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Metabolic efficiency underpins performance
trade-offs in growth of Arabidopsis thaliana
Sabrina Kleessen1, Roosa Laitinen2, Corina M. Fusari3,4, Carla Antonio5,6, Ronan Sulpice3,7, Alisdair R. Fernie5,

Mark Stitt3 & Zoran Nikoloski1

Growth often involves a trade-off between the performance of contending tasks; metabolic

plasticity can play an important role. Here we grow 97 Arabidopsis thaliana accessions in three

conditions with a differing supply of carbon and nitrogen and identify a trade-off between two

tasks required for rosette growth: increasing the physical size and increasing the protein

concentration. We employ the Pareto performance frontier concept to rank accessions based

on their multitask performance; only a few accessions achieve a good trade-off under all three

growth conditions. We determine metabolic efficiency in each accession and condition by

using metabolite levels and activities of enzymes involved in growth and protein synthesis.

We demonstrate that accessions with high metabolic efficiency lie closer to the performance

frontier and show increased metabolic plasticity. We illustrate how public domain data can be

used to search for additional contending tasks, which may underlie the sub-optimality in

some accessions.
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L
iving organisms perform many different and sometimes
contending tasks, leading to trade-offs in which optimal
performance of one task comes at the cost of a sub-optimal

performance of another task. Trade-offs are influenced by the
environment and their resolution depends on metabolic resources
and plasticity1,2. One important environmental variable affecting
plant growth is resource availability3–6. We first ask whether there
is a trade-off between two tasks during vegetative growth of
Arabidopsis thaliana: the maximization of physical size and the
maximization of protein concentration. We then apply two
methods to rank accessions: the first based solely on the
performance of tasks, and the second based on the efficiency
with which metabolic resources are deployed to perform tasks. In
addition, we investigate whether the trade-off and the ranking of
accessions are affected by the availability of carbon (C) and
nitrogen (N) and the way in which it shapes the accession-specific
metabolic profiles.

Plants use light energy to transform CO2 and inorganic nutrients
into a plethora of metabolic precursors that are used to drive
growth. As plants are sessile, resource acquisition is constrained by
their physical size. In land plants, the majority of a mature cell is
occupied by the vacuole, allowing the generation of a much larger
physical size per unit protein than is usually obtained by microbes
or animals7. For simplification, we do not consider the impact of
shape and phenology on the relation between physical size and
resource acquisition. On the other hand, proteins are required to
catalyse the transformation of resources into biomass. In particular,
the majority of the protein in a plant leaf is involved in
photosynthesis8–10. We hypothesize that there is a trade-off
between physical size and protein concentration. While
production of leaves with a higher protein concentration will
allow higher rates of photosynthesis and metabolism per unit
biomass, it also increases the costs of growth and decreases physical
size, resulting in the occupation of less space and the acquisition of
smaller amounts of resources. In particular, a decrease in rosette
area will decrease how much light is intercepted7,11,12. Plant size
and protein concentration will additionally strongly depend on
growth conditions, especially those affecting resource supply and
allocation, such as daily irradiance and nitrogen availability13,14.

Trade-offs between tasks are not measured directly but are
rather inferred from measurements of the corresponding
phenotypic traits. To study the effect of resource acquisition
and allocation on trade-offs, the contending traits are measured
along two orthogonal axes. One axis is given by a collection of
genotypes, for example, accessions or species, and the other by
differing environments. Inference of trade-offs from the resulting
large multidimensional data set of trait scores is typically based
on correlation-driven methods. However, while a negative
correlation between two traits may be indicative of trade-
off15,16, it does not reveal what underlies the trade-off.
Furthermore, correlation-driven methods do not allow the
quantification and comparison of trade-offs in individual
genotypes and under different conditions.

This led us to ask whether more information can be extracted
using the Pareto performance and efficiency frontiers17–21

originating in engineering and the social sciences. While there can
be many feasible strategies to allocate resources to contending tasks,
only a few of them result in an optimal trade-off21–23. A strategy,
corresponding to a genotype24 in a given condition, provides an
optimal trade-off when a further increase in the performance of one
task is not possible without decreasing the performance of other
tasks. Figure 1 schematically illustrates a simple example in which
two contending tasks are studied in one condition.

Four recent studies have illustrated the potential of the Pareto
performance frontier to describe trade-offs at the phenotypic
level: Shoval et al.16 showed that trade-offs between tasks lead to

Pareto fronts in the shape of simple polygons, for example, lines,
triangles or tetrahedrons, in trait space. The vertices of the
resulting polygons may be regarded as specialists for a single task,
represented by a linear combination of traits. Sheftel et al.25

extended this to show that slightly curved edges may arise under a
wider range of assumptions. Szekely et al.26 calculate the Pareto
front of biological homeostasis circuits in the space of employed
parameters. Moreover, Schuetz et al.27 used a metabolic model to
provide flux estimates28, and proposed that Escherichia coli has
evolved towards optimal flux distributions in one condition while
minimizing the changes required between conditions.

The performance frontier provides a concise description of
trade-offs, but does not explain why it adopts a given location, or
why a particular genotype is located at or below the frontier
(Fig. 1). The location of a genotype is presumably constrained by
the underlying factors that determine the trade-off between tasks.
These factors can be analysed using the concept of relative Pareto
efficiency29,30, which allows the comparison of different strategies
for allocating finite amounts of resources between tasks.
A resource allocation strategy is termed efficient if no other
allocation strategy exists that is able to improve the performance
of one task without decreasing the performance of other tasks or
utilizing more of any individual resource30.

