). Whereas in the existing studies2–8 the cellular
heterogeneity is mostly due to large variability in response
times, we find appreciable cellular variability due to differences in
response magnitude at low response-time variability. The small
coefficient of variation for the response-time distribution for the
nutrient downshift experiment (CV2E0.02) is characteristic for a
very accurate induction time of a process. Nonetheless, this little
delay time heterogeneity is transiently the dominant source of
copy-number variations (Fig. 6). This is caused by the strong
increase in mRNA copy numbers (E20-fold), such that even
small differences in timing between cells lead to large transient
copy-number variations. Summarizing, a cell that is induced a
little earlier in time than another already has produced several
transcripts, hereby causing the appreciable transcript noise
(Fig. 6).

The mechanism of noise generation that we report in this study
derives from the number of transcripts that can be produced
during a characteristic timescale for delay time variability. So, if
transcription activity is high then during the time that
corresponds to one delay time s.d., a significant amount of
transcripts can be made even when this s.d. is small, causing
significant (transient) cell-to-cell variability. For instance, if the
transcription activity, u, is deterministic and equals 10 transcripts
per minute and the s.d. in the delay time, st is either 1min or
30 s, then in the 1-min case the s.d. in the number of transcripts,
sn, will be highest (expected to be proportional to u � st because
s2n ¼ s2ðutÞ ¼ u2s2t). Additional noise in transcription activity
will increase the variability in transcript numbers even more. This
type of noise-generating mechanism is very similar to transcrip-
tion bursts where also a timescale and an activity together give
rise to burst statistics52.

Whereas insightful measures exist for noise of steady-state
systems, such as the coefficient of variation and bimodality,
measures for characterization of variability in transient responses
of cells are much less standardized. In this work, we took a simple

view and reasoned that cells can have very variable dynamic
responses through three mechanisms. In the case of response-
magnitude variability, cells have a deterministic response time
and a stochastic activity. During response-time variability, cells
have a deterministic activity and stochastic response time. The
last case is that response-magnitude and response-time variability
mix. The experimental study described in this work is an example
of the last mode, but with a firm bias towards response-
magnitude variability. This work indicated how high activity and
little delay time variance can still cause a significant variation in
single-cell transcript dynamics. We think that this simple
classification is very useful for the comparison of other systems.
Most of the experimental cases published so far are response-time
variability systems, because these cases are biased to systems
without active sensing mechanisms. The two cases that we are
aware of that involve sensing systems (ours and ref. 51) are both
examples of dominating magnitude variability.

Our data indicate that all cells eventually adapt to the down-
and upshift experiment. In case of the upshift experiment,
methionine likely enters the cell via unspecific amino-acid
transporters16,17 and is immediately metabolized by the active
metabolic network (Fig. 1) presumably leading to a transcription
repression signal. In the downshift experiment, all cells eventually
induced gene expression indicating that they all sensed the
methionine removal and the presence of sulphate. Although
invariable fluctuations in signalling components of the amino-
acid-sensing network will occur, they are apparently not
impeding the ability of single cells to identify the nutrient shift
and induce an adaptive response. Similar conclusions were drawn
for the osmoregulation control system in yeast51. This indicates
that cellular decision making can be very robust to inevitable
noise in its molecular components.

Although we did find very stochastic transcription activity, this
is likely not propagated to the metabolic activity and fitness. As
long as mRNA fluctuations occur on a fast enough timescale such
that they do not propagate to protein levels, protein function,
which contributes to fitness, is not compromised and natural
selection will likely not punish fluctuations in mRNA levels. This
we expect to be very common, as the timescales of transcription
bursting12 and the lifetimes of mRNAs53 are typically much
shorter than the response time of metabolic enzymes, which tend
to have characteristic times close to the generation time14,53.

Our cadmium induction experiments indicate that the delay
time in transcription induction upon methionine removal is due
to processes preceding transcription regulation. Why yeast cells
do not respond in this quick mode in the nutrient downshift is
not entirely clear. It is unlikely that the molecular events
preceding transcription, that is, sensing and subsequent tran-
scription factor activation, take over 30min. So, it is tempting to
conclude from this that yeast cells are delaying the decision to
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induce the methionine synthesis pathway. Presumably because
this is such a costly pathway to make, they anticipate that
methionine may return soon and have sufficient sulphur storage
to survive for about 30min. By waiting they do not waste valuable
resources on enzyme synthesis of the methionine biosynthesis
pathway—for which they do not get a return of investment if
methionine reappears and as a consequence they suffer a loss of
fitness. This would either suggest that yeast has evolved in a
fluctuating methionine environment with a characteristic time of
methionine shortages of about 30min, or for some other reason
its storage capacity is only sufficient to delay the decision to
induce the costly pathway by 30min. In addition to methionine
storage capacity, the regulatory roles of methionine and SAM can
also contribute to the observed transcription response delay.
Reduction of the intracellular methionine level is perceived by
yeast and initiates several stress response mechanisms, such as a
growth stop and, eventually, autophagy54,55. However,
methionine has a particularly complicated role in cell survival
and growth control56. The origin of the delay upon methionine
removal may therefore also be related to a general growth rate
and stress-related signalling mechanism. The molecular details of
this global response are currently subject to active research54,55.

