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Strong effects of genetic and lifestyle factors on
biomarker variation and use of personalized cutoffs
Stefan Enroth1, Åsa Johansson1,2, Sofia Bosdotter Enroth3 & Ulf Gyllensten1

Ideal biomarkers used for disease diagnosis should display deviating levels in affected

individuals only and be robust to factors unrelated to the disease. Here we show the impact of

genetic, clinical and lifestyle factors on circulating levels of 92 protein biomarkers for cancer

and inflammation, using a population-based cohort of 1,005 individuals. For 75% of the

biomarkers, the levels are significantly heritable and genome-wide association studies

identifies 16 novel loci and replicate 2 previously known loci with strong effects on one or

several of the biomarkers with P-values down to 4.4� 10� 58. Integrative analysis attributes

as much as 56.3% of the observed variance to non-disease factors. We propose that

information on the biomarker-specific profile of major genetic, clinical and lifestyle factors

should be used to establish personalized clinical cutoffs, and that this would increase the

sensitivity of using biomarkers for prediction of clinical end points.
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A
number of protein biomarkers are used for diagnosis and
management of cancers and other diseases. Examples
include prostate-specific antigen1 used to screen for

prostate cancer, the ovarian cancer-related tumour marker
CA125 (ref. 2) and IL-6, which is a drug target in rheumatoid
arthritis (RA)3. Ideal biomarkers for early diagnosis should be
uniquely present, or overexpressed, in the malignant tumour or
blood and not influenced by confounding factors. Most current
biomarkers have a function in the normal cell, taking part in, for
example, signalling pathways, controlling growth, apoptosis and/
or inflammation4. These are not uniquely expressed in the
malignant tissue and their expression level is affected by a
number of factors, such as the individual’s genetic and physical
constitution, lifestyle and medication. A detailed understanding
of potential confounding factors and their effect size is therefore a
necessary prerequisite in the evaluation of the rapidly growing
number of candidate biomarkers5. The discovery of putative
biomarkers for early identification and management of cancer has
been greatly facilitated by high-throughput, genome-wide assays.
Gene expression analyses have discovered numerous genes that
are differentially expressed between malignant and benign
tissues6, but few have proven suitable as biomarkers, mainly
because the mRNA levels do not correlate well with protein
abundance7. Large-scale studies of protein abundance, on the
other hand, have been hampered by lack of high-throughput
methods. High-resolution mass spectrometry can be used to
examine the underlying genetic contribution to profiles of
circulating proteins and effect of environmental covariates,
but the resolution is limited by the peptide spectra used and
detection sensitivity8. An alternative is to use antibody-based
measurements, which targets individual, preselected, sets of
proteins.

Here we aim to understand the factors that influence normal
variation in plasma levels of established and potential biomarkers
for cancer, autoimmune diseases and inflammation with the
specific goal to facilitate the establishment of individualized
clinical cutoffs. To this end, we use the highly sensitive and
specific proximity extension assay (PEA)9 to estimate the
abundance of 92 established or potential biomarkers in plasma
from 1,005 individuals from a longitudinal cross-sectional
population-based study in Sweden. The biomarkers we analyse
here constitute a research panel directed against multiple cancers
and also contain proteins implicated in autoimmune diseases
such as RA and Graves’ disease. PEA combines two dedicated
antibodies with a real-time quantitative PCR (qPCR) reaction to
achieve high specificity and a wide dynamic range. This
technology can be multiplexed without introducing crosstalk,
while still maintaining its high specificity and sensitivity10. We
first determine the effect of a wide range of clinical variables and
lifestyle factors, including age, sex, blood pressure, blood group
or body mass index (BMI), medication and smoking, on
biomarker levels. Then we study the heritability of each
biomarker, and by using high-resolution genetic single-
nulecotide polymorphism (SNP) array data and whole-exome
sequencing, we perform a genome-wide association study
(GWAS) for each biomarker. This study is the first to measure
biomarker abundance on a large scale using a single technology in
a general population, in order to identify contributing factors to
normal variation. To our knowledge, only one previous study has
studied the genetic association of multiple proteins in the general
population. Melzer et al.11 investigated 42 proteins using a variety
of assays, prohibiting protein-to-protein comparisons, and also
did not investigate the protein-specific profiles of covariates. Here
by integration of genetic, clinical and lifestyle data, we identify the
set of biomarker-specific factors that can be used to determine
appropriate individual clinical cutoffs, and thereby enable a more

efficient use of each biomarker in personalized cancer
management.

Results
Biomarker measurements. The abundance of 92 proteins
(Supplementary Data 1), representing a panel of established and
potential biomarkers for cancer and inflammation, were mea-
sured in blood plasma of 1,005 individuals from the Northern
Sweden Population Health Study (NSPHS), using PEA and qPCR.
A total of 77 of the proteins had levels above the detection limit in
at least 80% of our samples, with 91.3% (70,651 of 77,385) of
qPCR reactions being successful. In the remaining 15 proteins,
96.8% (14,598 of 15,075) of the protein levels were below the
detection limit. Also, 96.5% (970 of 1,005) of our samples passed
quality control on an individual level. The abundance and
distribution of the normalized measurements (delta delta Cq
(ddCq)-values) of all the proteins in all samples are illustrated in
Fig. 1a, with estimates under the detection limits coloured white.
Details on normalization and initial quality control are given
below in the Methods section. The proteins with little or no
measurable abundance in our samples were: stromelysin-1,
GM-CSF (granulocyte-macrophage colony-stimulating factor),
estrogen receptor, CA242 (cancer antigen 242), IL-2 (interleukin-2),
epiregulin, betacellulin, IL-4, interferon-g, IL-7, TNF (tumour
necrosis factor), CEA (carcinoembryonic antigen-related cell
adhesion molecule 5), MYD88 (myeloid differentiation primary
response protein MyD88), mucin-16 and regenerating islet-derived
protein 4. It cannot be ruled out that storage-time and protein
degradation could be an influencing factor for these 15 proteins,
and previous studies have quantified this specifically for CEA12.