Here we first illustrate how the performance frontier can be
used to analyse and reduce a large multidimensional data set
describing the trade-off between fresh weight and protein
concentrations in A. thaliana natural accessions growing in three
conditions. We regard metabolism as a production line with two
outputs: protein and fresh weight, and use the metabolite and
enzyme activity profiles to describe the structure and resource
state of this production line. By using the Pareto efficiency
concept, we ask whether the structure of this production line
influences the trade-off between size and protein concentration in
different accessions and conditions. The results reveal that while
some accessions lie close to the performance frontier and
are metabolically efficient, others show sub-optimality. As the
findings of such analyses are contingent on the tasks, accessions
and conditions used in the study, sub-optimality may indicate
that the considered tasks are in trade-off with other tasks,
examined by mining public domain data sources.
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Figure 1 | Pareto performance concept. Schematic illustration of Pareto

performance. Two contending tasks are studied in one condition. The

performance of genotypes is scored with respect to the two tasks and is

depicted by the two axes. Each genotype is represented as a point in the

resulting 2D space. The genotypes with an optimal trade-off between the

two tasks form the Pareto performance frontier. The frontier arises due to

systemic constraints affecting the performance, and separates the feasible

from the infeasible region.
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Results
Trade-off between fresh weight and protein concentration. As a
first step, we investigated whether there is a trade-off between
production of rosette fresh weight and protein concentration in a
panel of Arabidopsis accessions (Supplementary Table 1). We rely
on fresh weight, as it is the best indicator of plant size and is the
key parameter in many allometric relationships31,32. Our analysis
uses ex situ data collected on these two phenotypic traits and
metabolic phenotypes in the rosette of the Arabidopsis accessions
in three contrasting but not overly stressful growth conditions.
The panel contained 97 accessions selected to show substantial
genetic and geographical variation (Supplementary Table 1,
Supplementary Fig. 1)33,34. The majority of the accessions come
from Eurasia, together with some accessions from North America
and Africa and derive from a range of growth habitats35,36. They
were grown in a 8 h light/16 h dark photoperiod and high N
supply in which growth was limited by C (LiC)37 and in a 12 h
light/12 h dark photoperiod at two levels of N fertilization, one
allowing close to maximal growth (OpN) and another in which N
limited the growth (LiN)38. The levels of 48 metabolites and the
activities of eight enzymes in central metabolism were profiled
to provide a metabolic phenotype in each growth condition
(Supplementary Methods).

When an increase in performance of one task results in a
decrease in performance of another task, the corresponding
traits will show a negative correlation. In our set of 97 accessions,
the correlation between fresh weight and protein concentration
was negative in all conditions: � 0.30 (P value¼ 0.0032,
t-distribution) for OpN, � 0.40 (P value¼ 0.0877, t-distribution)
for LiC and � 0.17 (P value¼ 0.0001, t-distribution) for LiN (see
Supplementary Fig. 2A–C, respectively). The negative relation-
ship was strongest in LiC, and smaller and not significant in LiN,
indicating that extent of the trade-off may be condition-
dependent. A similar negative relationship was recently shown
between N percentage, as a proxy of protein concentration, and
the dry to fresh mass ratio in 122 vascular plant species39 as well
as between N content and leaf weight in barley40, demonstrating
the generality of the trade-off between size and protein
concentration within and across species, as well as its
importance in an ecological context and in crop plants.

Accession fresh weight between conditions correlated most
strongly for the OpN/LiC comparison (0.47, P value¼ 0,
t-distribution), followed by LiC/LiN (0.31, P value¼ 0.0017,
t-distribution), and LiN/OpN (0.29, P value¼ 0.0046, t-distribu-
tion) (Supplementary Fig. 3A–C, respectively). The same
order was obtained when protein concentration was
used (0.34 (P value¼ 0.0006, t-distribution), 0.32 (P
value¼ 0.0016, t-distribution) and 0.16 (P value 0.1253, t-
distribution) for OpN/LiC, LiC/LiN, and LiN/OpN, respectively)
(Supplementary Fig. 3D–F, respectively). These values indicated
that the rankings of accessions based on a single task do not
change dramatically between the three growth conditions, and
point to a fairly robust trade-off situation in growth-related tasks.

Average performance frontier. While correlation analysis indi-
cates that there may be a trade-off between two tasks, it does not
provide accession-specific information about the performance of
contending tasks and how this is affected by the growth condi-
tion. To provide this information, we investigated the trade-off
between fresh weight and protein concentration with the help of
the Pareto performance frontier. To obtain the performance
frontier for a given condition, the accession with the highest
performance for a given task is represented by a value of one, and
all other accessions as a fraction of this value. When two (as
in our case) or more tasks are considered, each accession is

represented as a point in a two- or multi-dimensional space,
respectively. The coordinates of the corresponding point are given
by the normalized performance scores. The performance frontier
for an investigated condition can be approximated by the
bounding segments or, if there are more than two tasks, a surface
from the convex hull connecting the best performers for each
task. The resulting plots for each growth condition are provided
in the Supplementary Information (Supplementary Fig. 4A–C).

To obtain an average performance frontier, which summarizes
the accession-specific trade-off between fresh weight and protein
concentration in three contrasting environments, the following
procedure was used (illustrated for Je-54 on Fig. 2). The scores for
the performance of an accession with respect to its fresh weight
and protein concentration in three conditions build a triangle for
each accession. The centroid of the triangle corresponds to the
average relative performance of each accession with respect to the
two tasks. The extent to which performance was conserved
between the three conditions is visualized by the size of the point,
which is proportional to the area of the corresponding triangle; a
small point denotes a conserved performance in the three
conditions. The three lines arising from the centroid are directed
towards the vertices of the triangle. This procedure was repeated
for all 97 accessions (Supplementary Table 2).

The visualization in Fig. 2 is more informative than a
correlation-based analysis because it characterizes performance
for multiple tasks and conditions in an accession-specific manner.
Some accessions are better at accumulating protein, for example,
Lov5 and Pt0, as shown in the upper part of Fig. 2, while others
are better performers with respect to fresh weight, for example,
Wei1, Da112, Bsch2 and Bur-0, shown in the right part of Fig. 2.
From the distribution of areas of the triangles, shown in the inlay
in Fig. 2, we classified the accessions into three groups, supported
by robust statistics (Supplementary Table 3); the first group
includes those performing similarly under all three conditions, for
example, Bla11, Da112 and Bur-0, the second, those with similar
performance under two conditions, for example, Bsch2, Lan-0
and Pt0, and third includes those with quite divergent relative
performance in all conditions, for example, Bay-0, Rubenzhnoe-1,
Mt-0 and Lov5 (Supplementary Tables 3, 4). This classification
is difficult to obtain by separate consideration of the
three condition-specific performance frontiers (Supplementary
Fig. 4A–C).