It will be interesting to see whether other nutrient shifts of
single cells that involve sensing mechanisms display delayed
decision making, and how this relates to nutrient storage and the
evolutionary history of those organisms. We predict that the
response systems that do not involve sensing mechanisms operate
in a much more stochastic regime, as has already been found for
the glucose–lactose shift in E. coli where adaptation is primarily
induced stochastically7,8. In these latter cases, the stochasticity in
response timing and magnitude add up, which may cause large
cell-to-cell variability over extended time periods. When active
environment sensing occurs, heterogeneity in transcription delay
time can be greatly reduced, but still its contribution to cell-to-cell
copy-number variability can be large when transcription activity
is high.

Methods
Strains and growth conditions. S. cerevisiae strain YSBN6 (MATa, FY3
ho::HphMX4) was used for all experiments. Cells were grown in synthetic med-
ium57 at a pH equal to 5, supplemented with 2% glucose at 30 �C, 200 r.p.m. For all
experiments, cells were first cultured on a plate, inoculated into a small volume of
medium and grown into exponential phase. From this culture, a larger volume was
inoculated and grown to OD600¼ 0.25–0.3 when the time courses were started. For
the repression time, course cells were cultured in medium without any addition
(but from a medium containing sulphate) and the time course started by addition
of 20mg l� 1 L-methionine (final concentration). For the induction and cadmium
time courses, cells were cultured in medium supplemented with 20mg l� 1

L-methionine, and at time zero either shifted to a medium without methionine or
CdCl2 was added to a final concentration of 0.5mM.

Determination of intracellular methionine levels. Cells were grown up to
OD600¼ 0.25–0.3 and time courses were started by addition of L-methionine
(20mg l� 1 final concentration) or cadmium (0.5mM final concentration) or
shifting the cells from a medium with 20mg l� 1 methionine to a medium without
methionine, and samples were taken every 10min. Intracellular metabolites were
extracted as described by Canelas et al.58, with quenching in � 40 �C methanol and
extraction using the boiling ethanol method. Dry weight was determined in 60-min
intervals. Samples were labelled with O-phthaldialdehyde (Sigma P0657) and
amino-acid concentrations were determined on a Shimadzu HPLC with a C18
Agilent ZORBAX Eclipse plus C18, Solvent saver plus 3.0� 150mm 3.5-micron
column. Norvalene was used as the internal HPLC standard to correct for
differences in labelling efficiency from sample to sample. The column was
equilibrated in 98% buffer A (5mM sodium azide, 10mM sodium tetraborate,
10mM Na2HPO4, pH 8.2), 2% buffer B (45% methanol/45% acetonitrile/10% H2O,
(v/v/v)) and the concentration of buffer B was increased to 57% over a time of
30min with a flow rate of 0.64mlmin� 1.

Single-molecule mRNA FISH. Single-molecule mRNA FISH was performed as
described by Raj et al.59 with modifications: Cells were grown up to OD600¼
0.25–0.3 and fixated with formaldehyde (final concentration 3.7%) first for 40min

