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The single-channel regime of transport through
random media
A. Peña1, A. Girschik2, F. Libisch3, S. Rotter2 & A.A. Chabanov1

The propagation of light through samples with random inhomogeneities can be described

by way of transmission eigenchannels, which connect incoming and outgoing external

propagating modes. Although the detailed structure of a disordered sample can generally not

be fully specified, these transmission eigenchannels can nonetheless be successfully

controlled and used for focusing and imaging light through random media. Here we

demonstrate that in deeply localized quasi-1D systems, the single dominant transmission

eigenchannel is formed by an individual Anderson-localized mode or by a ‘necklace state’.

In this single-channel regime, the disordered sample can be treated as an effective 1D system

with a renormalized localization length, coupled through all the external modes to its

surroundings. Using statistical criteria of the single-channel regime and pulsed excitations of

the disordered samples allows us to identify long-lived localized modes and short-lived

necklace states at long and short time delays, respectively.
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A
s disorder is widespread in natural and artificial materials,
transport through random media is of broad interest.
This subject encompasses the propagation of classical

electromagnetic and mechanical waves as well as the transport
of quantum mechanical matter waves in a wide variety of
systems1–6. Recent advances in imaging and focusing of light
through strongly scattering media have attracted particular
attention as they hold great promise for a host of practical
applications (for a review, see ref. 7 and references therein). At
the heart of all studies dealing with wave propagation through
random media lies essentially a scattering problem that can be
approached by methods of mesoscopic transport theory (see, for
example, ref. 8). In this theoretical framework, an incoming wave
is decomposed into transverse free propagating modes, associated
with the quantized directions at which the incoming wave is
incident onto the disordered sample (similarly for the outgoing
wave). The number of transverse modes N is directly proportional
to the area A of the sample cross-section, NpA/l2, where l is the
wavelength. These modes define the basis for the N�N
transmission matrix t, which provides a full description of wave
transmission through the sample. The transmittance of the
sample can be characterized by the so-called transmission
eigenvalues tn, n¼ 1 ,y, N, of the Hermitian matrix ttw, each
of which lies between 0 (no transmission) and 1 (perfect
transmission). The statistics of these transmission eigenvalues
and of the associated eigenchannels strongly depend on the
specific transport regime the disordered sample is in. In
the diffusive regime, for sample lengths L much less than the
localization length x, a fraction N0Ex/L of the total N
transmission eigenchannels, on average, feature a tn close to
unity (open channels), whereas the rest of the channels have
exponentially small transmission (closed channels)9,10. Beyond
the localization length x, at which N0E1, transmission becomes
dominated by a single eigenchannel associated with the largest
transmission eigenvalue t1, which falls off exponentially with
L owing to Anderson localization11,12. Note that for a given
random sample, the transmission eigenvalues and eigenchannels
can be determined only after the entire transmission matrix t is
measured. Until very recently, such a measurement seemed a
formidable task for optical samples, given the tremendous size of
their transmission matrix (with N441). This challenge has been
nearly overcome13 when a remarkably large portion of the optical
transmission matrix was recorded and used for focusing and
imaging light through random media14–17. Even more recently,
the transmission matrix was measured in its entirety for
microwaves transmitted through quasi-one-dimensional random
waveguides18 and computed numerically for optical waves
propagated through two-dimensional localized slabs19.
In quasi-1D diffusive samples, the transmitted field was found
to be a random admixture of many transmission eigenchannels,
whereas in localized systems transmission was generally
dominated by a single eigenchannel.

While the transmission eigenchannels are convenient for
describing transport through random media, one would like to
know how these channels are formed in a given random sample.
This information is contained, in principle, in the relationship
between the transmission eigenvalues tn and the transmission
matrix t ¼ u �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðtnÞ

p
� u (ref. 20). The unitary N�Nmatrices

u and v define here the transmission eigenchannels between
linear combinations of the incoming and outgoing external
modes of the system. This definition, however, implicitly includes
the details of the contacts to the asymptotic regions. An
alternative way to determine the transmission eigenchannels,
which is both less arbitrary and more insightful, is to refer to the
internal modes in a random medium. These internal modes are
characterized by the Thouless number21,22, d�dv/Dv, where dv is