The dashed lines in Fig. 2 connects the best average performer
for fresh weight with the best average performer for protein
concentration across all three conditions, using the bounding
segments from the convex hull. These lines approximate to the
average performance frontier of the three conditions. The
distribution of accessions around this performance frontier was
extremely unbalanced. Six accessions were close to or directly on
the performance frontier, namelyWei1, Bsch2, Da112,Mt-0, Est-1
and Lov5.

To analyse the relationship between the distance from the
average performance frontier and the trade-off between fresh
weight and protein concentration, we calculated the correlation
between fresh weight and protein concentration for groups of
accessions, starting with the 10 closest to the frontier, and
progressively increasing the set until it included all 97 accessions
(Supplementary Fig. 5). The negative correlation between fresh
weight and protein was strongest for accessions closer to the
average performance frontier, and became progressively weaker
as more accessions were included. Figure 2 reveals that accessions
lying well below the performance frontier fall into two groups;
one shows a trend for a decreased fresh weight while retaining a
relatively high protein concentration (an extreme representative
of this group is Bla11), while the other group exhibits a trend for a
decreased protein concentration while retaining a relatively
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high fresh weight (an extreme representative of this group is
Rubezhnoe-1).

Thus, this two-dimensional (2D) visualization of the average
performance frontier provides insights into performance of two
tasks across multiple conditions. However, in any given study,
the location of the performance frontier is contingent on the

investigated tasks, accessions and growth conditions, and that in
particular the occurrence of additional tasks that are not
considered in the analysis can lead to apparent sub-optimality.
The occurrence of many accessions well below the performance
frontier indicates that there may be more than the two
investigated tasks in trade-off. To investigate this possibility, we
also employed the approach of Shoval et al.16, which uses the
criterion of triangularity with the data on fresh weight and
protein concentration in each individual growth condition and
their combination. This criterion was not significant at
level a¼ 0.01 (permutation test with 10,000 repetitions)
(Supplementary Fig. 6A–H). Moreover, since the data do not
fall on a line, an additional task might not be in trade-off.

Metabolic efficiency. While the performance frontier provides
phenomenological insights into accession-specific trade-offs,
it does not reveal whether and how the observed phenotypic
performance relates to underlying cellular processes such as
metabolism. In the following, we consider the metabolism of each
accession as a production line that allocates the available
resources, captured by metabolite and enzyme activity profiles,
between two contending tasks: maximizing fresh weight and
maximizing protein concentration. Although only a fraction of
the metabolic phenotype can be measured, due to the high con-
nectivity in metabolic networks34, the profiles carry information
about other unmeasured traits41. Regression-based analyses
have shown that metabolite and enzyme activity profiles
provide an integrative metabolic phenotype that is predictive of
biomass33,34,42,43, heterosis44, and, to a lesser extent, abiotic stress
tolerance in plants45.

In the following, we employ the Pareto efficiency principle for
production systems30 to test whether the trade-off between fresh
weight and protein concentration is related to changes in resource
availability and allocation in metabolism. Within this conceptual
framework, an accession can be considered to be metabolically
efficient if an attempt to further decrease any of its metabolic
resources (inputs) or further increase any of the tasks (outputs)
adversely affects other inputs or outputs, relative to all other
considered accessions. Metabolically efficient accessions can be
identified by solving a series of linear optimization problems
integrating measurements of the inputs and outputs in the
framework of data envelopment analysis (DEA). The
metabolically efficient accessions define the efficiency frontier; it
envelops the remaining accessions that are referred to as
metabolically inefficient. As in the analysis based on the
performance frontier, the identification of metabolically efficient
accessions is contingent on the investigated tasks, accessions and
conditions. In addition to discriminating metabolically efficient
from inefficient accessions, this approach allows inefficient
accessions to be ranked based on their distance from the
efficiency frontier. Recent refinements of DEA based on the
concept of super-efficiency46,47 also make it possible to provide a
ranking of the accessions that are deemed fully efficient. As a
result, the metabolically efficient accessions receive a value of at
least one, while the inefficient a positive value smaller than one.

Metabolic profiling provides a high-dimensional metabolic
phenotype. To determine the metabolic efficiency of accessions
we used a method that couples principal component analysis
(PCA) with DEA, referred to as PCA–DEA48,49. Using the
principal components (PCs) that explain 70% of the variance in
the condition-specific metabolic phenotypes as inputs and fresh
weight and protein concentration as two contending outputs, we
identified 15, 25 and 47 efficient accessions under OpN, LiN and
LiC conditions, respectively (Fig. 3). This indicates that many
accessions are able to adjust their metabolism to different C and
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Figure 2 | Pareto performance frontier for the 97 considered Arabidopsis
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in comparison to protein concentration is due to its nonlinear relationship to

the relative growth rate. The average performance with respect to the two

tasks across all three conditions is provided by the centroid of the triangle.
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associated point is proportional to the size of the respective triangle. The

colour coding of the three lines incident on each centroid denotes the

conditions, red for OpN, yellow for LiN and blue for LiC. The lines are

directed towards the vertices of the corresponding triangle. For clarity,

the vertices of the triangles are omitted from the plot. The dashed line

approximates the Pareto performance frontier. (b) The histogram of
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condition (average triangle area) and those divergent in the three

conditions (large triangle area).
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N supplies. The smallest number of metabolically efficient
accessions was found in OpN. This might suggest that most of
the Arabidopsis accessions are more adapted to limiting rather
than near-optimal resources, or that other factors unrelated to the
metabolic phenotype increase in importance when C and N are
less limiting for growth.