at room temperature, then continued overnight at 4 �C. After two washes with
buffer B (1.2M sorbitol, 0.1M potassium phosphate, pH 7.5), spheroplasting was
performed with 25 mg lyticase (Sigma L2524) in buffer B in a total volume of 250ml
at 37 �C. Progression of spheroplasting was monitored using phase-contrast
microscopy, and spheroplasting was continued until approximately half of the cells
appeared as phase-dark. Cells were washed twice with buffer B and the cell pellet
was stored overnight in 70% ethanol. Samples were hybridized with a final probe
concentration of 1.5 nM in hybridization buffer (2� saline-sodium citrate (SSC),
10% formamide (v/v), 10% dextran sulphate (w/v), 1mgml� 1 transfer RNA,
2mM vanadyl ribonucleoside complex and 0.2mgml� 1 bovine serum albumin) at
37 �C. Cells were washed twice with 2� SSC/10% formamide with 30-min
incubations at 37 �C in between. 40 ,6-diamidino-2-phenylindole (DAPI) was added
in the first wash step after hybridization. 30-amine-modified DNA oligos (Biosearch
Technologies, Novato, CA) were labelled with NHS-ATTO565 (ATTO-TEC
GmbH, Siegen, Germany) by dissolving 1 nmol of each oligo in 50 ml 0.1M sodium
bicarbonate solution, adding 200 mg of dye and incubating at room temperature for
1 h in the dark. Oligos were concentrated by ethanol precipitation and HPLC
purified on a C18 column using a gradient of 7–30% acetonitrile and 93–70% 0.1M
triethyl ammonium acetate, pH 6.5, over a course of 30min with a flow rate of
1mlmin� 1. Oligonucleotide sequences are listed in Supplementary Table 1.

Image acquisition. Samples were mounted in 2� SSC and imaged using a Nikon
Ti-E scanning laser confocal inverted microscope, CFI Plan Apo VC � 60 oil
objective and Nikon NIS-Elements AR imaging software. A 561.5-nm diode-
pumped solid state and 402.1 nm diode lasers were used for excitation; detection
was via 595–50 nm and 450–50 nm bandpass filters. Optical sections were captured
at 0.250-mm intervals and a pixel size of 0.1243mm in lateral dimensions, resulting
in a voxel size of 0.0039 mm3. Four times averaging was used to reduce photon and
camera noise.

Image analysis. Images from the ATTO565 channel were background corrected
using a two-dimensional (2D) median filter of radius 5 pixels (where the median
filtered image was used as an estimate for the background image). An initial spot
identification was performed based on binarizing a LoG-filtered image as described
by Raj et al.26 with automated thresholding as in Itzkovitz et al.60: the s.d. divided
by the mean calculated over a window of length 7 of the number of spots versus
threshold function was maximized yielding the threshold where the spot number is
least dependent on the exact choice of threshold. Since the density of spots was very
high for some of the conditions, in these binary images many regions correspond to
multiple single-molecule mRNA spots. This can also be seen in the curves of spot
counts versus the threshold for binarization (Supplementary Fig. 14): for low spot
densities the spot count decreases monotonically with increasing threshold, while
for high spot densities the curve goes through a minimum followed by a maximum
before spot counts finally decrease to zero. This is because while higher thresholds
will lead to the exclusion of some true spots, higher thresholds will also split large
regions that correspond to multiple spots that are close together. The automated
thresholding will in those cases find the local maximum as the threshold, which
would lead to the exclusion of some low-intensity spots that would be included in a
low spot density image. Therefore for all images that had a spot count versus
threshold profile with a local minimum followed by a local maximum, the initial
threshold was then shifted to the local minimum. For all images, large regions that
had multiple local intensity maxima were subdivided until all regions had a size in
accordance with a single diffraction-limited spot.

Segmentation of nuclei was performed based on the DAPI image using a global
threshold that maximizes the total number of nuclei within the correct size range.
The maxprojection of the nuclei segmentation image along the z axis was used as a
marker image for a watershed segmentation on a z-section of the transmitted light
image to determine the cell outlines in 2D. Regions that fell outside of a specified
size range were rejected. Outlines were inspected and cells that the automatic
segmentation procedure had missed were added manually. Cells were subsequently
segmented in three-dimensional based on the cell background fluorescence in the
DAPI channel. A global threshold was determined using Otsu’s method
(minimization of intraclass variance) after excluding the grey values from regions
identified as nuclei. The three-dimensional outline of a cell was taken as the region
in the binary image that fell within the 2D outline determined previously.

Statistical tests on RNA FISH data. All experiments were performed at least as
duplicates; the cell numbers for each time point from cumulated experiments is
4800 for all time points.

To test for the reliability of the spot-finding procedure, the distributions of copy
numbers per cell for each individual image (most images contain between 20 and
50 cells) were compared with the accumulated distribution from all other images
from the same experiment by a Pearson w2-test. After correction for multiple
testing, only one image gave a significant P-value; manual inspection of the spots
found in this image did not indicate an obvious malfunction of the spot-finding
procedure.

For each experiment many images were acquired consecutively. Owing to the
long imaging times with confocal microscopy, some slides were under the
microscope (at room temperature) for several hours. When plotting the average
copy number per cell for each image normalized to the total average versus the
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order the images were acquired, no bias was observed towards lower spot counts in
later images (Supplementary Fig. 15).