Epidemiological associations. To study the effect of clinical and
lifestyle factors, we selected 158 phenotypic covariates, including
age, sex, blood pressure, BMI, tobacco use, medication, lifestyle
(occupation) and sample collection round (2006 or 2009) from
the comprehensive set of clinical data available for NSPHS.
A multiple linear regression model showed a total of 18 pheno-
typic covariates to have a significant effect (P-valueo0.05,
Bonferroni adjusted) on one or more of 52 of the 77 proteins
(Table 1). Factors such as age or weight influenced a broad range
of proteins, whereas medication affected specific proteins
(Fig. 1b). Notably, smoking affected two proteins, WFDC2 (WAP
four-disulfide core domain protein 2) and IL-12, whereas the
traditional Swedish moist tobacco product, ‘snus’ did not have
any significant effects, in line with a previous study on effects of
tobacco use on DNA methylation13. We also found large effects
(nominal P-value ranging from 1.8� 10� 4 to 2.3� 10� 7) of
ABO blood group on three proteins; E-selectin, PECAM-1
(platelet endothelial cell adhesion molecule) and TIE2
(angiopoietin-1 receptor). The connection between E-selectin
and blood groups is known14,15, but the effect on PECAM-1 and
TIE2 has not been described previously. The medication in
NHPHS had been investigated using a questionnaire and the
reported medications were annotated using the Anatomical
Therapeutic Chemical (ATC) classification system. Among the
commonly used medications, dihydropyridine derivatives (ATC:
C08CA, 54 users), often used to treat hypertension, were
correlated to increased IL-6 levels, whereas glucocorticoids
(ATC: R03BA, 26 users) lowered both Basigin and hepatocyte
growth factor (HGF) receptor levels. Apart from C08CA, no other
hypertensive treatment was correlated with high IL-6 levels.
Interestingly, the usage of selective b-2-adrenoreceptor agonist
(ATC: R03AC, 13 users), which is commonly found in asthma
inhalators, decreased the level of circulating vascular endothelial
growth factor D (VEGF-D), which is implicated in the metastasis
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of non-small lung cancer16,17. A detailed description of all
investigated covariates and their association with protein levels is
given in Supplementary Data 2. The largest fraction of variance
explained by a single clinical or environmental covariate was age,
which accounted for 27% of the variation seen for WFDC2. The
influence on WFDC2 of age and smoking has previously been

reported18, but we found that the fraction of variance explained
by smoking in our data to be only 1.7%, which is much less than
for systolic blood pressure (14.3%) or loop-diuretics (ATC:
C03CA, plain sulfonamides, 7.2%). However, these covariates are
not necessarily independent as blood pressure and use of
medication is related to age.
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Figure 1 | Characteristics of the PEA measurements. (a) Intensities of PEA values and proportion of proteins and individuals above detection limit. In the

heatmap, individuals are in columns and proteins are in rows. Heatmap colours represent ddCq-values ranging from low (blue) to high (yellow) with

measurements below detection limit coded white. (b) Significant covariates in relation to each protein. Covariates are listed from the upper right part of the

circle (12 o’clock to 4) and connections illustrate significant (P-value o0.05, Bonferroni adjusted) contributions to PEA variance. (c) PEA to PEA

correlations, coloured connections represent a correlation coefficient (R2) greater than 0.5. The width of the connection reflects the magnitude of the

squared correlation coefficients. All correlations coefficients (R) were positive.
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Correlations between biomarkers. Inter-biomarker correlation
was investigated using abundance levels adjusted for significant
clinical and lifestyle covariates. These was then rank-transformed
into normally distributed values and used to identify 12 pairs with
a Spearman’s Rho R2 greater than 0.5 (Fig. 1c). The highest
correlation was found between CASP-3 (caspase-3) and CD69
(early activation antigen CD69; R2¼ 0.85). CASP-3 was also
highly correlated with epidermal growth factor (R2¼ 0.81), which
in turn was highly correlated with CD69 (R2¼ 0.78). The strong
correlation between some of the biomarkers does not appear to be
reflected at the transcription levels. For instance, the Illumina
Body Map19–21 suggests that CD69 and caspase-3 both are
expressed in leukocytes, lymph nodes and adrenal glands (for
example, 3 of 16 investigated tissues). In data from leukocytes of
80 controls22, there was only a weak correlation between the
expression levels of CD69 and CASP-3 (R2¼ 0.13), suggesting
that the high correlation observed at the protein level is either
because of post transcriptional regulation, for example, epigenetic
regulation, or owing to expression patterns in distinct cell
types. Several of the 12 pairs that were highly correlated were
proteins with similar functions, such as C-X-C motif chemokine
(CXCL)-9, -10, -11, and TNF-R1 and TNF-R2, whereas in other
cases apparently unrelated proteins were highly correlated. These
correlations may reflect as yet unknown patterns of co-regulation,
and bring into question their value as independent biomarkers.

Heritability and genetic association. All 970 individuals’
samples that passed the quality control (QC) were used to esti-
mate the heritability for the 77 proteins with measurable levels by
evaluating the co-segregation of the protein levels with the
relatedness among individuals using a polygenic model (see
Methods for details). In 75% (58 out of 77) of the proteins, the

levels were found to be heritable (Bonferroni-adjusted P-value
o0.05), with heritability ranging from 0.19 to 0.78 and the
highest heritability for CCL24 (C-C motif chemokine 24;
Supplementary Data 2). Thus, for a majority of the protein bio-
markers, circulating levels are significantly affected by the indi-
vidual’s genetic constitution. To determine the nature of the
genetic effects on protein abundance, we performed association
analyses using over 4.8M SNPs and INDELs identified by direct
genotyping and whole-exome sequencing, followed by high-
quality imputation. In this analysis, each of the 77 proteins was
adjusted for the significant clinical and lifestyle variables (Table 1)
and the samples were split into a discovery and a replication
cohort based on sample collection round (see Methods for
details). In the discovery phase, we identified 15 proteins with
genome-wide significant hits (nominal P-value down to
1.1� 10� 40, Table 2), employing a Bonferroni-corrected P-value
cutoff of 0.05. Of these, 14 had at least one replicated association
(nominal P-value down to 1.1� 10� 20, Table 2). In all, 175
genome-wide significant hits were detected in the discovery
phase, out of which 101 replicated. A combined analysis of all
individuals revealed a total of 226 genome-wide significant hits in
14 proteins, with P-values down to 4.4� 10� 58, and a single
marker explaining as much as 26.6% of the phenotypic variation
seen after adjusting for the significant clinical and lifestyle
factors (Table 2). A detailed description of each of the
226 hits, including overlaps with previous associations with any
phenotype or trait, is given in Supplementary Data 3. IL-6RA
(IL-6 receptor subunit alpha) showed the strongest association
and the association was caused by one or very few SNPs located
in the gene that encodes the respective protein, similar to the case
for the majority of the biomarkers (Fig. 2a). Conditioning on
the top-hit revealed that four of the proteins, CCL24, MIC-A

Table 1 | List of significant covariates.

