Article | Published:

Magnetic force microscopy reveals meta-stable magnetic domain states that prevent reliable absolute palaeointensity experiments

Nature Communications volume 5, Article number: 4548 (2014) | Download Citation

Abstract

Obtaining reliable estimates of the absolute palaeointensity of the Earth’s magnetic field is notoriously difficult. The heating of samples in most methods induces magnetic alteration—a process that is still poorly understood, but prevents obtaining correct field values. Here we show induced changes in magnetic domain state directly by imaging the domain configurations of titanomagnetite particles in samples that systematically fail to produce truthful estimates. Magnetic force microscope images were taken before and after a heating step typically used in absolute palaeointensity experiments. For a critical temperature (250 °C), we observe major changes: distinct, blocky domains before heating change into curvier, wavy domains thereafter. These structures appeared unstable over time: after 1-year of storage in a magnetic-field-free environment, the domain states evolved into a viscous remanent magnetization state. Our observations qualitatively explain reported underestimates from otherwise (technically) successful experiments and therefore have major implications for all palaeointensity methods involving heating.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Reconstructing the Holocene geomagnetic field. Earth Planet. Sci. Lett. 312, 497–505 (2011).

  2. 2.

    , & Geomagnetic field for 0–3 ka: 1. New data sets for global modeling. Geochem. Geophys. Geosyst. 10, Q06007 (2009).

  3. 3.

    & Palaeointensity results for historic lavas from Mt Etna using microwave demagnetization/remagnetization in a modified Thellier-type experiment. Geophys. J. Int. 139, 583–590 (1999).

  4. 4.

    & Detecting multidomain magnetic grains in Thellier palaeointensity experiments. Phys. Earth Planet. Inter. 125, 111–117 (2001).

  5. 5.

    , , & Experimental procedure to detect multidomain remanence during Thellier-Thellier experiments. Phys. Chem. Earth 28, 681–687 (2003).

  6. 6.

    & Palaeointensity study of the Hawaiian 1960 lava: implications for possible causes of erroneously high intensities. Geophys. J. Int. 153, 263–276 (2003).

  7. 7.

    & Strength of the geomagnetic field in the Cretaceous Normal Superchron: new data from submarine basaltic glass of the Troodos Ophiolite. Geochem. Geophys. Geosyst. 5, Q02H06 (2004).

  8. 8.

    & Testing the IZZI protocol of geomagnetic field intensity determination. Geochem. Geophys. Geosyst. 6, Q05H17 (2005).

  9. 9.

    & Reliable absolute palaeointensities independent of magnetic domain state. Earth Planet. Sci. Lett. 248, 508–517 (2006).

  10. 10.

    & Multiple-specimen absolute paleointensity determination: an optimal protocol including pTRM normalization, domain-state correction, and alteration test. Earth Planet. Sci. Lett. 297, 84–94 (2010).

  11. 11.

    Revisiting a domain-state independent method of palaeointensity determination. Phys. Earth Planet. Inter. 179, 21–31 (2010).

  12. 12.

    , & Exploring the potential of acquisition curves of the anhysteretic remanent magnetization as a tool to detect subtle magnetic alteration induced by heating. Phys. Earth Planet. Inter. 194-195, 71–84 (2012).

  13. 13.

    Théorie du trainage magnétique des ferromagnétiques en graines fines avec applications aux terres cuites. Ann. Geophys. 5, 99–136 (1949).

  14. 14.

    Some theoretical aspects of rock magnetism. Adv. Phys. 4, 191–243 (1955).

  15. 15.

    & Sur l'intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Geophys. 15, 285–376 (1959).

  16. 16.

    & Possible mechanisms causing failure of Thellier palaeointensity experiments in some basalts. Geophys. J. Int. 134, 554–572 (1998).

  17. 17.

    Physical basis of the Thellier-Thellier and related paleointensity methods. Phys. Earth Planet. Inter. 187, 118–138 (2011).

  18. 18.

    Time variations in geomagnetic intensity. Rev. Geophys. 41, 1004 (2003).

  19. 19.

    High-fidelity paleointensity determination from historic volcanoes in Japan. J. Geophys. Res. 117, B08101 (2012).

  20. 20.

    , , , & Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record. Nat. Commun. 4, 1–7 (2013).

