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Poisson’s ratio of individual metal nanowires
Eoin K. McCarthy1, Allen T. Bellew1, John E. Sader1,2 & John J. Boland1

The measurement of Poisson’s ratio of nanomaterials is extremely challenging. Here we

report a lateral atomic force microscope experimental method to electromechanically

measure the Poisson’s ratio and gauge factor of individual nanowires. Under elastic loading

conditions we monitor the four-point resistance of individual metallic nanowires as a function

of strain and different levels of electrical stress. We determine the gauge factor of individual

wires and directly measure the Poisson’s ratio using a model that is independently validated

for macroscopic wires. For macroscopic wires and nickel nanowires we find Poisson’s ratios

that closely correspond to bulk values, whereas for silver nanowires significant deviations

from the bulk silver value are observed. Moreover, repeated measurements on individual

silver nanowires at different levels of mechanical and electrical stress yield a small spread in

Poisson ratio, with a range of mean values for different wires, all of which are distinct from the

bulk value.
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P
oisson’s ratio, n, is a fundamental mechanical parameter
that describes the ratio of the lateral to the longitudinal
strain of a material under mechanical load. The precise

value of the Poisson’s ratio is controlled by the material’s
microstructure. Greaves et al.1, reported on the importance
of correlating the underlying crystal structure to observed values
of n. For macroscopic isotropic materials, the Poisson’s ratio n is
strictly limited between � 1 and 0.5. However, for anisotropic
materials there are no such bounds and for crystalline solids n can
vary widely depending upon which axis is being strained2. Since
nanoscale materials can exhibit a range of different structures—
from polycrystalline to single crystals with different growth
directions—wide variations in n might be expected for a given
nanomaterial. The increased role of surface stress in nanoscale
materials may also be expected to modify n even in the case of
polycrystalline nanomaterials. In general, n is a difficult parameter
to measure even in macroscopic materials and is usually derived
from separate measurements of the shear and Young’s moduli.
Recently, Signorello et al.3, introduced a method to estimate n
using photoluminescence measurements—an approach that is
applicable only to direct semiconductors and requires a special
cladding to prevent quenching of the luminescence. Despite

significant computational activity4–6, at present there is no
straightforward experimental method to measure the Poisson’s
ratio n of nanoscale materials.

Here we describe a general approach for the measurements of n
in wire systems. Our approach is applicable to macro, micro and
nanoscale materials, although it is most readily implemented for
metal nanowires (NWs). This method involves the mechanical
manipulation of a double-clamped wire, while a simultaneous
four-point electrical resistance measurement is performed using a
precision source-measure unit that enables the simultaneous
measurement of the current through and the voltage across the
wire while the wire undergoes mechanical manipulation.

Results
Experimental method and application to macroscopic wires.
The experimental set-up is shown in Fig. 1a and its nanoscale
implementation in Fig. 1c. The former consists of a double-
clamped wire (0.125–0.05mm in diameter) that undergoes a
three-point bend by the controlled displacement of the middle of
the clamped wire length using a calibrated precision micrometre.
Electrical measurements are made using four alligator-clip

Clamps

Contact 1

Contact 2 Contact 3

Contact 4

Wire

Displacement
micrometer

Insulated loading
fork

Controller

Photodetector

Nanowire

Contacts

Break box
(electrical
control)

1 2

V

A

Trench 3 4

SiO2

Si

Data output

Displacement (nm )

F
or

ce
 (

μN
)

R
es

is
ta

nc
e 

(Ω
)

AFM tip

AFM laser

Figure 1 | Experimental design for macroscopic and nanoscale wires. (a) Photograph of the bulk wire three-point bending and four-point electrical

apparatus. The wire is mechanically clamped and then loaded using a calibrated micrometre. Electrical contact is achieved via four crocodile clips.

(b) AFM image of an individual suspended AgNW with four-contact electrodes (scale bar, 4mm). (c) Schematic representation of the nanowire

electromechanical experiment. The AFM allows for accurate mechanical characterization by lowering the AFM tip below the axis of the nanowire, into a

predefined trench, and laterally driving the tip in the x–y plane perpendicular to the nanowire long axis until the AFM tip loads the nanowire. The lateral

signal from the AFM tip torsional motion during nanowire loading is measured in unison with the four-point resistance giving resistance– and force–

displacement curves. A full description of the experimental method can be found in the methods section.
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contacts attached to the wire as shown; the current is sourced at
the outer contacts by applying a fixed source voltage, while the
voltage drop across the wire and the current through the wire
(which changes as the wire resistance increases due to manip-
ulation) are measured. The latter are then combined to provide a
measurement of the wire resistance. Figure 2a shows the mea-
sured change in voltage, Vm, and measured current, Im, through a
(macroscopic) 125 mm diameter phosphorous bronze wire, as a
function of wire displacement. The mechanical manipulation is
completely elastic and the measured values return to the original
level when the wire is unloaded. Note that deviations in the data
are frequently observed at very small displacements as the elec-
trically isolated manipulation fork gains purchase on the wire.
Figure 2b shows the corresponding resistance change for this
polycrystalline phosphor bronze wire as a function
of lateral displacement, which is the result of the increase in
length and reduction in cross-section of the wire during elastic
manipulation.