Covariate No. of
proteins

Protein

Age 24 Up: ADM, CTSD, CXCL9, CXCL10, CXCL11, ErbB4, FAS, Flt3L, GDF-15, WFDC2, HGF, IL-8, IL-2-RA,
KLK6, hK11, MCP-1, OPG, PSA, TF, TNF-R1, TNF-R2 U-PAR, VEGF-A
Down: E-selectin

Sex (female) 4 Up: GH, FABP4
Down: E-selectin, TR-AP

Systolic blood pressure 22 Up: ADM, CTSD CXCL9, CXCL10, ErbB4, FAS, Flt3L, hK11, GDF-15, WFDC2, HGF, IL-8, TGF-beta-1,
MCP-1, OPG, PRSS8, PSA, TF, TNF-R1, TNF-R2, U-PAR, VEGF-A

Length 11 Down: ADM, BAFF, CXCL9, FABP4, Flt3L, FR-alpha, GDF-15, GH, WFDC2, OPG, U-PAR
Weight 21 Up: ADM, CTSD, CSF-1, CXCL10, CPI-B, E-selectin, ErbB2, FABP4, FAS, GDF-15, HGF, IL-1ra, IL-6,

MCP-1, OPG, PRSS8, TNF-R1, TNF-R2, U-PAR, VEGF-A
Down: GH

Waist 3 Up: GDF-15, WFDC2, OPG
TLS (147 ppl) 4 Down: FABP4, GH IL-6, IL-2RA
KA06 (720 ppl) 17 Up: CCL21, HGF, MCP-1, MK, PECAM-1

Down: CASP-3, CD69, CXCL11, EGF, IL-1ra, IL-2-RA, hK11, MIC-A, OPG, TNFSF14, TNF-R1, TNF-R2
Smoking (130 ppl) 2 Up: WFDC2

Down: IL-12
A10AD (3 ppl) 1 Up: TGF-alpha
C03DA (2 ppl) 4 Up: CXCL13, MIC-A, U-PAR, TNF-R2
C08CA (54 ppl) 1 Up: IL-6
N05CD (2 ppl) 1 Up: PRL
N05CF (6 ppl) 2 Up: FAS, IL-1ra
R03BA (26 ppl) 2 Down: Basigin, HGF-receptor
R03AC (13 ppl) 1 Down: VEGF-D
R03DC (3 ppl) 1 Down: VEGF-D
ABO blood group 3 E-selectin, PECAM-1, TIE2

TLS, traditional lifestyle.
Direction of correlations was calculated using PEA-values without any additional covariate correction having been carried out. A10AD (insulins and analogues for injection, intermediate-acting combined
with fast-acting), C03DA (aldosterone antagonists), C08CA (dihydropyridine derivatives), N05CD (benzodiazepine derivatives), N05CF (benzodiazepine-related drugs), R03BA (glucocorticoids),
R03AC (selective b-2-adrenoreceptor agonists), R03DC (leukotriene receptor antagonists).
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(major histocompatibility complex class I polypeptide-related
sequence A), CXCL5 and Ep-CAM (epithelial cell adhesion
molecule), had hits independent of the highest-ranking SNP
(Table 3). For CXCL5 (Fig. 2b) and Ep-CAM, the second SNP
was located on a different chromosome, whereas for CCL24
(Fig. 2c) and MIC-A, the second SNPs were located close
(o40 kb, Table 3) to the first hit. The second SNP for Ep-CAM
explained 6.5% of the variance of the unadjusted phenotype, as
compared with 4.9% for the top-ranking SNP. For the other three
proteins, the fraction of variance explained by the second-ranking
SNPs was small compared with the top-ranking SNP. For 12 of
the 14 biomarkers with a strong genetic association (CCL24,
CD40-L (CD40 ligand), CXCL5, CXCL10, Ep-CAM, IL-12B,
IL-17RB (IL-17 receptor B), IL-6RA, hK11 (Kallikrein-11), MIA
(melanoma-derived growth regulatory protein), MIC-A and
VGEF-D), the top SNPs were located in cis with the gene
encoding the protein. We compared our 226 hits with eQTLs as
reported by the NCBI’s eQTL database and found overlapping
SNPs in 11 cases. These were reported for IL-17RB (one SNP)
and CCL24 (one SNP) in liver23 and for MIC-A (nine SNPs) in
lymphoblastoids24 (Supplementary Data 3). As expression is cell

type specific and eQTL studies only exist for a limited set of
tissues, the number of SNPs found here to be eQTL is likely to be
an underestimate. For two of the proteins (CCL19 and
E-selectin), the genome-wide significant hits were located at
other loci than the one coding for the protein (Table 3). The top
hits for CCL19 were located in the major histocompatibility
complex class II gene cluster, encoding molecules present on
antigen-presenting cells and B-cell lymphocytes. CCL19 is a
chemokine implicated in inflammatory and immunological
responses, but also in normal lymphocyte recirculation and
homing. Higher serum levels of CCL19 have been associated with
poor prognostics of AIDS patients25. For E-selectin, the
circulating level is known to be affected by ABO blood group.
Here, even after correction for blood group at the A/B/0-level, the
top hits in the GWAS were located within the ABO-gene,
determining the blood group (Fig. 2d), with our top hit
(rs507666) being a perfect tag SNP for the A1 subtype26,
suggesting that the specification of the A group into A1 and A2 is
involved. Our dependency of the E-selectin levels on ABO status
is consistent with the pattern described earlier15, where
individuals with the O blood type have the highest levels. This
is in contrast to the patterns for TIE2 and PECAM-1, where
individuals carrying the B or AB blood group have the highest
values (Supplementary Fig. 1). For the other proteins (Ep-CAM,
CCL19 and CXCL5), we found no evidence such as eQTLs or
common pathways linking the loci that did not code the protein
to the gene coding the protein. In summary, for a large number of
the biomarkers, significant genetic effects on protein levels could
be identified.