the typical spectral width of the modes in the medium and Dv is
the average spacing between neighbouring modes. The Thouless
number d is thus a measure of the degree of spectral mode
overlap, with the diffusive and the localized regime being
hallmarked by overlapping modes (d41) and well-resolved
modes (do1), respectively. In the localized regime, where at a
given frequency just a single or a few internal modes participate
in the transport process, it has recently been shown
experimentally that the transmission spectrum of a disordered
medium can be fully characterized by such internal modes23.
The fact that in the localized regime the dominance of only a

single or a few internal modes concurs with the dominance of a
single transmission eigenchannel suggests that some deeper
relationship between these complementary pictures of transport
exists. Indeed, recent numerical work showed that internal modes
and transmission eigenchannels displayed strong correlations
with each other19. Here we make an important step forward and
uncover a direct link between modes and channels. To reveal this
link unambiguously, we probe into the deeply localized limit
where just a single transmission eigenchannel dominates.
In this experimentally and numerically challenging limit, we
demonstrate that the dominant transmission eigenchannel is
formed by an individual localized mode or by a unique
superposition of localized modes giving rise to a so-called
‘necklace state’24,25. To establish this connection between the
eigenchannel and mode pictures of transport, we investigate
random quasi-1D samples with a length L that is significantly
greater than the localization length x. The numerical and
experimental results that we obtain in this deeply localized limit
allow us to identify both the characteristic signatures of the
single-channel regime as well as its connection to the internal
modes of the disordered sample.

Results
Cross-over to the single-channel regime. In a scattering
experiment with light or microwaves, a monochromatic wave is
typically incident in a given direction and the transmitted wave
can be detected in any direction, so that the individual elements
tab of the transmission matrix t (between incident and outgoing
modes a and b, respectively) can be measured directly for a given
sample. From these matrix elements tab, the following three types
of transmittances can be computed:

Tab ¼j tab j2; Ta ¼
XN

b¼1

j tab j2; T ¼
XN

a;b¼1

j tab j2 ð1Þ

The transmittance Tab, for a given incident mode a and outgoing
mode b, gives rise to a speckle pattern in the transmitted intensity.
The transmittance Ta is the total transmission (for the incident
mode a), and thus represents the apparent brightness of the
speckle pattern. The transmittance T is the classical analogue of
the dimensionless conductance g26,27.

In the single-channel regime, these key transmittances are all
essentially determined by the largest transmission eigenvalue t1.
Using again the above decomposition t ¼ u �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðtnÞ

p
� u, we

can write Tab¼ |ua1|2t1|u1b|2, Ta¼ |ua1|2t1 and T¼ t1. From the
expression for Tab, one can see that in a given random sample
(with a given t1), the speckle pattern of transmitted intensity is
literally frozen. Altering the incident wave has little or no effect
on the positions and relative intensities of speckles, affecting only
the apparent brightness of the speckle pattern23. This is in
striking contrast to the diffusive regime, in which a minor change
in the incident wave leads to a very different speckle pattern28.
To express this difference in statistical terms, we switch to the
normalized transmission coefficients, sab ¼ Tab=hTabi, sa ¼ Ta=hTai
and s ¼ T=hTi, where h:::i represents the average over an
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ensemble of random sample configurations. From the expressions
for Tab, Ta and T in the single-channel regime, and from negative
exponential statistics of |ua1|2 and |u1b|2 (ref. 8), namely,
hj ua1 j2ni=hj ua1 j2in ¼ hj u1b j2ni=hj u1b j2in ¼ n ! (ref. 29), one
can derive the relationships between the statistical moments of
the normalized transmittances, hsnabi ¼ n ! hsnai ¼ ðn ! Þ2hsni. As a
result, the fluctuations of the normalized intensity are four times
larger than those of the normalized transmittance, hs2abi=hs2i ¼ 4.
In the following, we use exactly this statistical ratio,
R ¼ hs2abi=hs2i, to chart the cross-over from the diffusive to the
single-channel regime (note that the ratio hs2ai=hs2i could also be
used to chart the cross-over to the single-channel regime).

