Contact-induced clustering of syntaxin and munc18 docks secretory granules at the exocytosis site


Docking of secretory vesicles at the plasma membrane is a poorly understood prerequisite for exocytosis. Current models propose raft-like clusters containing syntaxin as docking receptor, but direct evidence for this is lacking. Here we provide quantitative measurements of several exocytosis proteins (syntaxin, SNAP25, munc18, munc13 and rab3) at the insulin granule release site and show that docking coincides with rapid de novo formation of syntaxin1/munc18 clusters at the nascent docking site. Formation of such clusters prevents undocking and is not observed during failed docking attempts. Overexpression of syntaxins’ N-terminal Habc-domain competitively interferes with both cluster formation and successful docking. SNAP25 and munc13 are recruited to the docking site more than a minute later, consistent with munc13’s reported role in granule priming rather than docking. We conclude that secretory vesicles dock by inducing syntaxin1/munc18 clustering in the target membrane, and find no evidence for preformed docking receptors.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Stable docking requires clustered syntaxin.
Figure 2: Exocytosis occurs only from docked granules.
Figure 3: Time course of protein binding during granule events.
Figure 4: Munc18 and rab3a colocalize with granules deeper in the cell.
Figure 5: Syntaxin Habc fragment prevents granule-associated clusters and docking.
Figure 6: Syntaxin clusters arise from short temporary binding of single molecules to the docking site.
Figure 7: Model of secretory granule docking.


  1. 1

    Klenchin, V. A. & Martin, T. F. Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie 82, 399–407 (2000).

  2. 2

    Barg, S. et al. Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells. Neuron 33, 287–299 (2002).

  3. 3

    Parsons, T. D., Coorssen, J. R., Horstmann, H. & Almers, W. Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron 15, 1085–1096 (1995).

  4. 4

    Hugo, S. et al. Deciphering dead-end docking of large dense core vesicles in bovine chromaffin cells. J. Neurosci. 33, 17123–17137 (2013).

  5. 5

    Olofsson, C. et al. Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Archiv. Eur. J. Physiol. 444, 43–51 (2002).

  6. 6

    Michael, D. J., Xiong, W., Geng, X., Drain, P. & Chow, R. H. Human insulin vesicle dynamics during pulsatile secretion. Diabetes 56, 1277–1288 (2007).

  7. 7

    Barg, S. et al. Fast exocytosis with few Ca(2+) channels in insulin-secreting mouse pancreatic B cells. Biophys. J. 81, 3308–3323 (2001).

  8. 8

    Rorsman, P. et al. The cell physiology of biphasic insulin secretion. News. Physiol. Sci. 15, 72–77 (2000).

  9. 9

    Porksen, N. The in vivo regulation of pulsatile insulin secretion. Diabetologia 45, 3–20 (2002).

  10. 10

    Toonen, R. F. et al. Dissecting docking and tethering of secretory vesicles at the target membrane. EMBO J. 25, 3725–3737 (2006).

  11. 11

    Nofal, S., Becherer, U., Hof, D., Matti, U. & Rettig, J. Primed vesicles can be distinguished from docked vesicles by analyzing their mobility. J. Neurosci. 27, 1386–1395 (2007).

  12. 12

    Ohara-Imaizumi, M. et al. Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J. Cell Biol. 177, 695–705 (2007).

  13. 13

    de Wit, H., Cornelisse, L. N., Toonen, R. F. & Verhage, M. Docking of secretory vesicles is syntaxin dependent. PLoS ONE 1, e126 (2006).

  14. 14

    Hammarlund, M., Palfreyman, M. T., Watanabe, S., Olsen, S. & Jorgensen, E. M. Open syntaxin docks synaptic vesicles. PLoS Biol. 5, e198 (2007).

  15. 15

    Voets, T. et al. Munc18-1 promotes large dense-core vesicle docking. Neuron 31, 581–591 (2001).

  16. 16

    de Wit, H. et al. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell 138, 935–946 (2009).

  17. 17

    Weimer, R. M. et al. Defects in synaptic vesicle docking in unc-18 mutants. Nat. Neurosci. 6, 1023–1030 (2003).

  18. 18

    Han, G. A. et al. Munc18-1 domain-1 controls vesicle docking and secretion by interacting with syntaxin-1 and chaperoning it to the plasma membrane. Mol. Biol. Cell 22, 4134–4149 (2011).

  19. 19

    Wu, Y. et al. All three components of the neuronal SNARE complex contribute to secretory vesicle docking. J. Cell Biol. 198, 323–330 (2012).

  20. 20

    Reist, N. E. et al. Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila. J. Neurosci. 18, 7662–7673 (1998).

  21. 21

    Kasai, K. et al. Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation. J. Clin. Invest. 115, 388–396 (2005).