Personalized biomarker-specific covariate profiles. The relative
importance of individual genetic, clinical and lifestyle factors on
the abundance differed dramatically between the 77 biomarkers
(Fig. 3a). Some biomarkers were affected by strong genetic
factors, whereas others mainly by environmental or clinical
factors. These variables are not always independent, such as blood
pressure and use of medication, which are both related to age.
This can be seen in that the total fraction of observed variance, as
determined by a combined model including all 158 covariates
plus the top-ranking SNP and the top-ranking SNP from the

Table 2 | GWAS results.

Discovery phase Replication phase Combined phase

Protein H* N SNPs P (best) % Var
Explw

H* N SNPs P (best) % Var
Explw

H* SNPs P (best) % Var
Explw

kz

IL-6RA 0.66 653 22 1.1� 10�40 27.3 0.50 317 10 1.1 � 10� 20 27.4 0.68 22 4.4 � 10� 58 26.6 1.06
CXCL10 0.47 641 24 1.4 � 10� 31 21.3 0.39 311 1 2.3 � 10�06 7.2 0.46 16 6.8 � 10� 37 16.9 0.94
CCL24 0.71 653 17 2.3 � 10� 28 18.7 0.79 317 4 5.3 � 10� 11 13.6 0.78 30 2.0 � 10� 36 16.4 1.09
MIC-A 0.40 363 25 2.1 � 10� 17 19.8 0.54 174 14 3.7 � 10�04 7.3 0.52 19 5.3 � 10� 16 12.2 1.25
CD40-L 0.27 640 14 1.3 � 10� 16 10.7 0.39 315 13 2.1 � 10� 10 12.8 0.33 22 1.1 � 10� 25 11.5 1.13
CXCL5 0.41 653 8 7.7 � 10� 16 9.9 0.62 317 5 1.5 � 10� 10 12.9 0.51 8 4.3 � 10� 26 11.5 1.06
hK11 0.33 628 5 3.7 � 10� 15 9.8 0.08 310 5 4.3 � 10�04 3.4 0.24 15 5.3 � 10� 18 7.9 0.98
Ep-CAM 0.54 653 18 2.1 � 10� 14 5.2 0.50 317 8 1.4 � 10�09 11.6 0.57 24 6.7 � 10� 16 6.7 0.97
IL-17RB 0.51 415 1 4.7 � 10� 13 12.6 0.30 199 1 1.1� 10�07 14.2 0.48 2 1.7 � 10� 18 12.5 0.96
IL-12B 0.38 652 1 4.7 � 10� 12 7.3 0.64 317 1 1.3 � 10�06 7.4 0.43 4 9.0 � 10� 17 7.1 0.93
VEGF-D 0.29 652 21 8.7 � 10� 10 5.8 0.39 317 21 6.9 � 10�08 8.8 0.36 36 1.1 � 10� 15 6.6 1.01
E-selectin 0.44 639 4 8.9 � 10� 10 5.7 0.70 306 4 1.3 � 10�08 10.6 0.56 6 5.0 � 10� 16 7.0 1.01
MIA 0.25 648 4 1.6 � 10�09 5.6 0.55 316 4 2.0 � 10�09 11.4 0.37 7 6.8 � 10� 17 7.2 1.05
MPO 0.43 646 1 3.8 � 10�09 0.22 317 0 9.0 � 10�01 0.39 0 6.1 � 10�07 1.05
CCL19 0.32 653 10 1.3 � 10�08 5.0 0.33 317 10 2.0 � 10�06 7.1 0.32 15 2.6 � 10� 13 5.5 0.92

GWAS, genome-wide association study; SNP, single-nulecotide polymorphism; Var Expl, variance explained.
P-values were calculated from 1df Wald statistics w2-values.
*Heritability estimate.
wFraction of variance explained in the adjusted and transformed phenotype by the top-ranking SNP (SNP with lowest P-value in the combined analysis).
zEstimation of the inflation factor for the resulting distribution of P-values.
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conditional analysis, lie between 0.20 and 0.56 (Fig. 3b), whereas
the sum of the explained variance by individual covariates in
some cases reached above 1 (Fig. 3a). Figure 3 illustrates the main
results of the study. Most of the 77 biomarkers showed large
variation in abundance between individuals but they differed
considerably with regard to the specific genetic, clinical or lifestyle
factors involved. At one extreme, IL-6RA levels were affected
most strongly by the individuals’ genotype and only a very small
fraction of the variance was explained by other covariates, with
BMI being the strongest (1.0%). Even assuming that all 158
covariates, besides the top ranking SNP, contributed independent
effects, the sum of the fraction of the variance of IL-6RA levels
explained by these factors was less (21.0%) than the single genetic
effect (21.3%). At the other end of the spectrum, HGF did not
show a significant heritability, and none of the genetic markers
reached genome-wide significance. However, 17 other covariates
were nominally significant (P-valueo0.05) for HGF and 4
(weight, sample round, systolic blood pressure and age) remained
significant after correction for multiple testing. These covariates
accounted for 3.3%, 2.9%, 14.1% and 19.3%, respectively, of the
percentage-of-variance-explained. In addition, the use of platelet
aggregation inhibitors (ATC: B01AC) and loop-diuretics (ATC:
C03CA) explained 5.7% and 7.1% of the variance observed in the
unadjusted ddCq-values, respectively, whereas the top ranking
SNP only accounted for 1.6%. In the middle part of the dis-
tribution in Fig. 3a, we find biomarkers that were less affected by
the genetic, clinical or environmental factors studied, possibly
reflecting limited non-disease-related variability.

Information on the set of important variables for each
biomarker can be used to reduce the non-disease-related
variation. For instance, soluble CXCL10, which shows elevated
levels in patients with a number of autoimmune-related

diseases27, has previously been shown to be associated with
systolic blood pressure28. Here, we confirm the correlation with
systolic blood pressure, which explains 5.6% or the variability, but
we also found a significant correlation with age (9.0% of
variability) and a very strong effect of genetic variants (35.4%
of variability). Stratifying individuals on age did not appreciable
reduce the range of variability (Fig. 3c). However, stratifying on
the basis of the genotype at the top hit (rs11548618) had a
considerable effect on reducing the variability (Fig. 3d). In the
case of CCL24, the carriers of the reference allele of rs6946822
had a level 209% (linearized ddCq) of the average value of the
homozygote carriers of the alternative allele (Fig. 3e). The effect of
medication on the abundance can be demonstrated by IL-6
(Fig. 3f), where the distribution of protein level was clearly shifted
upwards with the use of dihydropyridine derivatives (ATC:
C08CA) found in drugs prescribed for treatment of hypertension
or angina pectoris. Interestingly, this was the only hypertension
medication that is correlated with higher IL-6 levels, and
neither angiotensin-converting-enzyme (ACE)-inhibitors (ATC:
C09AA), selective b-blocker agents (ATC: C07AB) nor a
combination of these mediate this effect (Fig. 3f). This implies
that detailed medication information may be needed for proper
use of this biomarker.