We next explored whether the growth condition influences
metabolic efficiency of the accessions. To do this we determined
the Kendall tau correlation, which takes values in the range
between � 1 and 1 and quantifies the correspondence between
two rankings; in this case, the metabolic efficiencies of accessions
in two growth conditions. This analysis yielded rather low but
significant Kendall tau values in OpN versus LiN (0.20;
P value¼ 0.0043, zA-statistic) and OpN versus LiC (0.16; P
value¼ 0.0191, zA-statistic) comparisons and a very low and non-
significant value in the LiN versus LiC (0.06; P value¼ 0.3530, zA-
statistic) comparison (Fig. 3). This indicates that accession
efficiency is condition-dependent. The especially low congruence
between LiN and LiC is expected, as these are the most
contrasting growth conditions.

We asked which metabolic traits contribute most strongly to
metabolic efficiency for fresh weight and for protein concentra-
tion. To this end, we determined the Kendall tau correlation
between the ranking of accessions obtained with the full
metabolic phenotype and the ranking obtained with a metabolic
phenotype from which a given metabolic trait was excluded50: in
this case, the lower the congruence, the higher the contribution of
the omitted metabolic trait to accession efficiency in that
condition. This was repeated for each metabolite, and for each
condition and task (Supplementary Fig. 7). The most strongly
contributing metabolic traits are glucose, fructose and xylose
under OpN; urea, chlorophyll b and glutamine oxoglutarate
aminotransferase (GOGAT) under LiN, and threonine, sucrose
and phosphoenolpyruvate carboxylase (PEPCx) under LiC. These
traits may be proxies that are closely linked to key metabolic traits
that are not captured in our experimental analysis. Nevertheless,

it is noteworthy that the most contributing metabolites in OpN
include glucose and fructose, two important sugars that often
accumulate when carbohydrates are high. In LiN they include
urea and chlorophyll b, which are two key N-containing
metabolites, and GOGAT, a key enzyme in N assimilation. In
LiC they include sucrose, which is the transport sugar in plants,
and PEPCx, which plays a key role in the synthesis of organic
acids and amino acids. These findings demonstrate that not only
the metabolic efficiencies of Arabidopsis accessions but also the
metabolic traits that determine these efficiencies depend on the
environmental condition. They also hint at a connection between
metabolic plasticity and the robust trade-offs observed in the
three conditions.

Comparison across the three conditions revealed that while the
majority of accessions were efficient in only one or two
conditions, five accessions (Bay-0, Est-1, Lan-0, Lov5 and Wei1)
were efficient under all three conditions. Three of these
consistently metabolically efficient accessions (Est-1, Lov5 and
Wei1) were located closest to the average performance frontier
(distance to performance frontier o0.001) (Fig. 2), highlighting
them as showing a particularly strong trade-off in their response
to the three environments, and one was fairly close to the average
performance frontier (Bay-0). Two (Lov5, Wei1) were the best
average performers for fresh weight and protein concentration,
respectively.

Discussion
The positions of these five consistently efficient accessions suggest
that there may be a relationship between the performance frontier
and the efficiency frontier. To address this issue, we tested the
null hypothesis that the average fresh weight of the set of
metabolically efficient accessions is not higher than the average
fresh weight over the inefficient accessions. For the three growth
conditions, the statistical test (P value o0.05, t-distribution) was
in favour of the alternative hypothesis, indicating that efficient
accessions tend to have higher fresh weight (Supplementary
Fig. 8A–C). This relationship does not hold for the protein
concentration (Supplementary Fig. 9A–C), which is in line with
the small overall negative correlation between fresh weight and
protein concentration.

These analyses led us to posit that accessions with a larger
metabolic efficiency are closer to the performance frontier. To test
this hypothesis, we determined the Kendall tau correlation
between the distances of accessions from the performance
frontier and their mean metabolic efficiencies in the three
conditions. The negative correlation of � 0.30 (P value¼ 0,
zA-statistic, Supplementary Fig. 10) indicates that accessions with
a stronger trade-off between fresh weight and protein concentra-
tion are also more efficient in using the metabolic phenotype
towards achieving these two contending tasks. The finding that
there is a statistically significant relation between the performance
and efficiency frontiers supports the validity of our approach.
It also points to metabolism playing an important role in the
trade-off between fresh weight and protein concentration.

We next investigated possible explanations for the observation
that accessions with higher metabolic efficiency are closer to the
performance frontier. We hypothesized that enhanced trade-offs
and larger metabolic efficiency is associated with high metabolic
plasticity. To explore this idea, we performed the following
analysis for each accession: For each metabolic trait, we
determined the log-fold change in each pair-wise comparison of
the three conditions (Supplementary Fig. 11A) and then
calculated the average log-fold change over the three pair-wise
comparisons to provide a quantitative proxy for the accession-
specific plasticity for that metabolic trait. The values for each
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metabolic trait were combined and plotted to provide an overview
of the condition-dependent variation of each metabolic trait in a
given accession (Supplementary Fig. 11B). This procedure was
carried out for each of the analysed accessions (Supplementary
Fig. 11C).

The resulting distributions characterize the plasticity of the
metabolic phenotype in an accession-specific manner. We
investigated two properties of the distributions: skewness and
95th percentile. The skewness quantifies the extent to which the
median of a distribution is shifted to one side of the mean:
positive skewness is expected when majority of the metabolic
traits show plasticity smaller than the mean (Supplementary
Fig. 12). The skewness was positive in all accessions, with an
average skewness of 2.3365 (s.d. 0.4035) over all accessions
(Supplementary Table 5). Altogether, these results indicated that
majority of metabolic traits show plasticity lower than the mean,
and that this was the case for all accessions.