In our experiment, we employ a microwave set-up (see
Methods) to measure microwave fields transmitted through
quasi-1D random samples of alumina (Al2O3) spheres contained
in a long copper tube. The number N of transmission channels
associated with the area A of the tube cross-section changes from
24 to 32 over the measured frequency range. The measurements
are carried out in random ensembles of 15,000 sample
realizations at three different lengths and two Al2O3 filling
fractions (samples A�D, see Methods). From the measured field
spectra, we compute hs2abi and hs2i, which give us the
corresponding values of R and L/x (see Methods). The ratio R
is plotted versus L/x in Fig. 1. Data points of the same colour and
style are obtained for different frequencies in sample A (orange
circles), C (red squares) and D (brown triangles). Although we
consider Al2O3 samples of two filling fractions and three different
lengths, all the data points are seen to fall on a single curve. To
explain this universality, we use exact non-perturbative calcula-
tions30 for the first two statistical moments of the dimensionless
conductance, hgi and hg2i, as a function of L/x, to obtain an
analytical expression for R (see Methods). We find the analytical
curve for R (black solid line) to agree well with the experimental

data. Most importantly, the analytical result clarifies that
R monotonically crosses over from R¼ 2 in the classical
diffusion limit to R¼ 4 in the single-channel regime, with
increasing L/x. The perturbative result for R, to leading order in
L/x, R¼ 2þ 4L/3x, is also plotted in Fig. 1 (black dotted line).
The excessive data variation observed at L/x\2.5 is caused by a
low signal-to-noise ratio, which is due to the increasing effect of
absorption.

To further demonstrate the universality of the cross-over to the
single-channel regime, we numerically study wave scattering
through planar disordered waveguides attached on the left and
right to clean semi-infinite leads (see Methods). We model the
disorder by randomly placing non-absorbing dielectric scatterers
into the middle portion of a waveguide of width W and length
L¼ 5W. The width W is chosen such that there are N¼ 15
channels in the leads at the frequency of interest. We solve the
scattering problem for waves incident from the left lead using the
advanced Modular Recursive Green’s function method31,32,
which is based on a finite difference approximation of the
scalar Helmholtz equation. To emulate the cross-over to the
single-channel regime, calculations of the full transmission matrix
t are carried out for ensembles of 2,000 random waveguide
realizations at eight different system lengths (at a single scattering
frequency). After the localization length x¼ 1.52W is obtained
from fitting the slope of the logarithmic transmittance,
hInTi / � 2L=x, the computed values of R are plotted versus
L/x as line-connected diamonds in Fig. 1. The numerical data
agree well with the experimental data and the analytical result for
R. Note that, in contrast to the microwave measurements, our
numerical model is restricted to two dimensions and describes
scalar rather than vector waves. Still, the cross-over for R that we
obtain in this way closely follows the analytical prediction. We
also emphasize that our numerical simulations of the dissipation-
free model system fully confirm the convergence R-4 in the
deeply localized limit.

Since the above analysis has been carried out in disordered
systems that are quasi-1D, we emphasize that a treatment of
disordered optical samples with a slab geometry33,34 may
necessitate an extension of our theory beyond quasi-1D. This is
because, while the eigenvalue distribution need not be very
sensitive to the shape of the disordered sample35, the negative
exponential statistics of the matrix elements |uan|2 and of |vnb|2,
which was essential in obtaining the statistical ratio R, may not be
valid beyond quasi-1D. On the other hand, the distribution of the
normalized intensity measured for light36 and ultrasound37

transmitted through disordered slabs was found to be in
excellent agreement with a quasi-1D distribution P(sab)
obtained in the same framework38. It will thus be of interest to
explicitly test the universality of the cross-over to
the single-channel regime also in disordered slab geometries.

Statistics of the single-channel regime. The fact that in the
deeply localized limit transport is mediated by a single trans-
mission eigenchannel has remarkable consequences for the
statistical properties of the single-channel regime. The key insight
in this respect is that transmission through a single channel can
be mapped onto a strictly 1D system where only one transmission
channel exists by default. Such a mapping allows us to predict
for the single-channel regime the statistical properties that are
already known for 1D systems25,39,40. Consider, for example, the
probability density distributions P(sa) and P(sab) in the single-
channel regime (equation (4) in Methods), which are entirely
determined through P(T)—a distribution that is known analytic-
ally in one dimension for arbitrary sample length L12,39,40.
To perform this mapping to one dimension, it is tempting to

5

4

R
at

io
, R

3

2
0 1 2 3 4 5

Length, L / �

Figure 1 | Cross-over to the single-channel regime of transport.