The observed relative change in resistance (DR/R) as a function
of the normalized displacement per unit length (Dz/L) is analyzed
in terms of a new model that accounts for bending and tensile
deformations. The DR/R term is experimentally derived from the
resistance change divided by the initial resistance prior to
mechanical manipulation. The Dz/L term is given by the NW
displacement at the point of loading, Dzcenter, divided by the

original length, L, of the clamped wire. Our model predicts:

Dr
r

¼DR
R

� 2ð1þ 2nÞ Dzcentre
L

� �2

ð1Þ

where r is the wire resistivity and n is Poisson’s ratio; the full
derivation is provided in Supplementary Discussion. Equation (1)
is valid when the displacement is greater than the wire radius,
consistent with the conditions in the present experiments (see
Fig. 2). Here we demonstrate our method for metal wires since in
the elastic regime Dr is expected to be zero for metals, and a fit of
equation (1) to the data can be used to determine the value of n.

Using this approach we determine n for bulk (macroscopic)
cylindrical metal wires (phosphor bronze, copper and silver) and
obtained values that are in excellent agreement with known
values for these isotropic materials. Figure 2b–d show the fit of
equation (1) to the experimental data for each wire. We find the
value of Poisson’s ratio to be n¼ 0.337±0.002 (Standard
deviation) for phosphor bronze (bulk¼ 0.33), 0.363±0.006 for
copper (bulk¼ 0.355), and 0.384±0.009 for silver (polycrystalline
bulk value is 0.37). In all instances the experimental values for
Poisson’s ratio n agree closely with the corresponding bulk value,
which validates both the experimental approach and the model
used herein (the full data set is presented in Supplementary
Table 1).
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Figure 2 | Macroscopic wire experimental data. (a) Measured current, Im, and measured voltage, Vm, as a function of displacement for a 125-mm
diameter phosphor bronze wire. (b) The relative change in resistance as a function of Dz/L for an individual 125-mm diameter phosphor bronze wire.

The fit to equation (1) is given by the red curve showing the model that can be applied from macro to nanoscale materials. (c) The relative change in

resistance as a function of Dz/L for an individual 100-mm diameter Cu wire. The fit to equation (1) is given by the red curve. (d) The relative change

in resistance as a function of Dz/L for an individual 50-mm diameter Ag wire. The fit to equation (1) is given by the red curve. In a, b and c the x–y error

bars originate from the resistance and micrometre experimental uncertainty. Error in n is the standard error (one sigma) from the fit of equation (1).

(The typical current density applied is B246Am� 2).
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Application to nanoscale wires. To extend this approach to NWs
we use the set-up shown in Fig. 1c, which consists of a closed-
loop Asylum MFP-3D atomic force microscope (AFM) combined
with a home-built probe station capable of making accurate four-
contact electrical measurements. NW mechanical properties are
measured using an AFM lateral three-point bending manipula-
tion technique developed previously7–10. This allows the full
spectrum of mechanical properties to be measured, ranging from
elastic to plastic response and failure, and during which a
simultaneous measurement of the resistance change of the NW is
recorded. The wire is placed over a trench to accurately define the
pinning length and to eliminate friction with the substrate during
mechanical manipulation, AFM image in Fig. 1b (see
Supplementary Figs 3 and 4, and Supplementary notes 1 and 2)).