  22. 22

    Tsuboi, T. & Fukuda, M. Rab3A and Rab27A cooperatively regulate the docking step of dense-core vesicle exocytosis in PC12 cells. J. Cell Sci. 119, 2196–2203 (2006).

  23. 23

    Coppola, T. et al. Pancreatic beta-cell protein granuphilin binds Rab3 and Munc-18 and controls exocytosis. Mol. Biol. Cell 13, 1906–1915 (2002).

  24. 24

    Lang, T., Margittai, M., Holzler, H. & Jahn, R. SNAREs in native plasma membranes are active and readily form core complexes with endogenous and exogenous SNAREs. J. Cell Biol. 158, 751–760 (2002).

  25. 25

    Arac, D. et al. Close membrane-membrane proximity induced by Ca(2+)-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol. 13, 209–217 (2006).

  26. 26

    Honigmann, A. et al. Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment. Nat. Struct. Mol. Biol. 20, 679–686 (2013).

  27. 27

    Khuong, T. M. et al. Synaptic PI(3,4,5)P3 is required for Syntaxin1A clustering and neurotransmitter release. Neuron 77, 1097–1108 (2013).

  28. 28

    Bar-On, D. et al. Super-resolution imaging reveals the internal architecture of nano-sized syntaxin clusters. J. Biol. Chem. 287, 27158–27167 (2012).

  29. 29

    Sieber, J. J. et al. Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317, 1072–1076 (2007).

  30. 30

    Knowles, M. et al. Single secretory granules of live cells recruit syntaxin-1 and synaptosomal associated protein 25 (SNAP-25) in large copy numbers. Proc. Natl Acad. Sci. USA 107, 20810–20815 (2010).

  31. 31

    Lang, T. et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J. 20, 2202–2213 (2001).

  32. 32

    Pertsinidis, A. et al. Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ. Proc. Natl Acad. Sci. USA 110, E2812–E2820 (2013).

  33. 33

    Aoyagi, K. et al. The activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphosphate microdomains at syntaxin clusters. J. Biol. Chem. 280, 17346–17352 (2005).

  34. 34

    van den Bogaart, G. et al. Membrane protein sequestering by ionic protein-lipid interactions. Nature 479, 552–555 (2011).

  35. 35

    Zilly, F. E., Sorensen, J. B., Jahn, R. & Lang, T. Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol. 4, e330 (2006).

  36. 36

    Barg, S., Knowles, M., Chen, X., Midorikawa, M. & Almers, W. Syntaxin clusters assemble reversibly at sites of secretory granules in live cells. Proc. Natl Acad. Sci. USA 107, 20804–20809 (2010).

  37. 37

    Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382 (1999).

  38. 38

    Richmond, J. E., Davis, W. S. & Jorgensen, E. M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat. Neurosci. 2, 959–964 (1999).

  39. 39

    Betz, A., Okamoto, M., Benseler, F. & Brose, N. Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J. Biol. Chem. 272, 2520–2526 (1997).

  40. 40

    Ma, C., Li, W., Xu, Y. & Rizo, J. Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex. Nat. Struct. Mol. Biol. 18, 542–549 (2011).

  41. 41

    Gromada, J. et al. CaM kinase II-dependent mobilization of secretory granules underlies acetylcholine-induced stimulation of exocytosis in mouse pancreatic B-cells. J. Physiol. 518, (Pt 3): 745–759 (1999).

  42. 42

    Ashery, U. et al. Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J. 19, 3586–3596 (2000).

  43. 43

    Sieber, J. J., Willig, K. I., Heintzmann, R., Hell, S. W. & Lang, T. The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys. J. 90, 2843–2851 (2006).

  44. 44

    Zhou, P. et al. Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion. EMBO J. 32, 159–171 (2013).

  45. 45

    Rickman, C. et al. t-SNARE protein conformations patterned by the lipid microenvironment. J. Biol. Chem. 285, 13535–13541 (2010).

  46. 46

    Smith, M. B. et al. Interactive, computer-assisted tracking of speckle trajectories in fluorescence microscopy: application to actin polymerization and membrane fusion. Biophys. J. 101, 1794–1804 (2011).

  47. 47

    Sbalzarini, I. F. & Koumoutsakos, P. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182–195 (2005).

  48. 48

    Schutz, D., Zilly, F., Lang, T., Jahn, R. & Bruns, D. A dual function for Munc-18 in exocytosis of PC12 cells. Eur. J. Neurosci. 21, 2419–2432 (2005).

  49. 49

    Fernandez-Busnadiego, R. et al. Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J. Cell Biol. 188, 145–156 (2010).