Availability. Full summary statistics of the combined results from
the 14 GWAS’s with genome-wide significant hits are available
from doi:10.5879/BILS/g000001.

Discussion
We have shown that for 72 of the 77 biomarkers studied, the
circulating plasma levels are strongly associated with genetic,

Table 3 | Location and annotation of top GWAS hits.

Protein SNP P-value Effect, b (s.e.) Effect allele (reference) chr:position* Gene Type

IL-6RA rs4129267 4.39� 10� 58 0.84 (0.052) T (C) 1:154426264 IL6RA Intronic
CXCL10 rs11548618 6.78� 10� 37 1.80 (0.14) A (G) 4:76943947 CXCL10 Nonsynonymous
CCL24 rs6946822 2.02� 10� 36 �0.62 (0.049) T (C) 7:75479448 CCL24 Intergenic, 36 kb upstream

rs11465293w,z 7.95� 10� 13 �0.63 (0.088) A (G) 7:75442723 CCL24 Nonsynonymous
MIC-A rs3869132 5.33� 10� 16 �0.73 (0.090) A (G) 6:31410948 MIC-A Intergenic, 28 kb downstream

rs2263316w 1.02� 10�08 0.48 (0.083) G (A) 6:31421297 MIC-A Intergenic, 38 kb downstream
CD40-L rs148594123 1.07� 10� 25 �0.96 (0.091) A (G) X:135741443 CD40LG Nonsynonymous
CXCL5 rs425535y 4.27� 10� 26 �0.86 (0.081) T (T) 4:74863997 CXCL5 Synonymous

rs2472649|| 3.57� 10� 21 �0.70 (0.074) A (A) 4:74857708 CXCL5 Intergenic, 4 kb downstream
rs2393967w 4.54� 10�08 0.30 (0.052) C (A) 10:65133156 JMJD1C Intronic

hK11 rs117268623 5.25� 10� 18 � 1.48 (0.17) T (C) 19:51527970 KLK11 Nonsynonymous
Ep-CAM rs201314303y 6.74� 10� 16 � 2.48 (0.31) G (C) 2:47612302 EPCAM Intronic

rs56398830w 1.26� 10� 15 �0.94 (0.12) A (G) 13:103701690 SLC10A2 Nonsynonymous
IL-17RB rs6801605 1.75� 10� 18 �0.56 (0.064) A (G) 3:53876218 CHDH Intronic

IL17RB 4 kb upstream
IL-12 rs10045431 8.99� 10� 17 0.47 (0.057) A (A) 5:158814533 IL12B Intergenic, 57 kb upstream
VEGF-D rs188779336y 1.11� 10� 15 � 1.58 (0.20) G (C) X:15308292 ASB11 Intronic

rs146086561z 1.81� 10� 15 � 1.57 (0.20) T (C) X:15365438 FIGF Nonsynonymous
E-selectin rs507666 5.01� 10� 16 �0.55 (0.067) A (G) 9:136149399 ABO Intronic
MIA rs2230694y 6.83� 10� 17 0.66 (0.079) G (A) 19:41263403 SNRPA Synonymous

rs2607426|| 1.13� 10� 16 0.65 (0.079) G (A) 19:41274713 MIA Intergenic, 6k upstream
rs2233154z,,y 1.13� 10� 16 0.65 (0.079) T (C) 19:41281346 MIA UTR5
rs2233159z,,y 1.07� 10� 16 �0.65 (0.079) C (C) 19:41283365 MIA UTR3

CCL19 rs7775228 2.63� 10� 13 0.51 (0.069) C (T) 6:32658079 HLA-DQB1 Intergenic, 24 kb upstream

GWAS, genome-wide association study; SNP, single-nulecotide polymorphism.
P-values were calculated from 1df Wald statistics w2-values.
*In hg19 coordinates.
wIndependent genome-wide significant loci as per conditional analysis on top-snp, reported P-values after conditioning on the top-hit.
zrs11465293 was not discovered in the unconditional discovery-replication analysis and was subsequently rerun in a conditional discovery-replication analysis resulting in the P-values 3.9� 10�9 and
6.7� 10� 5 for the discovery and replication cohorts, respectively.
yImputed.
||When the top SNP(s) was imputed, the top ranking genotyped SNP was also included in the table.
zIn perfect LD (R2¼ 1) with top-snp in our cohort.
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clinical or lifestyle factors. Most biomarkers are highly heritable,
and for 14 biomarkers, we identified strong genetic associations,
with the top SNP explaining as much as 36% of the variability in
protein abundance between individuals. For these biomarkers,
stratifying patients based on their genotype may dramatically
enhance the ability to detect deviations from normal circulating
levels. A number of non-genetic factors also show a strong effect
on biomarker levels, with age, systolic blood pressure and weight
affecting a large number of the biomarkers. As cancer incidences
increase with age29, so does the use of prescribed medications
(Spearman’s rho, R2¼ 0.29, Supplementary Fig. 2). Interestingly,
we identified medication as an important clinical variable that
should be considered when using the biomarkers for diagnosis or
risk prediction. For instance, Basigin expression has been
associated with shorter survival and proposed as a biomarker
for adjuvant therapy in colorectal cancer30. Our analysis did not
show any significant association of Basigin levels with covariates

such as anthropometrics, age, sex or smoking. However, the use
of glucocorticoids commonly found in inhalators used to treat
asthma-related conditions, decreased circulating levels of Basigin
thereby possibly masking the need for adjuvant treatment. Our
results indicate that when using Basigin as a biomarker in an
ageing population, medication history and dosage should be
taken into account in order to establish an appropriate clinical
cutoff. Another example is the IL-6 and IL-6 receptor (IL6-RA),
where we confirm the strong effect of the genetic constitution on
the circulating IL6-RA levels. We also show that medications used
to treat, for example, hypertension such as dihydropyridine
derivatives, but not ACE-inhibitors or selective b-blockers agents,
cause or maintain an increase in the inflammatory response
cascade via high IL-6 levels. The IL-6 signalling is important
in the pathogenesis of several autoimmune and chronic
inflammatory diseases31 and antibody-based drugs are used to
target the IL-6 receptor in patients with RA in order to dampen
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Figure 3 | Covariates and protein biomarkers. (a) Variance explained by each of the covariates for the set of 77 biomarkers with measurable variability

with the 11 most important covariates coloured. The combined effect of the remaining covariates is shown in grey, assuming independence in effect

between covariates. (b) The percent of the variance explained by the full set of covariates studied for the 77 proteins, using a combined model.