This led us to focus on the metabolic traits that are in the right
tail of the distributions, that is, those with plasticity greater than
the mean. To do this, we employed the 95th percentile, the
quantity below which 95% of the values in the distribution fall:
the larger its value, the more extreme the plasticity of few
metabolic traits. The average 95th percentile of the accessions was
2.7744 with a s.d. of 0.2796. This finding supports the earlier
observation that majority of traits show a relatively small average
log-fold change. We next tested whether the 95th percentiles of
the distributions correlate with the distance of accessions to the
performance frontier (Supplementary Fig. 11D,E, Supplementary
Table 5). The negative correlation (Kentall tau of � 0.14,
P value¼ 0.0360, zA-statistic) indicated that accessions with a
higher plasticity in a small number of metabolic traits are indeed
closer to the performance frontier.

Metabolic traits that showed average log-fold changes larger
than the 95th percentile included are the following: spermidine,
nitrate (NO3), raffinose and dehydroascorbate in the majority of
accessions (including the five consistently efficient across the
three conditions) while arginine, glutamate, glutamine, glycine,
isoleucine, proline-4-hydroxy and maltose were highly plastic in
only few accessions (Supplementary Table 5). Previous studies
have implicated these metabolites as changing as a result of C
or N limitation51,52. Altogether, these findings indicate that
accessions that are more metabolically efficient exhibit more
pronounced plasticity in a small number of metabolic traits, and
are positioned closer to the performance frontier.

Investigation of metabolic efficiencies also led to ask why the
distribution of accessions around the performance frontier is
highly unbalanced (Fig. 2). One possibility is that many of the
accessions are only adjusted to one condition in which they are
metabolically efficient. However, this cannot be the full explana-
tion because 34 accessions are metabolically inefficient in all three
conditions (Supplementary Table 6). A more likely explanation is
that growth and survival of Arabidopsis requires the performance
of further tasks that are not considered in our study, and that the
importance of these unconsidered tasks varies, depending on the
accession and environment.

To test the hypothesis that other tasks may be in trade-off, we
used scores that are publically available for 199 Arabidopsis
accessions for sets of germination, defence-related, ionomics,
developmental and flowering traits53. We investigated five
scenarios with accessions that had full data sets for at least 50
traits (Supplementary Fig. 13A–E). In the first three scenarios,
missing values were imputed for all traits (excluding germination)
over all remaining accessions, and the criterion of triangulation
was applied on all traits, defence and developmental, but only for
the 41 accessions also present in our data set (Supplementary
Table 7). In the last two scenarios, the missing values were

imputed only for the defence and developmental traits, and
statistical tests were applied with all accessions and only the
41 accessions present also present in our data set. Interestingly,
the criterion of triangularity was significant in the scenarios of
defence and developmental traits for the 41 accessions with
missing values imputed based on all or only defence and
developments traits (P values¼ 0.0033 and 0, respectively,
permutation test with 10,000 repetitions). Altogether these
findings highlight two main aspects—first, the analysis in
Shoval et al.16, like ours, is contingent on the data used and
genotypes employed; second, some defence and developmental-
related tasks might be in trade-off with increasing rosette sie and
the protein concentration. However, this statement is not
conclusive on the basis of the current study alone.

To further investigate the latter claim, we determined the
Kendall tau correlation between fresh weight for each growth
condition, and the scores for the defence-related, ionomics,
developmental and flowering traits investigated above. The
hypothesis is that traits that are in trade-off with fresh weight
will be negatively correlated to fresh weight. Validation of this
hypothesis would provide further correlation-based support for
the idea that other tasks, scored with the determined traits, are in
trade-off with fresh weight or protein concentration, and may
also be important for survival of the accessions. The strongest
negative median correlation was observed between flowering
traits and fresh weight, particularly under OpN and LiN
(Supplementary Fig. 14, see Supplementary Tables 8-11 for
individual traits). We repeated this procedure with protein
concentration. For protein concentration, the strongest negative
median correlation was observed for developmental traits,
followed by defence-related and flowering phenotypes
(Supplementary Fig. 15, see Supplementary Tables 12–15 for
individual traits). It is noteworthy that the strongest negative
correlations to metabolic efficiencies were also with flowering
traits under OpN and LiN, followed by negative values of smaller
magnitude for the developmental phenotype (Fig. 4, see
Supplementary Tables 16–19 for individual traits). This indicates
that under OpN and LiN, flowering traits may act as contending
tasks with fresh weight and protein concentration among the
accessions. Flowering traits are determined by a complex network
that integrates many environmental and internal inputs54.
Notably, the CONSTANS (CO)-FLOWERING LOCUS T(FT)
photoperiod floral pathway operates in a 12-h photoperiod that
was used in the OpN and LiN treatments, but not in the 8–h
photoperiod that was used in the LiC growth condition. The
relationship between metabolic efficiency and flowering
phenotypes is in line with recent evidence for a connection
between metabolism, via the sucrose signal metabolite trehalose
6-phosphate and the CO-FT photoperiod floral pathway55. This
relationship is further supported by recently discovered links
between metabolism and the transition to maturity, which is a
prerequisite for flowering55–57. A link between metabolic
efficiency and defence-related phenotypes may not be apparent
in our analyses, due to either the experimental design or the
possibility that defence response may be induced rather than
constitutively related to metabolism.

Natural variation in A. thaliana is a useful resource to identify and
investigate mechanisms that underlie trade-offs between tasks in
different environments. However, it is a challenge to interpret the
multidimensional data sets that are generated by studies of trade-offs.
While correlation-driven methods can be used to identify trade-offs,
they do not allow the comparison of genotype-specific trade-offs in
and across multiple environments. Here we use the Pareto frontier
concept to uncover accession-specific differences in performance, and
rank accessions for metabolic efficiency, both in and between
environmental conditions. We demonstrate that some accessions are
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efficient across a range of conditions. We also show that metabolically
efficient accessions are close to the average performance frontier in a
range of growth conditions, demonstrating that there is considerable
agreement between these two approaches. Further, accessions that lie
closer to the average performance frontier show a higher metabolic
plasticity for a small subset of metabolic traits, providing first insights
into which features of metabolism contribute to phenotypic plasticity.
Altogether, our findings indicate a relation between plasticity of
metabolic phenotypes, metabolic efficiency and contending growth-
related tasks. This approach can be readily extended to investigate a
wider range of tasks, environmental conditions and molecular
phenotypes in different species.