The cross-over to the single-channel regime is charted in terms of the

ratio R of the statistical moments of the normalized transmitted intensity

sab ¼ Tab=hTabi and the normalized transmittance s ¼ T=hTi, R ¼ hs2abi=hs2i,
as a function of L/x. From the microwave experiment, R was obtained in

sample A (orange circles), C (red squares) and D (brown triangles). The

data points of the same colour and style correspond to different frequencies

in samples of the same filling fraction and length. In the numerical

simulations, planar disordered waveguides of eight different lengths were

considered at a single scattering frequency (green line-connected

diamonds). Both the experimental and numerical data agree well with exact

non-perturbative calculations of R for a quasi-1D geometry shown by the

black solid line. The black dotted line represents the perturbative limit of R,

for L/xoo1, R¼ 2þ4L/3x and the black dashed line represents the

single-channel value R¼4 in the deeply localized limit.
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choose the effective 1D system such that it has the same system
length L and localization length x as in our quasi-1D localized
systems. However, for increasing system length L, the quasi-1D
systems first go through a diffusive regime (with an Ohmic
reduction of the transmission) before localization sets41. By
contrast, in true 1D systems such a diffusive regime is entirely
absent: only a single channel participates in transport even in
samples of vanishing length. Consequently, one would obtain a
different value of the average transmission and thus different
statistics of transport in one dimension as compared to quasi-1D.
Although the mapping between these two situations can only be
performed in the localized regime, the presence of a diffusive
regime in quasi-1D gives rise to a renormalization of the
localization length in 1D. The corresponding effective localization
length x0 is chosen such that the transmission in 1D is the same as
in quasi-1D, x0 ¼ � 2L=hInTi, for a given L, which yields a
larger x0 as compared with the true localization length x. Note
that x0 is L-dependent and approaches x for increasing system
length L-N (see the inset of Fig. 2a). To explicitly test the above
renormalization, we compare both our numerical and
experimental results with predictions for the probability density

of the transmittance in 1D from ref. 42,

PðTÞ ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
arccosh ðT � 1=2Þ

p

T3=2ð1�TÞ1=4
exp½ � x0

2L
arccosh2ðT � 1=2Þ�; ð2Þ

where C is a normalization constant. From this formula we
derived an expression for P(sab) and P(s) (see Methods,
equation (4)). Employing here the renormalized localization
length x0 from above, we find excellent agreement between the
predictions and our numerical results for the planar system of
L/x¼ 5.25 (see Fig. 2a), notably without any free parameters. In a
situation where measuring the absolute transmittance is a
challenge (as in our experimental set-up), x0 can be found by
fitting the transmission distributions from equation (4); for
example, the probability density P(ln(sab)) to the data, as in
Fig. 2b for the quasi-1D system of L/x¼ 2.52. We remark that the
discrepancy in Fig. 2b, between the predicted and the
experimental distributions (notably, in the tails), is due to
subdominant transmission eigenchannels and/or a low signal-to-
noise ratio. Our successful mapping onto an effective 1D system
allows us to reinterpret a disordered system in the single-channel
regime as a 1D system diffusively coupled to its surroundings.
Since the coupling extends to all the external free propagating
modes, the localization length x0 becomes renormalized, x04x.