(c) Abundance of CXCL10, expressed as ddCq-values, in relation to age when stratified by genotype at rs11548618; AA (grey), AB (red) and BB (blue).

Shadowed areas represent the 95% confidence interval in a linear model predicting ddCq from age. (d) Fitted normal distribution densities based on

mean and standard deviation in ddCq-values for CXCL10, split by the rs11548618 genotype. (e) Fitted normal distribution densities based on mean and

standard deviation in ddCq-values for CCL24 split by the rs6946822 genotype. (f) Fitted normal distribution densities based on mean and standard

deviation in ddCq-values for IL-6 split by use of hypertension medications. Only groups where there are at least 10 individuals are shown. C07AB:

b-blocking agents, selective. C08CA: dihydropyridine derivatives. C09AA: ACE inhibitors, plain. (d–f) Interquartile ranges indicated with coloured boxes

above the curves.
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the inflammatory response32. In clinical practice, only two-thirds
of the patients treated with these drugs respond to the treatment
and factors such as age and medical history have been shown to
be predictors of remission and response in RA patients33. Future
investigations are clearly needed to specifically address the long-
term effects of commonly used medications in this perspective.

In a clinical context, circulating levels of CXCL10 have been
estimated to 120±83 pgml� 1 in patients diagnosed with Graves’
Disease as compared with 72±32 pgml� 1 in controls34; an
average increase of 67% not taking genetic and non-genetic
covariates into account. By comparison, the average increase
in individuals in our study carrying the reference genotype
for rs11548618 was 178% (linearized ddCq) of the level
in heterozygous individuals, clearly illustrating the relative
importance of carrier genotype versus to disease state on
biomarker levels. Previous efforts35,36 have identified genetic
susceptibility loci for Graves’ disease but none of these overlap
with the loci associated with the CXCL10 levels, suggesting that in
this case the causal effects of the disease are not directly linked to
the biomarker levels. Another strong genetic effect was observed
for CCL24, where carriers of the reference allele of rs6946822
have a level 209% (linearized ddCq) of the average value of the
homozygous carriers of the alternative allele (Fig. 3e). The
worldwide minor allele frequency of rs6946822 is listed in NCBI’s
short genetic variation database (dbSNP) as 0.46, implying that
every fifth individual will be homozygote, similar in frequency to
the individuals who smoke in the United States today37,
demonstrating the large, common genetic effects on biomarker
variation found in the population today.

We also find biomarkers that are not significantly affected by
any of the variables examined, rendering them less susceptible to
variability induced by non-disease-related factors. Although we
have investigated a large number of genetic, clinical and lifestyle
factors, they altogether explain at most 56% of the variation in
biomarker levels between individuals. The remaining variance
must reflect other factors, or non-additive interaction between
some of the factors studied, and their identification could further
increase the utility of biomarkers by reducing sources of variation
unrelated to disease state. For example, CCL24 had a heritability
of 0.78, indicating that additional genetic loci might affect protein
levels. For 15 of the biomarkers, the vast majority of abundances
were below the detection limits in our cohort. Several of these
could represent ideal biomarkers without major presence in
normal plasma and thus with no influencing genetic or lifestyle
factors. Among these was for instance mucin-16 (or CA125) that
is used clinically as a test for ovarian cancer38 and also potential
biomarkers such as regenerating islet-derived protein-4 that
has been proposed as a biomarker for pancreatic ductal
adenocarcinoma39.

This study identifies several previously unknown genetic and
lifestyle factors influencing the circulating plasma levels of disease
biomarkers in a population-based cohort, but has its limitations.
First, we have a relatively small sample size (N¼ 1005) for genetic
association studies. Despite this fact, we identify and replicate
12 novel associations of large effect on the disease biomarkers.
Although large GWAS consortia have identified hundreds of
genetic variants associated with variation in disease-related
phenotypes40,41, most of these SNPs are common and have
such small effect sizes that they are not clinically useful.

Personalized cancer medicine is on a trajectory from long
awaited promise to existing reality, with clinical applications for a
small number of cancers with directed treatments. In chronic
myelogenous leukemia, patients with a specific translocation
respond well to treatment with a tyrosine-kinase inhibitor
blocking an enzyme that in turns triggers signalling cascades42.
Also, patients with non-small-cell lung cancer and a gene-fusion

mutation have higher drug response rates than those lacking this
gene fusion43. However, the number of cancer biomarkers in
clinical use is still limited. In the set of biomarkers studied here,
we identified a surprisingly strong genetic effect on some
biomarkers after correcting for clinical (medication) and
lifestyle variables. Likewise, other biomarkers were strongly
affected by environmental lifestyle or clinical factors.
Genotyping of selected polymorphisms with a strong effect on
abundance appears to be crucial for about 20% of the biomarkers
in our study, whereas lifestyle and medication are important
covariates for the majority. In the daily clinical routine, we
envision that analysis of broad-spectrum biomarkers could be
used as a follow-up analysis for patients, or for screening of risk
groups. Our analysis indicate that such tests would be
accompanied by collecting additional relevant information such
as anthropometrics, medication and genotyping of specific
polymorphisms known to affect the baseline of these
biomarkers. The clinical laboratory that performs the biomarker
analysis would have documentation on which cofactors that
significantly influence the baseline levels, and could advise the
physician on how to interpret the outcome of the test. Our results
imply that using biomarker-specific covariate profiles will make it
possible to determine more precise, individualized, clinical cutoff
levels. This in term could lead to a more efficient use of protein
biomarkers for early detection of abnormal levels and for
increased sensitivity and specificity in disease diagnosis. By
employing biomarker-specific profiles of covariates it will be
possible to fully harness the potential of existing and novel
biomarkers for disease diagnosis and management.