Methods
Description of the selection of used accessions and growth conditions as well as
metabolite and enzyme assays can be found in Supplementary Methods.

Genetic distance. The genetic distances between accessions are determined based
on the most comprehensive information existing about polymorphisms (200,155
SNPs)58. This is available for 73 of the 97 investigated accessions. The resulting
distance matrix was used to build a tree by using a neighbor-joining algorithm59.
Although the main branches partially separate the accessions according to the
geographic origin (for example, Northern, Western, Eastern and Southern Europe),
there is still some admixture. A similar grouping pattern to ours was reported in a
study that used a comparable number of markers and accessions53.

Data envelopment analysis. DEA is a computational approach, based on linear
programming (LP), which aims at determining the relative efficiency of entities,
so-called decision-making units (DMUs), specified with their respective inputs and
outputs. In our framework, the DMUs correspond to the different Arabidopsis
accessions.

In contrast to other approaches for analysis of multidimensional data, allowing
only pair-wise combination of biochemical system levels (for example, metabolites
and transcripts, or proteins and metabolites), DEA is applicable across data from
multiple levels of biological organization. With the help of DEA, one can readily
identify the best-performing accession by providing a ranking based on the relative
efficiency. Here we extend this approach to determine the reasons (represented
by particular metabolic traits) responsible for the performance of a particular
accession. As opposed to other approaches for analysis of multivariate data, DEA

considers all input and all output levels simultaneously. To quantitatively combine
the multiple inputs and multiple outputs, DEA computes the relative efficiency of
each individual accession with respect to all other accessions by employing the
weighted averages, so that:

efficiency ¼weighted sumof outputs
weighted sumof inputs

: ð1Þ

While this leads to respective aggregations of inputs and outputs, we point out that,
unlike in other statistical techniques for multivariate data analysis, the aggregations
in DEA differ between accessions.

Consider a set of s accessions with each accession a, 1rars, with m inputs xai ,
1rirm, generating n outputs yaj , 1rjrn. The efficiency of a particular
accession a is then given by the solution of a fractional programme, originally
proposed by60:

ea ¼ max
v;m

Pn
j¼1 mjy

a
jPm

i¼1 vix
a
i

s:t:
Pn

j¼1 mjy
a
jPm

i¼1 vix
a
i
� 1; 8a

vi; mj � 0; 8i; j;

ð2Þ

where vi and mj correspond to the weights associated with the input i and the
output j, respectively. We point out that this model, maximizing the linear
combination of outputs without requiring more of any of the observed inputs, is
referred to as the input-oriented model. Clearly, the reciprocal of the ratio of inputs
to outputs results in another type of model, named output-oriented, which
minimizes the inputs while producing at least the given output levels30.
We note that the qualitative findings from the input- and output-oriented models,
with respect to the ranking of accessions based on the relative efficiencies, are
equivalent.

With the help of the theory of fractional programming61, the fractional
programme in Equation (2) can be formulated as a LP problem by constraining
the denominator of the objective function to one and only minimizing the
numerator.

Depending on the scale assumptions in calculating the relative efficiencies, there
are two basic DEA models, the CCR (Charnes, Cooper and Rhodes) model60 and
its extension the BCC (Banker, Charnes and Cooper) model62. The former
formalizes the concept of constant returns to scale, whereby the output changes by
the same proportion as the input. On the other hand, the latter captures the
concept of variable returns to scale (VRS), comprising the three variants, namely
increasing-, decreasing- and constant returns to scale. Clearly, any CCR-efficient
accession is also BCC-efficient. As a result, in the following, we focus on the more
general BCC model to consider also the effects of increasing- and decreasing
returns to scale.

The LP formulation for the BCC model is defined as follows:

ea ¼ max
v;m

Xn

j¼1

mjy
a
j � ua

s:t:
Xm

i¼1

nixai ¼ 1

Xm

i¼1

nixai �
Xn

j¼1

mjy
a
j þ ua � 0; 8a

vi; mj � 0; 8i; j
ua unconstrained:

ð3Þ

By the duality theorem, this problem is equivalent to the following LP:

ea ¼ min
l;s

Ya

s:t:
Xs

a¼1

laxai þ si ¼ Yax
a
i ; 8i

Xs

a¼1

layaj � si ¼ yaj ; 8j

Xs

a¼1

la ¼ 1

la; si; sj � 0; 8a; i; j
Ya unconstrained:

ð4Þ

where si and sj are the slacks of the input i and the output j, respectively, used to
convert the inequalities into equivalent equations and Ya gives the efficiency score
for accession a. The vector l represents the weights of the accessions resulting from
the LP given in Equation (4). By the strong duality theorem, the optimal value of
the dual problem, given in Equation (4), equals the optimal value of the primal
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Figure 4 | Boxplots of Kendall tau coefficients from correlating the

efficiencies with different phenotypes. The correlation between

efficiencies under OpN (red), LiN (green) and LiC (blue) with defence-

related, ionomics, developmental and flowering phenotypes, respectively, is

presented in boxplots. The bottom and top of each box represent the first

and third quartiles of the distribution of the Kendall correlation coefficient,

respectively. The horizontal line inside each box is the median (second

quartile). The whiskers range between ±1.58 IQR n� 1/2, where IQR is

the interquartile range and n is the number of points in the distributions.

Data points outside this range are considered as outliers, indicated as

circles. The number of accessions considered in each phenotype is

presented in parenthesis.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4537 ARTICLE

NATURE COMMUNICATIONS | 5:3537 | DOI: 10.1038/ncomms4537 | www.nature.com/naturecommunications 7

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


problem in Equation (3). The number of constraints for the primal programme
depends on the number of accessions, while that of the dual programme depends
on the number of inputs and outputs.