Relationship between the eigenchannels and internal modes.
While the above results provide unique statistical signatures for
the single-channel regime, we now address the question how
these transmission channels are formed on a system-specific level.
To answer this question, we turn to our numerical simulations for
transmission through a disordered planar waveguide of length
L¼ 5W (corresponding to L¼ 3.29x). A typical spectrum of the
transmittance T, obtained in a frequency interval of this localized
regime, features sharp peaks (see Fig. 3a) resulting from resonant
transmission through localized photonic states in the medium. At
all frequencies within this range, the transmittance is dominated
by the first (largest) transmission eigenvalue t1. We verify this
explicitly by diagonalizing the Hermitian matrix ttw and by
finding that the second largest transmission eigenvalue t2 fulfills
t2o0.01 throughout the entire frequency interval of Fig. 3a. The
transmittance T shown in Fig. 3a is thus practically the con-
tribution of the largest transmission eigenvalue t1 alone. In the
next step, we examine how these single-channel transmission
resonances correspond to specific internal modes inside the dis-
ordered region. We consider the same discretized version of the
Helmholtz equation as for the scattering problem, but solve for
internal modes of the disordered region. We impose constant-flux
outgoing boundary conditions43 at those positions where, in the
scattering problem, the external leads are attached. These
outgoing boundary conditions make the corresponding eigen-
value problem non-Hermitian, yielding complex eigenfrequencies
vm that correspond, for all localized modes, to those of quasi-
bound resonances. Following Breit–Wigner theory, the real part
of these resonance frequencies corresponds to the resonance
positions km, km¼Re vm, while the imaginary part is associated
with leaking radiation out of the system, that is, with the
resonance widths, Gm¼ � 2Im vm. To verify this correspondence
explicitly, we reproduce the transmittance T(v) in the entire
frequency interval of Fig. 3a with a sum of Lorentzian curves,

TðvÞ ¼
XN

m¼1

Cm
Gm=2

Gm=2þ iðv� kmÞ

�����

�����

2

; ð3Þ

where km and Gm are determined from the complex
eigenfrequencies vm, and only the complex amplitudes Cm are
fit parameters. The excellent agreement between T(v) and the
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Figure 2 | Statistics of the single-channel regime of transport.

(a) Probability density distributions P(InT) (squares) and P(In sab) (circles)

from the numerical data for a planar waveguide of L/x¼ 5.25. The solid

lines plotted through the data are the predictions from equations (2)

and (4), respectively, with L=x ¼ �hIn Ti=2 ¼ 4:57. Inset: hInTi versus
L/W in the planar waveguides of eight different lengths (squares). The solid

line is the best linear fit to the data that yields the localization length

x¼ 1.52W. The broken line is hIn Ti ¼ � 2L=x0 for the planar waveguide

of L¼8W, furnishing the renormalized localization length x0 ¼ 1.74W.

(b) Experimental results and prediction for P(In sab) in the quasi-1D system

of L/x¼ 2.52 (sample D). Here L/x0 ¼ 1.25 is obtained from fitting the

bulk of the measured distribution (circles) with P(In sab) from equation (4)

(solid line).
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fit (red and black curve, respectively, in Fig. 3a) demonstrates
that the position and width of each resonant peak in T(v) are,
indeed, directly determined by the real and imaginary parts
of a single individual mode or a well-defined superposition of
very few internal modes. Since, in the single-channel regime, each
transmission peak is associated with a transmission eigenchannel,
we arrive at the conclusion that each transmission eigenchannel is
in turn supported by a unique localized mode or a combination of
a few spectrally overlapping modes (marked b and c in Fig. 3a,
respectively).

The above correspondence has far-reaching consequences, for
example, in terms of the wave functions (that is, the spatial field
profiles) associated with internal modes and transmission
eigenchannels. In particular, the scattering wave functions
associated with their respective transmission eigenchannels
should correspond to the same linear superposition of internal
modes as determined above through the transmittance T(v). To
test this explicitly, we created a corresponding superposition of
internal mode wave functions using the complex expansion
coefficients Cm in equation (3) extracted from the fit to T(v)
and compared this superposition state with the wave function
of the transmission eigenchannel (see plots in Fig. 3b,c). The

eigenchannel wave functions are obtained by projecting the
numerically calculated Greens function inside the disordered
region onto the external mode configuration of the transmission
eigenchannel (see refs 31,32). In the case where a transmission
eigenchannel is supported by a single internal mode (b in Fig. 3a),
we find that the wave function of the mode very well
matches that of the scattering state associated with t1 at the
resonance frequency (see Fig. 3b). Small deviations between the
wave functions, visible primarily close to the left boundary of the
disordered sample, can be attributed to the fact that the modes
feature purely outgoing boundary conditions, whereas the
transmission eigenchannels additionally contain the incoming
flux from the left lead. The insensitivity of the wave functions
deep inside the disordered region with respect to such a change in
the boundary condition is, in turn, a hallmark of Anderson
localization21. In the case of two spectrally overlapping modes
(c in Fig. 3a), we compare the scattering state associated with t1
with the two-mode superposition wave function determined
by the expansion coefficients Cm, which were fitted to T(v) as
outlined in the previous paragraph. We again find very good
agreement between the scattering state and this two-mode
superposition (see Fig. 3c). Note that the two spectrally