Methods
Samples. The NSPHS was initiated in 2006 to provide a health survey of the
population in the parish of Karesuando, county of Norrbotten, Sweden, and to
study the medical consequences of lifestyle and genetics. This parish has about
1,500 inhabitants who meet the eligibility criteria in terms of age (Z15 years), of
which 719 individuals participated in the study (KA06 cohort). As a second phase
of the NSPHS, another 350 individuals from a neighbouring village (Soppero) were
recruited in 2009 (KA09 cohort). For each participant in the NSPHS, blood
samples were taken (serum and plasma) and stored at � 70 �C on site. Both the
2006 and 2009 samples used in this study have undergone two freeze–thaw cycles
before the measurements carried out here. DNA has been extracted for genetic
analyses and detailed descriptions of this study have been published elsewhere44–46.
A questionnaire was used to collect data on medications and lifestyle. The
questionnaire was filled in at the local health-care centre in the presence of the local
district nurse. Notably, around 15% of the participants of the study adhere to a
traditional lifestyle based on reindeer heading and crafts. Differences in, for
example, diet in this group compared with the group with a lifestyle typical of more
industrialized regions have been shown to increase levels of circulating blood
lipids47, which motivates to include the traditional lifestyle adherence as a covariate.

Ethical considerations. The NSPHS study was approved by the local ethics
committee at the University of Uppsala (Regionala Etikprövningsnämnden,
Uppsala, 2005:325) in compliance with the Declaration of Helsinki48. All
participants gave their written informed consent to the study including the
examination of environmental and genetic causes of disease. In cases where the
participant was not of age, a legal guardian signed additionally. The procedure that
was used to obtain informed consent and the respective informed consent form has
recently been discussed in light of present ethical guidelines49.

Multiplexed PEA. Protein levels in plasma were analysed using the Olink Proseek
Multiplex Oncology I 96� 96 kit and quantified by real-time PCR using the
Fluidigm BioMark HD real-time PCR platform as described earlier10. In brief, for
each measured protein, a pair of oligonucleotide-labelled antibodies probes bind to
the targeted protein, and if the two probes are in close proximity, a PCR target
sequence is formed by a proximity-dependent DNA polymerization event and the
resulting sequence is subsequently detected and quantified using standard real-time
PCR. Each plate contains 96 wells whereof 92 are samples, 1 is a negative control
and 3 are positive controls (spiked in IL-6, IL-8 and VEGF-A). Each sample is
also spiked in with two incubation controls (green fluorescent protein and
phycoerythrin), one extension control and one detection control. These controls
are used to determine the lower detection limit (negative control) and to normalize

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5684

8 NATURE COMMUNICATIONS | 5:4684 | DOI: 10.1038/ncomms5684 |www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


the measurements into ddCq values according to the following formulae

ddCq ¼ dCqblank � �ð Þ dCqanalyte

� �
ð1Þ

where

�ð Þ dCqanalyte

� �
¼ Cqanalyte �CqExtension Control ð2Þ

and dCqblank is a per-assay value defined by the manufacturer to give a positive
log2-scale. The ddCq values were then log2-transformed for subsequent analysis.
Each PEA measurement has a specified lower detection limit calculated based on
negative controls that are included in each run and measurements below this limit
were removed from further analysis. Individual samples where at least one of the
internal controls contained an outlier value (n¼ 35) or where too many (475%)
measurements were below detection limits in any PEA (n¼ 1) were also excluded
from further analyses (total n¼ 35 of 1005, 3.5%). We wanted at least 200
observations per protein above detection limit in order to conduct the downstream
statistical analyses and therefore proteins with fewer observations were excluded
from further analyses. After individual and protein quality control, 77 proteins
measured in 970 individuals remained. Out of the removed proteins, seven proteins
(betacellulin, epiregulin, IL-2, CA242, estrogen receptor, G-CSF and stromelysin-1)
had 100% of measurements below detection limit. Uniprot recommended short
names have been used throughout when these are available otherwise; the assay
manufacturers’ abbreviations have been used. All assay characteristics including
detection limits and measurements of assay performance and validations are
available from the manufacturer’s webpage (http://www.olink.com/products/
proseek-multiplex/downloads/data-packages).

Genotype data. The KA06 and KA09 cohorts have previously been genotyped on
the Illumina Infinium HapMap300v2 BeadChip (308,531 markers; Illumina) and
Illumina Human OmniExpress BeadChip (731,442 markers; Illumina) arrays,
respectively, as described earlier8. In brief, the specific KA06 and KA09 data were
quality checked separately leaving 691 individuals with 306,086 SNPs at 99.50%
genotyping rate and 346 individuals 631,503 SNPs at 99.88% genotyping rate,
respectively. Four individuals were present in both cohorts and these were removed
from the KA06 data. Here, we also genotyped the individuals from both cohorts
(n¼ 1059) on the Illumina Human Exome Beadchip containing 247,901 SNPs,
insertions and deletions primarily selected to have coding changes. The genotype
calling was done with the software GenomeStudio 2011.1 (Illumina Inc.) using a
Project Sample generated Cluster File as recommended by the manufacturer. The
Exomechip data were quality controlled requiring 95% and 98% genotyping rate on
marker and individual levels, respectively, and a Bonferroni-corrected Hardy–
Weinberg cutoff of 0.05 leaving 242,519 markers at a total genotyping rate of
99.94% in the 1,033 unique individuals previously genotyped. This analysis was
carried out using custom R-scripts and PLINK (v1.07)50.

Exome sequencing. We selected 100 individuals, 68 from KA06 and 32 from
KA09, for Whole-Exome Sequencing using Agilent’s SureSelect system (Agilent)
for exome capture and the SOLiD 5500xl instrumentation for sequencing. Each
sample was sequenced to at least 30X coverage. The individuals were selected to
represent as much genetic variation of the cohort as possible51. Alignment was
done using the LifeScope software, and SNPs and INDELs were called using
diBayes. For each position (n41.5M) where any individual so far sequenced at the
Uppsala Genome Centre had called SNP or INDEL, we then checked our 100
individuals for coverage in order to differentiate between missing and reference
calls. These positions were included to maximize the overlap with the 1,000
genomes reference panels to ensure proper imputation using two reference panels.
Reference calls for SNPs were made if there were at least three reference sequence
reads with unique start points and a maximum of 5% reads with non-reference at
that position. Reference calls for INDELs were made if there was no reads at all
without the reference call. All other calls were set to missing. We then required at
most 5% missing call rate per SNP or INDEL. This resulted in 83,568 SNPs with
non-zero MAF at 98.74% total genotyping rate and 38,290 INDELs with a total
genotyping rate at 99.45% and an additional 350k positions with reference calls
only. We then required a genotyping rate of 95% in both individual and marker
level and a Bonferroni-corrected Hardy–Weinberg cutoff at 0.05, which resulted in
468,630 markers at total genotyping rate of 98.79%.