  50. 50

    Hodel, A., Schafer, T., Gerosa, D. & Burger, M. M. In chromaffin cells, the mammalian Sec1p homologue is a syntaxin 1A-binding protein associated with chromaffin granules. J. Biol. Chem. 269, 8623–8626 (1994).

  51. 51

    Kee, Y. & Scheller, R. H. Localization of synaptotagmin-binding domains on syntaxin. J. Neurosci. 16, 1975–1981 (1996).

  52. 52

    Zhong, P. et al. An alpha-helical minimal binding domain within the H3 domain of syntaxin is required for SNAP-25 binding. Biochemistry 36, 4317–4326 (1997).

  53. 53

    Shi, L., Kummel, D., Coleman, J., Melia, T. J. & Giraudo, C. G. Dual roles of Munc18-1 rely on distinct binding modes of the central cavity with Stx1A and SNARE complex. Mol. Biol. Cell 22, 4150–4160 (2011).

  54. 54

    Kabachinski, G., Yamaga, M., Kielar-Grevstad, D. M., Bruinsma, S. & Martin, T. F. CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis. Mol. Biol. Cell 25, 508–521 (2014).

  55. 55

    Betz, A. et al. Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30, 183–196 (2001).

  56. 56

    Coppola, T. et al. Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25, and synaptotagmin. J. Biol. Chem. 276, 32756–32762 (2001).

  57. 57

    Zhu, D. et al. Syntaxin-3 regulates newcomer insulin granule exocytosis and compound fusion in pancreatic beta cells. Diabetologia 56, 359–369 (2013).

  58. 58

    Kasai, K., Fujita, T., Gomi, H. & Izumi, T. Docking is not a prerequisite but a temporal constraint for fusion of secretory granules. Traffic 9, 1191–1203 (2008).

  59. 59

    Gembal, M., Detimary, P., Gilon, P., Gao, Z. Y. & Henquin, J. C. Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells. J. Clin. Invest. 91, 871–880 (1993).

  60. 60

    Lorenz, M. A., El Azzouny, M. A., Kennedy, R. T. & Burant, C. F. Metabolome response to glucose in the beta-cell line INS-1 832/13. J. Biol. Chem. 288, 10923–10935 (2013).

  61. 61

    Straub, S. G., Shanmugam, G. & Sharp, G. W. Stimulation of insulin release by glucose is associated with an increase in the number of docked granules in the beta-cells of rat pancreatic islets. Diabetes 53, 3179–3183 (2004).

  62. 62

    Ostenson, C. G., Gaisano, H., Sheu, L., Tibell, A. & Bartfai, T. Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. Diabetes 55, 435–440 (2006).

  63. 63

    Hohmeier, H. E. et al. Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49, 424–430 (2000).

  64. 64

    Stevens, D. R. et al. Identification of the minimal protein domain required for priming activity of Munc13-1. Curr. Biol. 15, 2243–2248 (2005).

  65. 65

    Handley, M. T., Haynes, L. P. & Burgoyne, R. D. Differential dynamics of Rab3A and Rab27A on secretory granules. J. Cell Sci. 120, 973–984 (2007).

  66. 66

    An, S. J. & Almers, W. Tracking SNARE complex formation in live endocrine cells. Science 306, 1042–1046 (2004).

  67. 67

    Prekeris, R., Yang, B., Oorschot, V., Klumperman, J. & Scheller, R. H. Differential roles of syntaxin 7 and syntaxin 8 in endosomal trafficking. Mol. Biol. Cell 10, 3891–3908 (1999).

  68. 68

    Yang, L. et al. Secretory vesicles are preferentially targeted to areas of low molecular SNARE density. PLoS ONE 7, e49514 (2012).

  69. 69

    Taraska, J. W., Perrais, D., Ohara-Imaizumi, M., Nagamatsu, S. & Almers, W. Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc. Natl Acad. Sci. USA 100, 2070–2075 (2003).

  70. 70

    Henriques, R. et al. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat. Methods 7, 339–340.

Download references


We thank W. Almers and E. Gylfe for equipment; E. Gylfe, P. Rorsman, J. Taraska and R. Chandler for comments on earlier versions of the manuscript; H. Mulder for cells; J. Rettig, W. Almers, R. Burgoyne and Q. Low for plasmids; and J. Saras for technical assistance. The work was supported by the Swedish Science Council, Swedish Diabetes Society, European Foundation for the Study of Diabetes, Diabetes Wellness Network Sweden, Barndiabetesfonden, and the foundations of NovoNordisk-, Göran Gustafsson-, Family Ernfors-, Zetterlings- and OE&E Johanssons.

Author information

N.R.G. and S.B. performed experiments and analysis. S.B. wrote the paper.

Correspondence to Sebastian Barg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-7 and Supplementary References (PDF 4573 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.