An accession a is considered (fully) BCC-efficient in the VRS sense if there
exists a solution to Equation (4) such that the following two conditions are
satisfied:

1. Ya¼ 1.
2. All slacks si, 1rirm, and sj, 1rjrn, are zero.

These two conditions define the so-called Pareto–Koopmans efficiency,
whereby an accession is fully efficient when an attempt to improve on any of its
inputs or outputs will adversely affect some other inputs or outputs. The efficient
accessions define the Pareto efficiency frontier30.

Combination of PCA and DEA. If the number of analysed accessions, s, is less
than the total number of inputs and outputs, mþ n, a large number of accessions
may be predicted to be efficient (depending on the structure of the data set).
To resolve this issue, arising due to the multidimensionality of the data, the
number of constraints imposed in the formulation of DEA in Equation (3)
needs to be reduced. Consequently, DEA has been combined with PCA to
reduce the dimension of inputs and outputs while minimizing the loss of
information48.

PCA is a linear algebra technique that can be used to represent a set of possibly
correlated variables into a set of uncorrelated variables called PCs. Each PC is
represented as a linear combination of the original variables. The coefficients in the
linear combination are given by the eigenvectors from the eigenvalue decom-
position of the covariance matrix for the analysed set of variables. The PCs are
usually ordered by the percentage of the accounted variance, starting with the
component of the largest variance. It should be noted that the number of PCs is less
than or equal to the number of original variables63.

The variance zk, (1rkrK) explained by the kth PC is calculated as:

zk ¼ jk=
XK

l¼1
jl ; ð5Þ

where K is the number of original variables and jl, (1r1rK) is the lth
largest eigenvalue of the covariance matrix for the K variables. The number of
PCs used in analyses depends on the percentage of variance to be explained
for a particular purpose. Indeed, considering all PCs amounts to using the
original data set.

Formulation of PCA–DEA. The usage of PCs instead of the original data induces a
transformation of the DEA model. Therefore, the inputs X and the outputs Y are
transformed through PCA.

Let LXk and LYk denote the matrices containing the coefficients of the linear
combinations rendering the PCs of the input and output data, respectively. The size
of this matrix is reduced to the number of PCs that explain a pre-specified
percentage of the variance in the original data. Then, Xk ¼ LXk X and Yk ¼ LYk Y are
the k PCs, that is, linear combinations, of the variables in the data sets X and Y.
Furthermore, the number of columns in Xk and Yk correspond to the number k of
PCs used to represent the input and output data.

Consequently, the general BCC model from Equation (3) for accession a can be
transformed as follows:

ea ¼ max
U0 ;Uk ;V0 ;Vk ;ua

U0Y
a
0 þUkY

a
k � ua

s:t:

V0X0 þVkXk �U0Y0 �UkYk þ ua � 0

V0X
a
0 þVkX

a
k ¼ 1

VkL
X
k � 0

UkL
Y
k � 0

U0;V0 � 0

Vk;Uk; ua unconstrained:

ð6Þ

where U0 and V0 represent the vectors of weights for the inputs and
outputs, respectively, used with their original values, while Uk and Vk denote
the coefficients of the PCs used for the input and output data. Since
VkXk ¼ VkLXk X, where Vk represents a row vector of dual variables, the
weights of the original input X can be expressed as VkLXk . We note that the
same holds for the output.

Furthermore, the corresponding dual programme can be rewritten as follows:

ea ¼ min
l;s

Ya

s:t:

Xklþ LXk s
X
k ¼ YaX

a
k

X0lþ sX0 ¼ YaX
a
0

Ykl� LYk s
Y
k ¼ Ya

k

Y0l� sY0 ¼ Ya
0X

l ¼ 1

Ya; l; sXk ; s
X
0 ; s

Y
k ; s

Y
0 � 0:

ð7Þ

The problem in Equation (7) is referred to as the envelopment problem. Like the
primal programme given in Equation (6), it provides weights for each accession,
indicating those accessions of highest influence to the efficiency of the accession a
for which the efficiency is calculated.

Since the number of outputs is really small in the considered data set PCA is
only applied on the inputs. Therefore, all constraints containing X and sX0 as well as
Yk and sYk are not included in the linear programs.

As suggested by Adler et al.64 all the values are divided by the
corresponding s.d. The correlation matrix of standardized inputs and
PCs are calculated and finally the linear programs are used to derive
efficiency scores.

Ranking of efficient accessions. The general results of DEA and also PCA–DEA
group the accessions into two sets, those that are efficient and therefore define the
Pareto efficiency frontier and those that are inefficient. In order to obtain a
complete ranking of all accessions, another approach or modification is required.
Many mathematical and statistical techniques have been developed to rank both
efficient as well as inefficient DMUs in our case accessions. Adler et al.65

provide an overview about the general ranking methods applied in economics.
Among others one approach to the ranking problem is that provided by the
super-efficiency model, first published by Andersen and Petersen46. The
super-efficiency model involves executing the standard DEA model (in our case
VRS PCA–DEA), but under the assumption that the accession, a, being currently
evaluated is excluded from the reference set. In the input-oriented case the model
provides a measure of the proportional increase in the inputs for an accession
that could take place without destroying the ‘efficient’ status of that accession
relative to the frontier created by the remaining accessions. The unit obtains in
that case an efficiency score above one. The methodology enables an extreme
efficient unit f to achieve an efficiency score greater than one by removing the
fth constraint in the primal formulation. A problem of the calculation of
super-efficiency is that it is well known that under certain conditions, the
super efficiency DEA model may not have feasible solutions for efficient
accessions. As shown for instance by Seiford and Zhu66 as well Dulá and
Hickman67, infeasibility must occur in the case of the VRS super-efficiency
model. The model of Lovell and Rouse47 identify and provide a feasible solution
for all super-efficient units that are infeasible in the conventional VRS
super-efficiency model. This modified DEA scales up the inputs (down the
outputs) of the accession under evaluation. The super-efficiency scores for all
efficient accession without feasible solutions are then equal to the user-defined
scaling factor b.