The relative resistance change, DR/R, as function of Dz/L is
studied for nickel NWs (NiNW) and silver NWs (AgNW) of
diameters between 50 and 90 nm. The force–displacement curve
for each NW is recorded simultaneously with the four-point
measured current, Im, and measured voltage, Vm (a representative
AgNW IV curve is shown in Supplementary Fig. 2). Figure 3a–c
shows typical force F, Vm and Im curves as a function
of displacement for an individual metallic NW. In all
experiments the NW is elastically loaded and unloaded, as shown

in the force–displacement curve in Fig. 3a. The curve is non-
linear and symmetric about the dashed line, indicating full elastic
recovery after unloading. The Young’s modulus is extrapolated
from the red line fit to the generalized model10 (see
Supplementary Figure 1 and Supplementary Discussion),
yielding 86±8GPa in this case. The expected force dependence
on displacement is observed, with no plastic deformation. This is
evident from the definite and sharp change in force as the AFM
tip reverses direction from the loading to the unloading cycle.
During loading, Vm (Fig. 3b) increases by B4.5% to a maximum
at the point of maximum load, and then recovers to the previous
unloaded value. Conversely, Im decreases byo1% during loading,
Fig. 3c, to a minimum corresponding to the maximum load. The
drop in Im is due to the increased resistance of the wire during
manipulation and the fixed source voltage employed in these
experiments and is accompanied by an even larger increase in Vm.
Both Im and Vm completely recover to their unloaded values.
Measurement of Im and Vm is then used to determine DR/R at
each point during the manipulation. Interestingly, we do not
observe an increase in resistance in the unloaded wire at the
current densities employed here, see Supplementary Figs 5 and 6.
Moreover the original resistance is always recovered after
mechanical unloading, regardless of the current density or the
electrical/mechanical cycling history. These results demonstrate
that there are no irreversible changes in the wire and that the wire
behaviour is electrically ohmic, that is, there is no current-
induced heating of the NW (The temperature dependence of the
resistance can be written as R (TþDT)¼R (T) (1þa DT), where
aB0.004K� 1 for metals). Given the NW resistance is typically
15O, a temperature increase of DT¼ 1K will cause a resistance
increase of 0.06O, which is well above the 0.001O sensitivity of
our measurement (see Figs 2 and 3). Further details are presented
in Supplementary Figs 5 and 6.

Figure 3d shows measured values of DR/R as a function of
Dz/L for a 40-nm radius NiNW, for which the quadratic
dependence (filled squares) on Dz/L predicted by equation (1)
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Figure 3 | Nanoscale wire experimental data. (a–c) Force, measured current and measured voltage as a function of displacement. The red curve in a is

a fit to the generalized mechanical model10. (d) The relative change in resistance and resistivity as a function of Dz/L for an individual 40-nm radius NiNW.

See Supplementary Figs 8 and 9 showing the change in resistance and resistivity as a function of Dz/L for multiple NiNW and AgNW tested. (Typical

source voltage of 25mV).

Table 1 | Measured poisson’s ratios for NiNWs.

NW radius (nm) Poisson’s ratio, n

39 0.335±0.014
40 0.325±0.006
42 0.316±0.004
43 0.306±0.024
44 0.304±0.008

NW, nanowire.
n is the Poisson’s ratio. Uncertainty is one standard deviation.
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is clearly seen. We note that the NiNW data is noisy when
compared with AgNWs, see Fig. 4a. This is due to the presence of
an oxide and requires that individual contacts to these NiNWs

have to be separately formed through a process known as resistive
switching (see Supplementary Fig. 7). No effort is made to remove
the surface oxide. Our model is still applicable since the surface
oxide layer is very thin and its Young’s modulus is significantly
less than that of Ni metal11 so that the oxide does not affect the
wire deformation. Dr/r is the residual following the fit of DR/R to
the quadratic term in equation (1) and is shown as the black
circles in Fig. 3d. As expected for a metal NW, r does not change
with increasing Dz/L so that the observed resistance change is
fully accounted for by the increased NW length and the reduction
in cross-section during loading. The Poisson’s ratio is determined
from the quadratic coefficient to the fit of equation (1). In
addition, this analysis provides an estimate of the gauge factor
(GF), which is defined as the relative change in resistance as a
function of strain, e¼DL/L¼ 2(Dz/L)2, so that from equation (1)
we can write:

GF¼DR
R

�
e¼ 1þ 2n ð2Þ

Figure 3d shows the measured value of n for a 40-nm radius
NiNW, which is found to be 0.325±0.006, in excellent agreement
with the bulk value of 0.31. Several NiNWs (39–44 nm in radius)
are analyzed using this same approach, resulting in values of n
shown in Table 1 (see Supplementary Fig. 8 for details). The
average value of Poisson’s ratio is found to be 0.317±0.011, with
very little spread in values among the wires, and with all wires
exhibiting values close to the known bulk value of 0.31. The GF
(both measured directly and evaluated using equation (2)) gives
identical results with values of 1.635±0.058. Based on these data,
the Poisson’s ratio and GF for a polycrystalline NiNW are
essentially identical to those of a bulk macroscopic Ni wire.