Volumes of cells and nuclei were both estimated from the signal in the DAPI
channel. Owing to the small size of these volumes in comparison with the pixel
dimensions, those measurements have a relatively large relative error. In addition,
the time for which cells were kept in ethanol before hybridization varies between
experiments, which could also lead to differences in the cell volumes.
Supplementary Figure 16 shows the distributions of cell and nuclear volumes.
There is no indication for a change in the volume distributions over the time course
of the experiments (see inset of Supplementary Fig. 16), but the averages for single
experiments differ by up to 15% from the total average. Therefore all analyses are
performed by comparing the smallest/intermediate/largest third of the cells.
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51. Muzzey, D., Gómez-Uribe, C. A., Mettetal, J. T. & van Oudenaarden, A. A
systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138,
160–171 (2009).

52. Schwabe, A., Rybakova, K. N. & Bruggeman, F. J. Transcription stochasticity of
complex gene regulation models. Biophys. J. 103, 1152–1161 (2012).

53. Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O’Shea, E. K. Quantification of
protein half-lives in the budding yeast proteome. Proc. Natl Acad. Sci. USA 103,
13004–13009 (2006).

54. Sutter, B. M., Wu, X., Laxman, S. & Tu, B. P. Methionine inhibits autophagy
and promotes growth by inducing the SAM-responsive methylation of Pp2a.
Cell 154, 403–415 (2013).

55. Laxman, S. et al. Sulfur amino acids regulate translational capacity and
metabolic homeostasis through modulation of tRNA thiolation. Cell 154,
416–429 (2013).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5798 ARTICLE

NATURE COMMUNICATIONS | 5:4798 | DOI: 10.1038/ncomms5798 | www.nature.com/naturecommunications 9

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


56. Petti, A. A., Crutchfield, C. A., Rabinowitz, J. D. & Botstein, D. Survival of
starving yeast is correlated with oxidative stress response and nonrespiratory
mitochondrial function. Proc. Natl Acad. Sci. USA 108, 1089–1098 (2011).

57. Verduyn, C., Postma, E., Scheffers, W. A. & Van Dijken, J. P. Effect of benzoic
acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation
of respiration and alcoholic fermentation. Yeast 8, 501–517 (1992).

58. Canelas, A. B. et al. Leakage-free rapid quenching technique for yeast
metabolomics. Metabolomics 4, 226–239 (2008).

59. Raj, A. & Tyagi, S. Detection of individual endogenous RNA transcripts
in situ using multiple singly labeled probes. Meth. Enzymol. 472, 365–386
(2010).

60. Itzkovitz, S. et al. Single-molecule transcript counting of stem-cell markers in
the mouse intestine. Nat. Cell Biol. 14, 106–114 (2012).

Acknowledgements
A.S. and F.J.B. acknowledge funding by NWO-VIDI Project 864.11.011, the Centre of
Mathematics and Computer Science (CWI; Amsterdam) and NISB. We thank Leonid
Teytelman and Prof Dr Alexander van Oudenaarden for hosting A.S. at Massachusetts
Institute of Technology (USA) to learn the RNA FISH technique. We thank Prof Dr Bas
Teusink for discussions and financial support of A.S. We thank the Van Leeuwenhoek

Centre for Advanced Microscopy (University of Amsterdam) for microscope access.
We thank Dr Pernette Verschure and the Nuclear Organization research group
at the University of Amsterdam for hosting A.S.

Authors contributions
A.S. and F.J.B. conceived the study. A.S. performed the experiments. A.S. and F.J.B.
analysed the data. A.S. and F.J.B. wrote the paper.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Schwabe, A. et al. Single yeast cells vary in transcription activity
not in delay time after a metabolic shift. Nat. Commun. 5:4798 doi: 10.1038/ncomms5798
(2014).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5798

10 NATURE COMMUNICATIONS | 5:4798 | DOI: 10.1038/ncomms5798 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://www.nature.com/naturecommunications

	Single yeast cells vary in transcription activity not in delay time after a metabolic shift
	Introduction
	Results
	Nutrient downshift causes a 40-min lag phase in growth
	Single-molecule mRNA FISH shows that all cells respond
	Large cell-to-cell variation during induction and repression
	Homogeneous time delay in transcription induction
	Direct transcription activation reduces delay time fourfold

	Discussion
	Methods
	Strains and growth conditions
	Determination of intracellular methionine levels
	Single-molecule mRNA FISH
	Image acquisition
	Image analysis
	Statistical tests on RNA FISH data

	Additional information
	Acknowledgements
	References