  21. 21.

    , & A reliable absolute palaeointensity determination obtained from a non-ideal recorder. Earth Planet. Sci. Lett. 257, 545–563 (2007).

  22. 22.

    , , & Investigating the reasons for the failure of palaeointensity experiments: a study on historical lava flows from Mt. Etna (Italy). Geophys. J. Int. 149, 44–63 (2002).

  23. 23.

    Intensity of the geomagnetic field from recent Italian lavas using a new paleointensity method. Earth Planet. Sci. Lett. 27, 314–320 (1975).

  24. 24.

    , & A new quality check for absolute palaeointensities of the Earth magnetic field. Geophys. Res. Lett. 22, 3549–3552 (1995).

  25. 25.

    , & A comparison of a quasi-perpendicular method of absolute palaeointensity determination with other thermal and microwave techniques. Earth Planet. Sci. Lett. 257, 564–581 (2007).

  26. 26.

    , & An evaluation of the influence of the experimental cooling rate along with other thermomagnetic effects to explain anomalously low palaeointensities obtained for historic lavas of Mt Etna (Italy). Geophys. J. Int. 193, 1198–1215 (2013).

  27. 27.

    , , & Determination of the intensity of the Earth's magnetic field during archaeological times: reliability of the Thellier technique. Rev. Geophys. 26, 3–12 (1988).

  28. 28.

    & Improvements in procedure and paleointensity selection criteria (PICRIT-03) for Thellier and Thellier determinations: application to Hawaiian basaltic long cores. Phys. Earth Planet. Inter. 147, 155–169 (2004).

  29. 29.

    & Magnetic Domains Springer (1998).

  30. 30.

    , , , & Magnetic force microscopy imaging of domain walls in magnetite. Geophys. J. Int. 111, 417–423 (1992).

  31. 31.

    & Magnetic force microscope study of domain wall structures in magnetite. J. Appl. Phys. 79, 6064 (1996).

  32. 32.

    , , & Domain wall structures in single-crystal magnetite investigated by magnetic force microscopy. J. Geophys. Res. 103, 30551–30560 (1998).

  33. 33.

    & Magnetic domains and domain walls in pseudo-single-domain magnetite studied with magnetic force microscopy. J. Geophys. Res. 102, 22681–22694 (1997).

  34. 34.

    inOxide Minerals Vol. 3 ed. Rumble D. Ch. 8HG101–HG300 Short Course NotesMineralogical Society of America (1976).

  35. 35.

    & Cambridge Studies in Magnetism: Rock Magnetism: Fundamentals and Frontiers Cambridge University Press1–1 (1997).

  36. 36.

    & Kerr microscopy of small synthetic Ti-rich titanomagnetite grains. Geophys. Res. Lett. 23, 2807–2810 (1996).

  37. 37.

    Domain pattern observations in rock magnetism: progress and problems. Phys. Earth Planet. Inter. 46, 127–163 (1987).

  38. 38.

    Magnetic domain patterns observed on synthetic Ti-rich titanomagnetite as a function of temperature and in states of thermoremanent magnetization. J. Geophys. Res. 96, 3943–3972 (1991).

  39. 39.

    & Observations of viscous magnetization in multidomain magnetite. J. Geophys. Res. 111, B01103 (2006).

  40. 40.

    , & Magnetic domain structure of multidomain magnetite as a function of temperature: observation by Kerr microscopy. Phys. Earth Planet. Inter. 112, 55–80 (1999).

  41. 41.

    & Shape-induced pseudo-single-domain remanence. Geophys. J. Int. 138, 717–726 (1999).

  42. 42.

    , , , & Inferred time-and temperature-dependent cation ordering in natural titanomagnetites. Nat. Commun. 4, 1916 (2013).

  43. 43.

    & The use of MFM for investigating domain structures in modern permanent magnet materials. J. Magn. Magn. Mater. 190, 28–41 (1998).

  44. 44.

    , , & Measurement of the effects of the localized field of a magnetic force microscope tip on a 180° domain wall. J. Appl. Phys. 81, 5032–5034 (1997).

  45. 45.

    Approach to saturation analysis of hysteresis measurements in rock magnetism and evidence for stress dominated magnetic anisotropy in young mid-ocean ridge basalt. Phys. Earth Planet. Inter. 154, 299–307 (2006).