We perform identical measurements on a range of AgNWs
with radii between 27 and 32 nm. Figure 4a shows the measured
values of DR/R as a function of Dz/L for a 27-nm radius AgNW,
and the quadratic dependence (filled squares) on Dz/L predicted
by equation (1). As expected, the behaviour is similar to that for
NiNWs, both being metals, but the signal-to-noise ratio is greatly
improved due to the absence of a surface oxide. Again, as
expected for a metal there is no evident change in Dr/r during
deformation. The results for the range of AgNWs studied are
summarized in Table 2. The literature bulk polycrystalline value
of n for Ag12 is 0.37 and the result for bulk single crystal Ag
strained along the [110] direction is 0.36 (see below). In contrast
to the tight spread in n about the bulk isotropic value observed for
the macroscopic wires in Fig. 2 and the NiNWs in Table 1, the
AgNWs in Table 2 display large variations from the bulk value,
with distinct (and repeatable) values of n for different wires (the
full data set is presented in Supplementary Table 1).

Detailed measurement on an individual AgNW. To probe the
origin of the different values of n in Table 2, and to rule out any
possibility of unexpected changes in the wire structure due to
loading, we perform a detailed analysis on an individual 27 nm
AgNW. This involves a series of experiments in which the same
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Figure 4 | Detailed characterization on 27 nm AgNW. (a) A typical curve

showing the relative change in resistance as a function of Dz/L for an
individual 27-nm radius AgNW (E¼86±8GPa). (b) Twenty-eight

independent Poisson’s ratio measurements (grey filled symbols) on a

27-nm radius AgNW at increasing and decreasing current density levels.

The red triangular stepped plot shows the current density conditions at

which each of the corresponding Poisson’s ratio values are measured. The

dashed line represents n for isotropic bulk silver (0.37). (c) Histogram

showing the mean value of Poisson’s ratio shown in b is 0.225 with a

standard deviation of 0.009. The error bars in b are given by the standard

fitting error of equation (1) to each DR/R versus Dz/L curve, including the

error in the length which introduces an uncertainty of o1.5%.

Table 2 | Measured poisson’s ratios for AgNWs.

NW radius (nm) Poisson’s ratio, n

27 0.225±0.009
30 0.191±0.003
32 0.601±0.023
39 0.294±0.015

NW, nanowire.
n is the Poisson’s ratio. Uncertainty is one standard deviation.
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wire is mechanically manipulated while its resistance is measured
at a series of increasing and decreasing current density steps. The
Poisson’s ratio values determined from these experiments are
shown in Fig. 4b. The mean Poisson ratio obtained by averaging
over the 28 individual experiments is 0.225±0.009, significantly
less than the bulk value, but consistent with the data in Table 2
obtained for other AgNWs. These experiments confirm
that values of n recovered from the present method are well
defined, repeatable and independent of the current densities
employed or the history of the wire. Figure 4c shows a histogram
analysis of the data recorded from the 27 nm AgNW. A Gaussian
distribution of measurement values about the mean is
observed with a relative standard deviation of 4%, thus providing
evidence of the technique’s robustness and ability to accurately
determine Poisson’s ratio (the full data set is presented in
Supplementary Table 1).

Discussion
To explain the different behaviours of NiNWs and AgNWs we
consider the possible roles of current density and wire material
structure. Both wires yield values of n that are independent of
current density. Since the value of nmust be sensitive to the wire’s
material structure, this indicates that the wires do not undergo
any change in material structure as a result of current flow. This
conclusion is consistent with the fact that all measured properties
of the wires (resistance, stiffness) are fully recovered even after the
wires have been exposed to the highest current densities reported
here. NiNWs yield values of n that are close to the bulk value with

similar values for NWs of different dimensions. On the other
hand, AgNWs shows a large spread in values even though
repeated measurements on the same wire are reproducible with
high precision over a wide range of current densities. Together,
these point to a fundamental difference in the material structure
of AgNWs and NiNWs. The NiNWs used in this work are
polycrystalline and similar in material structure to the macro-
scopic wires described in Fig. 2. This is clearly seen in the
transmission electron microscopy image shown in Fig. 5a. In
contrast, transmission electron microscopy analysis also shows
that the AgNWs are single crystals that grow along the [110]
direction with pentagonal {111} twin planes running down the
entire wire length (see Supplementary Fig. 10).