Imputation of genotype data. We created an in-house reference panel to be used
simultaneously with the 1,000 genomes52 reference panel53. The in-house panel
was based on the 100 exomed individuals by merging the SNPs and INDELs called
from the exomes with the SNPs common between the Illumina Human
HapMap300v2 (used in the KA06 cohort) and the Illumina Human OmniExpress
(used in KA09 cohort), n¼ 182,916, and all the markers from the Illumina Human
Exome chip. In this step, there was no additional filtering done on minor allele
frequency in order to maximize the overlap with the SNPs in the 1,000 genome
panel. The total number of markers in the in-house reference panel was 847,855.
The reference haplotypes were created using in-house R-scripts, PLINK (v1.07) and
phased using SHAPEIT (v2.r)54. Data were then imputed for the two cohorts
separately using IMPUTE2 (v2.3.0) with a pre-phasing approach55. The input data

were phased chromosome-wise using SHAPEIT (v2.r). In addition to our in-house
panel, we also utilized the 1,000 Genomes Phase I integrated variant set (National
Center for Biotechnology Information build b37, March 2012) accessed from the
IMPUTE Web resource53. IMPUTE2 was run with the default parameters with
the following changes ‘-- merge-ref-panels’ and ‘-k_hap 500 200’. The latter
instructing IMPUTE2 to use 500 haplotypes from the 1,000G reference panel and
all 200 from our in-house panel. Data were imputed in chunks of around 5M bases
ensuring at least 200 genotyped SNPs in each chunk. No chunks spanned across
the centromeres. The para-autosomal and non-para-autosomal regions on
chromosome X were handled separately. The resulting data were filtered on marker
level by requiring IMPUTE’s ‘info’ score 40.3 in both the KA06 and KA09 cohorts
before merging. Merging of the imputed data was done using GTOOL (v0.7.5)56

requiring a dosage threshold above 0.9 in at least 95% of the individuals. The
resulting merged data were further filtered using QCTOOL (v1.3)57 requiring a
Bonferroni-corrected Hardy–Weinberg cutoff of 0.05 and a minor-allele frequency
corresponding to at least one chromosome in the whole material. The final data set
included 4,840,842 SNPs and INDELs.

ABO blood group assignment. We assigned blood groups according to the
ABO-system to our samples based on their genetic status of four genotyped SNPs
(rs505922, rs8176746, rs8176704 and rs574347) in the region of the ABO gene.
These four SNPs allow for accurate assignment of both the A/B/O groups and
subtyping of A into A1 and A2 and subtyping of O into O01 and O02 (ref. 58).
Using this approach, we successfully assigned blood groups to 97.9% of our
samples.

Statistic analyses. All statistical analysis was conducted in R59 and illustrations
were produced using R and the Circos software60. Correlation between proteins
and relevant variables was calculated separately for each measured protein by
fitting a generalized linear model using the ’glm’ function including all
covariates simultaneously. The significance of the each covariate’s contribution to
the total variance was estimated using an analysis of variance approach as
implemented by the ‘anova.glm’ function on the resulting generalized linear model.
Covariates were considered significant for a specific protein if their Bonferroni-
adjusted P-values were below 0.05 (P-valueo3.16� 10� 4, 0.05/158). Each PEA
measurement was individually adjusted for significant covariates (Supplementary
Data 2) and rank-transformed to normality by using the ‘rntransform’ function
available from the R-package GenABEL (v1.6.7)61. Correlations between pairs of
PEA measurements were carried out, on the adjusted and rank-transformed values,
using the ‘cor’ function applying Spearman’s Rho statistics on pairwise complete
observations.

The NSPHS is a population-based study and includes many relatives and special
care has to be attributed to avoid relational biases. Therefore, all genetic association
calculations were carried out using the GenABEL or ProbABEL61 software suites,
which has been developed to enable statistical analyses of genetic data of related
individuals. These packages includes functions for estimating the narrow-sense
heritability (h2) and performing genetic association analyses62 by adjusting for
pedigree structure. In brief, the heritability of each trait (protein abundance) is
estimated using a polygenic model as implemented by the ‘polygenic’ method in
the GenABEL R-package61. This heritability estimate represents the variance in the
phenotype that is explained by genetic factors and is estimated by maximizing the
likelihood of the trait-data under a polygenic model including fixed effects such as
covariates and relatedness among individuals (kinship). The result of the
‘polygenic’-call contains the inverse variance–covariance matrix of the estimates
and trait residuals and is included in the downstream association calculations
together with the posterior genotypic probabilities. Specifically, these calculations
are performed using the ProbABEL programme using the ‘--mmscore’ option.
Kinship matrix calculations were carried out using the autosomal markers
shared (n¼ 182,916) between the two types of genotyping arrays used in the
KA06 and KA09 cohorts. Contribution of single SNP’s to phenotypic variation
on the unadjusted ddCq values was calculated in R by fitting a linear model
(using ‘lm’) with ddCq values as response and the posterior genotypic probabilities
as terms and fraction of variance explained was determined from the resulting
model using ‘summary.lm’. Fraction of variance explained by a single SNP
in the adjusted phenotypes including effects of relatedness was estimated by
dividing the resulting chi-square test score (from ProbABEL) with the number
of samples used.

The KA06 cohort was used as discovery cohort in the GWAS and KA09 as
replication cohort. As we cannot rule out protein degradation effects due to
differences in storage time between the two cohorts, this split is favourable to a
random split where degradation effects could affect the association analysis.
Strict Bonferroni-adjusted P-values (P-valueo1.03� 10� 8, 0.05/4,840,842) were
used to report significance in the discovery cohort and the replication cohort
(P-valueo0.05/number of significant SNPs in the discovery cohort). We also ran a
combined analysis with the same cutoff used as in the discovery phase. For all
proteins with replicated hits, a conditional analysis was carried out in which the
genetic associations were re-calculated using the dosage values of the top-ranking
SNP as covariate. This analysis was only run in the combined material and on
chromosomes that had hits in that replicated in the discovery-replication phase and
P-value o5� 10� 8 was used as cutoff.
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