c b
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Figure 3 | Transport through eigenchannels and eigenmodes in the single-channel regime. (a) Numerically calculated transmittance T (red line)

versus detuning v from the mid-frequency of the localization band, normalized by the average mode spacing Dv, in a disordered planar waveguide of

L/x¼ 3.29. The black line on top of the red curve shows the result of a fit of the transmittance, using the real [Re vm] and imaginary [Im vm] parts

of the eigenfrequencies vm of the internal modes of the disordered region as fixed parameters (see empty and solid circles, respectively). Isolated

eigenfrequencies represent individual localized modes (b), whereas closely spaced eigenfrequencies correspond to spectrally overlapping modes

identified as necklace states (c). A spectral separation between the neighbouring necklace states of about 5Dv can be noticed. (b) Spatial intensity pattern

of the scattering state of the transmission eigenchannel (upper panel) and of the individual localized mode (lower panel) at the resonance peak b.

(c) Spatial intensity profile of the scattering state of the transmission eigenchannel (upper panel) and of the two-mode necklace state (top panel in the

framed box) at the resonance peak c. The lower two panels in the framed box display the two eigenmodes of the two-mode superposition.
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overlapping modes feature a high degree of spatial correlation
with each other owing to mode hybridization44,45 (see Fig. 3c),
allowing us to identify these overlapping modes as a necklace
state24,25. We thus conclude that multiple spectrally overlapping
modes form a single transmission eigenchannel by merging into a
mode necklace.

Dynamics of the single-channel regime. We finally consider the
dynamics of the single-channel regime following a pulsed exci-
tation of a random sample. Since in the single-channel regime
the transmission eigenchannel is formed by a localized mode or a
necklace state, the eigenchannel bandwidth is equal to the
resonance width. Consequently, a pulse of incident radiation
with a bandwidth less than the resonance separation will trans-
mit only through a single transmission eigenchannel. By con-
trast, a pulse of a bandwidth that envelops more than one
resonance will transmit through multiple eigenchannels, result-
ing in modal dispersion and non-exponential decay of the pulsed
transmission46. To chart the cross-over to the single-channel
regime in the time domain, we again employ the statistical ratio
R, evaluated now at different time delays t. To accomplish this,
the temporal response tab(t) to a Gaussian pulse is obtained by
taking the Fourier transform of the field spectrum multiplied by
a Gaussian envelope of width s. The computed transmitted
intensity, Tab(t)�|tab(t)|2, then yields hTabðtÞi and R(t), using the
same methods as for the steady state. Consider first R(t) for the
case when the pulse bandwidth s lies between the average
resonance width dv and the average resonance separation

Dv¼ dv/d, as realized, for example, for a quasi-1D system of L/
x¼ 2.9 (sample D), and s¼ 5dv¼ 0.5Dv (see red line in Fig. 4a).
As in the steady state, the single-channel regime occurs in the
time domain, when R¼ 4. Comparing with the corresponding
average transmission hTabðtÞi (red line in Fig. 4b), we observe
that the single-channel regime sets in following the arrival of the
intensity peak, in agreement with the expectation that the
incident pulse with soDv is typically transmitted through a
single channel. By contrast, in our numerical simulations for a
planar system of L/x¼ 3.29 and larger bandwidth s4Dv, the
single-channel regime (R¼ 4) is approached at significantly
longer time delays (see the green and brown lines in Fig. 4c,
which feature a different pulse bandwidth s and therefore a
different number of excited modes/resonances). From these
observations we conclude that the cross-over to the single-
channel regime occurs at long time delays when all but one
localized mode within the pulse bandwidth have leaked out of
the sample. This is further confirmed by microwave
measurements in a diffusive quasi-1D system of L/x¼ 0.4
(sample B), for s¼ 1.8dv¼ 3.9Dv (see the blue lines in
Fig. 4a,b). As seen in Fig. 4a, R(t) at first increases with time
delay monotonically from a steady-state value of 2.8 up to 4, and
then stays at 4 for longer time delays. This cross-over indicates
both that in the diffusive system several transmission
eigenchannels are open at short time delays and that there
exist long-lived, so-called pre-localized modes47 supporting the
single-channel regime at long time delays.