While the Poisson’s ratio for isotropic/polycrystalline materials
such as the NiNWs is bounded so that � 1rnr½, no such
bounds exists for anisotropic materials such as the AgNWs
considered in this work. Theoretical analysis typically considers
the components of the transverse strain in specific perpendicular
directions to the applied stress. Importantly, Baughman et al.13

showed that for a [110] applied stress in cubic materials, that is,
identical to the direction of the applied stress in our AgNWs, the
Poisson’s ratios in the ½1�10� and [001] directions are bounded
between � 1ono0 and 0ono2, respectively13. Using known
elastic constants14, we calculate Poisson’s ratios of � 0.094 and
0.82 in the two orthogonal directions transverse to the loading
direction13, yielding a net Poisson’s ratio of 0.36 for a single
crystal Ag specimen strained along the [110] direction15.
Explanation for the different values of n found for different
AgNWs remains an open question. One possibility is that the
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measured variations in Poisson’s ratio are related to different
twinning structures in the AgNWs. Pentagonally twinned NWs
are known to grow under conditions that produce significant
stress16. The five (111) bounded subunits that comprise the wire
cannot completely fill space, resulting in a solid angle deficit of
7.35 degrees shown in Fig. 5b, which is overcome at the expense
of incorporating lattice strain and or defects within these wires17.
Moreover, it is known that the position of pentagonal twinning
axis can vary from wire to wire leading to different degrees of
stress relaxation17. Further theoretical and experimental work is
required to connect these expected changes in microstructure to
the observed variations in Poisson’s ratio. The enabling capacity
to measure the Poisson’s ratio of NWs developed here is thus
expected to be pivotal in addressing this and other important
questions in nanoscale materials science.

In conclusion, we have introduced a method that provides a
robust and precise measure of the Poisson’s ratio of individual
metal NWs. This capability will enable new insights into the
mechanical properties of nanoscale materials and will undoubtedly
raise fundamental questions that will increase our understanding
of these important materials. This approach will also enable
researchers to evaluate the electromechanical performance of
individual wires, their operation in nanoelectromechanical devices
and the properties of flexible NW-based materials and composites.

Methods
Sample preparation. AgNWs and NiNWs are purchased from Seashell
Technology (http://www.seashelltech.com/) and Nanomaterials.it (http://www.
nanomaterials.it/), respectively. Samples for electromechanical experiments are
prepared by drop casting a NW suspension on pre-patterned trenches on a SiO2

substrate. Trenches (250 nm deep) are fabricated using conventional ultra violet-
lithography and CH4/Ar reactive-ion-etching (RIE). Contacting electrodes are
defined by Electron-Beam-Lithography, with individual NWs contacted by four,
120-nm thick, electron beam evaporated silver electrodes.

Mechanical characterization. All mechanical measurements are performed using
75-kHz rectangular cantilevers purchased from Budget sensors. A complete
description of the tip calibration procedure is described extensively elsewhere8.
An Asylum MFP-3D AFM equipped with a lateral lithography suite and closed x–y
loop is used to elastically load the NWs in ambient conditions at room temperature.
Prior to manipulation the NW long axis is aligned parallel to the cantilever axis to
avoid slippage between the NW and the tip during mechanical deformation.

Electrical characterization. Prior to electromechanical experiments individual
NWs are electrically characterized using the standard four-point method on a
stand-alone Karl Suss probe station supported by a Keithley 4200 SCS parameter
analyzer. The resistance and resistivity values measured on the probe station and
on the home-built electromechanical system (below) are in close agreement.

Electromechanical measurements. Electromechanical experiments are per-
formed on a home-built four-point electrical apparatus attached to an Asylum
MFP-3D AFM. The electrical apparatus consists of a Keithley 6430 SMU and
Keithley 2000 multimeter controlled via a National Instruments LabView interface.
Connection to the sample is made via standard coaxial cabling to a home-built
support frame in which a chip carrier is mounted. The electrodes contacting the
NW on the fabricated SiO2 substrate are connected to a chip carrier by Au wire
bonding using a standard wire bonder system. Importantly, the support frame sits
flat on the AFM scanner with access to the cables from below. This set-up allows
for the simultaneous measurement of the mechanical and electrical properties.

AFM tip loading procedure. The loading cycle procedure is performed as follows:
(1) the AFM tip loads the NW to a specific user defined displacement, (2) when the
tip reaches this displacement, it reverses its direction and unloads the NW at the
same velocity (20 nm s� 1) as the initial loading, (3) this results in the inverted V
shaped f–d curve seen throughout.

Error analysis. The reported uncertainty in the measured values of n is one
standard deviation from the derived parameter, given by the fit of equation (1)
to the data, derived using standard error propagation. The measured physical

dimensions of the clamped length of the wire using AFM have o1.5% uncertainty;
this uncertainty is determined by comparison between AFM and scanning electron
microscope images. AFM length measurements are necessarily a lower bound due
to tip convolution.
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