  46. 46.

    A multidomain model of thermoremanence. Earth Planet. Sci. Lett. 20, 440–446 (1973).

  47. 47.

    & The magnetic moments of non-uniformly magnetized grains. Phys. Earth Planet. Inter. 34, 186–194 (1984).

  48. 48.

    & Nucleation theory and domain states in multidomain magnetic material. Phys. Earth Planet. Inter. 37, 214–222 (1985).

  49. 49.

    , , & Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: effects of composition, crystal chemistry, and thermomagnetic methods. J. Geophys. Res. 111, B12S28 (2006).

  50. 50.

    & Microstress and microcoercivity in multidomain grains. J. Geophys. Res. 94, 10627–10636 (1989).

  51. 51.

    & Microcoercivity, bulk coercivity and saturation remanence in multidomain materials. J. Geophys. Res. 95, 7083–7090 (1990).

  52. 52.

    & Contribution of Fe2+ ions to the magnetocrystalline anisotropy constant K1 of Fe3-xTixO4 (0<x<0.1). J. Phys. C Solid State Phys. 7, 171–178 (1974).

  53. 53.

    Magnetocrsytalline anisotropy and magnetostriction of Fe3O4-Fe2TiO4 series—with special application to rock magnetism. Japan. J. Geophys. 4, 71–143 (1965).

  54. 54.

    & High-temperature magnetostriction of magnetite. J. Geophys. Res. 79, 2629–2633 (1974).

  55. 55.

    , , , & Paleomagnetic field intensity derived from non-SD: testing the Thellier IZZI technique on MD slag and a new bootstrap procedure. Earth Planet. Sci. Lett. 310, 213–224 (2011).

  56. 56.

    , & Transdomain thermoremanent magnetization. J. Geophys. Res. 99, 19741–19755 (1994).

  57. 57.

    et al. Three-dimensional micromagnetic calculations for magnetite using FFT. Geophys. J. Int. 124, 89–104 (1996).

  58. 58.

    , & Magnetic blocking temperatures of magnetite calculated with a three-dimensional micromagnetic model. J. Geophys. Res. 102, 22–22 (1997).

  59. 59.

    , & High-temperature magnetic stability of small magnetite particles. J. Geophys. Res. 108, 2281 (2003).

  60. 60.

    & Domain state stabilization by iterated thermal magnetization processes. Geophys. J. Int. 159, 486–494 (2004).

  61. 61.

    & Testing determinations of absolute paleointensity from the 1955 and 1960 Hawaiian flows. Earth Planet. Sci. Lett. 287, 420–433 (2009).

  62. 62.

    , , , & A magnetic study of titanomagnetite substituted by magnesium and aluminium. Phys. Earth Planet. Inter. 7, 437–444 (1973).

  63. 63.

    & Microscopic observation of titanomagnetite grains during palaeointensity experiments of volcanic rocks. Geophys. J. Int. 196, 145–159 (2013).

Download references

Acknowledgements

Tilly Bouten and Geertje ter Maat are gratefully acknowledged for their help and assistance with the Microprobe analyses and Scanning Electron Microscope, respectively. We thank Marja van Aken for her help with processing the MFM images. This research was funded by a grant from the Earth and Life Science Division (ALW) of the Netherlands Organization for Scientific Research (NWO).

Author information

Affiliations

  1. Paleomagnetic laboratory Fort Hoofddijk, Department of Earth Sciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands

    • Lennart V. de Groot
    •  & Mark J. Dekkers
  2. NGU, Geological Survey of Norway, Leiv Eirikssons vei, 7491 Trondheim, Norway

    • Karl Fabian
  3. Van't Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

    • Iman A. Bakelaar

Authors

  1. Search for Lennart V. de Groot in:

  2. Search for Karl Fabian in:

  3. Search for Iman A. Bakelaar in:

  4. Search for Mark J. Dekkers in:

Contributions

L.V.dG. designed the project and carried out the MFM experiments with the help of I.A.B.; L.V.dG., K.F. and M.J.D. interpreted the results and wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Lennart V. de Groot.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Figures 1-9, Supplementary Table 1 and Supplementary References

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ncomms5548

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.