An intriguing question to ask at this point is whether we can
see any signatures of necklace states in the temporal response of
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Figure 4 | Single-channel regime in the time domain. Time-dependent ratio R(t) in random quasi-1D (a, experiment) and planar two-dimensional

(c, numerics) waveguide systems following a Gaussian pulsed excitation of bandwidth s. The horizontal dashed lines indicate R¼4 of the single-channel

regime. The experimental data in a are for a localized sample of L/x¼ 2.9 (sample D, red line) and for a diffusive sample of L/x¼0.4 (sample B, blue line),

using a pulse bandwidth of s¼ 5dv¼0.5Dv and s¼ 1.8dv¼ 3.9Dv, respectively. Note that for the localized sample a single transmission eigenchannel

dominates the pulsed transmission for all times, whereas a cross-over to the single-channel regime with increasing time delay can be noticed in the

diffusive system. The numerical data in c are for a localized sample of L/x¼ 3.29, using a bandwidth s¼ 2.3Dv (green line) and s¼ 9.2Dv (brown line).

Note that for both cases we have s4Dv, for which the single-channel regime sets in at long time delays. In addition, for the case where s is less than the

average separation between neighbouring necklace-state resonances of 5Dv, the single-channel regime can be realized by transmission through a necklace

state at short time delays (see the green line at R¼4 for small t). For all cases, the average pulsed transmission, hTabðtÞi, is shown in b (experiment) and

d (numerics). The experimental transmission curves were first normalized to have a peak of unity and the curve for the localized system was displaced by a

decade for clarity of presentation.
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our disordered systems. Note, in this context, that necklace states
typically correspond to higher and faster transmission19,48,49 as
compared with long-lived localized modes, and therefore they
are expected to dominate transmission at shorter time delays.
Furthermore, if the incident pulse excites multiple resonances,
that is, s4Dv, yet s is smaller than the average spacing between
neighbouring necklace-state resonances, only one of the
resonances within the pulse bandwidth is typically realized as a
necklace state. (A typical spacing of about 5Dv between
neighbouring necklace-state resonances of the planar disordered
waveguide can be extracted from the data in Fig. 2a.) This is
confirmed by the results shown in Fig. 4c where we see that for
s¼ 2.3Dv, the ratio R(t) (see the green line) starts out with RE4
at the arrival time of the peak intensity, and decreases at later
times. This value of RE4 at short times suggests that
transmission is dominated here by a single transmission
eigenchannel formed by a necklace state. As, however, these
necklace states are rapidly decaying through the sample
boundary, transmission of the incident pulse becomes
increasingly dominated by long-lived localized modes
supporting multiple eigenchannels (as indicated by R(t)o4 at
intermediate time delays). Finally, in the limit of still longer time
delays, we return to the single-channel regime where the most
localized mode dominates (as indicated by the final increase of
R(t) towards R¼ 4). To corroborate these arguments, we
investigate the same system with a broader Gaussian pulse of
width s¼ 9.2Dv (see the brown line in Fig. 4c). Since this pulse
excites typically more than one necklace-state resonance, the
value of R at the peak arrival time drops accordingly (down
to 3.5), reflecting the increase in the number of effective
transmission eigenchannels.

Summary. In summary, our experimental and numerical results
disclose an intimate relationship between the transmission
eigenchannels and spectral modes of disordered systems. We have
shown that in deeply localized systems, transmission is governed
by a single transmission eigenchannel, which is formed by an
individual localized mode or by a necklace state. These two types
of modes represent slow and fast-transmission eigenchannels,
which can be probed with a pulsed excitation of a judiciously
chosen bandwidth at long and short time delays, respectively. The
single-channel regime has unique statistical properties (as, for
example, a frozen speckle pattern), which can be utilized to chart
the cross-over to single-channel transport in both the steady state
and in the time domain. Finally, we have demonstrated that in
the single-channel regime, a quasi-1D localized system can be
mapped onto an effective 1D system with a renormalized
localization length, coupled to its surroundings via all available
external modes. These results are fundamental to understanding
the static and dynamic behaviour of waves in random media and
can be useful in describing energy transfer through strongly
scattering complex systems.