The modified super-efficiency model is defined as follows:

ea ¼ max
v;m;ua

Xn

j¼1

mjy
a
j þ ua

s:t:
Xm

i¼1

nibxai �
Xn

j¼1

mjy
a
j þ ua � 0; 8a

Xm

i¼1

nibxai ¼ 1

mj; ni � 0; 8i; j
ua unconstrained:

ð8Þ

Note that the scalar b41 must be sufficiently large to make it inefficient to
ensure that eao1. This is not guaranteed if the accession eao1 is extreme-efficient,
which would lead to infeasibility for the general super-efficiency model and an
efficiency score of 1, ea¼ 1, for the modified super-efficiency model of Lovell
and Rouse47.

We further extend this modified super-efficiency model to use it also to rank the
efficient accessions of the PCA–DEA approach, which has to deal in general with
the same problems as the conventional DEA. Then, for ranking the accessions of
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the input-oriented VRS PCA–DEA we use the model as follows:

ea ¼ max
U0 ;Uk ;V0 ;Vk ;ua

U0Y
a
0 þUkY

a
k � ua

s:t:

V0bX0 þVkbXk �U0Y0 �UkYk þ ua � 0

V0bXa
0 þVkbXa

k ¼ 1

VkbLXk � 0

UkL
Y
k � 0

U0;V0 � 0

Vk;Uk; ua unconstrained:

ð9Þ

Statistical analysis. The Kendall rank correlation coefficient, denoted by t,
evaluates the degree of similarity between two sets of ranks over the same set of
objects68. It can be determined by the following expression:

t ¼ number of concordant pairs� number of discordant pairs
total number of pairs

; ð10Þ

where a pair of ranked sets (xi,yi) and (xj,yj) (on the same set of objects) is
concordant if the order of both objects agree, that is, if both xi4xj and yi4yj or
xioxj and yioyj. In contrast, a pair is discordant, if xioxj and yi4yj or if xi4xj
and yioyj. If xi¼ xj or yi¼ yj, the pair is neither concordant nor discordant.

Larger (positive) values of t indicate a greater agreement between the two sets,
while smaller (negative) values imply disagreement.

We use the Kendall rank coefficient in order to capture the effect of a particular
input on the resulting ranking of the accessions based on PCA–DEA. To this end,
the influence of an input parameter t on the relative efficiency of a given accession
under a condition c is determined by excluding t from the inputs and applying
PCA–DEA to obtain the efficiencies e� t

c under condition c. We then use Kendall’s
t to qualitatively discriminate between different inputs (that is, metabolic traits)
with respect to their correspondence to the obtained efficiencies, resulting in:

ttc ¼ t ec; e
� t
c

� �
; ð11Þ

where ec are the efficiencies including all inputs.

Investigation of metabolic plasticity. For the 48 metabolite and eight enzyme
activity profiles the absolute values of log-fold changes, FC between a pair of
conditions ci and cj are calculated by:

FCci ;cj ¼ log2
ci
cj

����
����: ð12Þ

The average FC over the three pairs of conditions (that is, OpN/LiC, OpN/LiN and
LiN/LiC) is calculated as an indicator for the plasticity of each metabolic trait in the
investigated conditions. For every accession the distribution of average absolute
values of log-fold changes over all metabolic traits is then determined.
Furthermore, the skewness of the resulting distributions is calculated as follows:

skew ¼
1
n

Pn
i¼1 xi � �xð Þ3

1
n

Pn
i¼1ðxi � �xÞ2

� �3=2 ; ð13Þ

where n is the number of observations included in the distribution and �x is the
mean of observations, here, of average absolute values of FC for 56 metabolic traits.
A negative value of the skewness denotes a longer left tail and a larger median of
the distribution, whereas positive values indicate a longer right tail and a smaller
median, respectively. In addition, the 95th percentile, capturing the distribution of
values in the right tail of each distribution, is used to quantify the overall plasticity
of metabolic traits showing large plasticity in the three conditions.

Investigation of the criterion of triangularity. We followed the approach of
Shoval et al.16 by making use of the Pareto front software. To this end, we
investigated the findings from five scenarios: The data set of Atwell et al.53 includes
199 accessions and five types of traits: defence-related, ionomics, developmental,
flowering and germination traits. From this list, we excluded the categorical traits
with binary values as well as the germination traits (as they are expected to have
small effect on the later vegetative plant growth). We note that 41 of these
accessions are also present in the set of genotypes that we analysed in our study
(Supplementary Table 7). Scenario I: we removed 29 out of 199 accessions that did
not contain data about at least 50 traits; the missing values for the remaining
accessions were imputed for all traits by using the most recent robust imputation
method suitable for mixed data types (that is, categorical and continuous) based on
random forests via the missForest R package69; Scenario II: we removed 29 out of
199 accessions that did not contain data about at least 50 traits; the missing values
for the remaining accessions were imputed for all traits by using random forests
imputation method; finally, only defence traits and developmental traits were used;
Scenario III: like Scenario II but only for the 41 accession in the overlap between
our set of genotypes and the population used in Atwell et al.53; Scenario IV: we
removed 29 out of 199 accessions that did not contain data about at least 50 traits;

the missing values for the remaining accessions were imputed for only defence
traits and developmental traits by using random forests imputation method via the
missForest R package69; and Scenario V: like Scenario IV but only for the 41
accession in the overlap between our set of genotypes and the population used in
Atwell et al.53. These five scenarios were necessary to control and investigate the
effects of missing values and the way in which they were imputed. We note that the
germination traits were removed from the analysis in all five scenarios to also
facilitate the comparison of findings and the application of PCA (requiring more
accessions than traits in Scenarios III and V).

Implementation. All mathematical programming approaches are implemented in
MATLAB 7.11.0. We use CPLEX v12.2 to solve the considered LP problems.
Statistical analysis was conducted in the R 2.15.2 environment for statistical
computing.
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