Methods
Microwave set-up. Microwave transmission measurements were carried out in
random mixtures of Al2O3 spheres of diameter 6.4mm and refractive index 3.14,
contained in a long copper tube of diameter 4.4 cm. Low values of the Al2O3 filling
fraction, f, were produced by embedding the Al2O3 spheres within Styrofoam shells
that are almost transparent for microwaves. We used four different Al2O3 samples:
A (Al2O3 filling fraction, f¼ 0.064, and L¼ 30.5 cm), B (f¼ 0.064, L¼ 45.7 cm),
C (f¼ 0.064, L¼ 91.4 cm) and D (f¼ 0.125, L¼ 45.7 cm). Microwave transmission
spectra were measured within the frequency interval 14.3–16.4 GHz, in which the
degree of localization could be tuned with frequency. In the measurement, linearly
polarized microwave radiation was launched and received by conical horns placed
20 cm in front of and behind the sample. Microwave field spectra were taken by
using a vector network analyser for two sets of polarizations of the transmitter and
receiver antennas, ea>eb and ea0>eb0 , obtained by rotating simultaneously both the
antennas by 90� (ref. 50). The polarization-selective transmission spectra were used

in the data analysis to compute the experimental ratio R. Once the field spectra
were taken, a new sample realization was created by rotating the sample tube about
its axis.

Numerical simulations. In our numerical simulations, we used a planar
disordered waveguide of width W and length L attached to clean semi-infinite
leads on the left and right. We modelled the disorder by randomly placing
non-absorbing dielectric scatterers of diameter 0.041W and refractive index 3.14
into the middle portion of the waveguide at a filling fraction of 0.125, keeping a
minimum distance of 0.0205W between the scatterers. For the time domain
calculations, as well as for the probability distributions of T and sab, we calculated
transmission spectra for 100 random disorder configurations at a sample length of
L¼ 5W¼ 3.29x. For each disorder realization, the transmission was evaluated in a
frequency window with altogether 2,397 frequency points. A small portion of such
a spectrum is shown in Fig. 3a.

Calculation of R. To obtain the experimental/numerical ratio R ¼ hs2abi=hs2i, we
computed hs2abi and hs2i from intensities Tab and Ta0b0. In particular, to compute
hs2i, we used the relation51,52, hs2i ¼ hsabsa0b0 ia 6¼ a0 ;b 6¼ b0 . To obtain the analytical
expression for R, we used the results of exact non-perturbative calculations30

for hgi and hg2i. To express hs2abi, we used hs2abi ¼ 2hs2ai (ref. 38) and hs2ai ¼
1þ varsa ¼ �ðx=hgi2Þ @hgi=@L (ref. 53); for hs2i, we used hs2i ¼ hg2i=hgi2. The
analytical curve for R is plotted versus L/x as the black solid line in Fig. 1. In the
diffusive regime (for Loox), to leading order in N44 1, hs2abi � 2þ 4L=3x and
hs2i � 1þ 2L2=15x2 (refs 51,54), and thus the perturbative result for R is
RE2þ 4L/3x (shown by the black dotted line in Fig. 1).

Distributions of transmittances in the single-channel regime. From the
relationships between the statistical moments of the normalized transmittances,
hsnabi ¼ n ! hsnai ¼ ðn ! Þ2hsni and using corresponding moment generating
functions29, we obtained the following relationships between their probability
density functions:

PðsaÞ ¼
R1
0

ds
s PðsÞ exp ð� sa=sÞ;

PðsabÞ ¼ 2
R1
0

ds
s PðsÞK0 ð2

ffiffiffiffiffiffiffiffiffiffi
sab=s

p
Þ;

ð4Þ

where K0(x) is a modified Bessel function of the second kind.
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