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Quantitative live-cell imaging reveals
spatio-temporal dynamics and cytoplasmic
assembly of the 26S proteasome
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The 26S proteasome is a 2.5-MDa multisubunit protease complex that degrades

polyubiquitylated proteins. Although its functions and structure have been extensively

characterized, little is known about its dynamics in living cells. Here, we investigate the

absolute concentration, spatio-temporal dynamics and complex formation of the proteasome

in living cells using fluorescence correlation spectroscopy. We find that the 26S proteasome

complex is highly mobile, and that almost all proteasome subunits throughout the cell are

stably incorporated into 26S proteasomes. The interaction between 19S and 20S particles is

stable even in an importin-a mutant, suggesting that the 26S proteasome is assembled in the

cytoplasm. Furthermore, a genetically stabilized 26S proteasome mutant is able to enter the

nucleus. These results suggest that the 26S proteasome completes its assembly process in

the cytoplasm and translocates into the nucleus through the nuclear pore complex as a

holoenzyme.
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T
he 26S proteasome is a multisubunit protease that
degrades polyubiquitinated proteins in an ATP-dependent
manner1–3. It is involved in a wide variety of cellular

processes, and proteasomal dysfunctions lead to a variety of
diseases4. The 26S proteasome is composed of at least 33 different
subunits, organized into two particles: a highly conserved 20S
core particle (CP), containing the central catalytic cavity, and one
or two 19S regulatory particles (RPs). The CP is a barrel-shaped
structure of B730 kDa, consisting of four heptameric rings,
whereas the RP is a B930-kDa complex consisting of 19 different
subunits. The RP mediates multiple aspects of proteasome
function such as recognition, deubiquitylation and unfolding
of substrates and translocation of substrates into the CP. The
RP can be separated into two major subcomplexes, the base
and the lid3. The base includes six different AAAþATPase
subunits (Rpt1–6) and three non-ATPase subunits (Rpn1, 2
and 13), whereas the lid consists of nine non-ATPase subunits
(Rpn3, 5–9, 11, 12 and 15). The lid partially surrounds the
ATPase ring of the base, and two ubiquitin receptors, Rpn10 and
Rpn13, are located on the periphery of the 19S RP5–8. Recent
studies have suggested that the assembly of the proteasome
proceeds via a highly ordered multistep mechanism9–12. All of the
subcomplexes of the proteasome (CP, base, and lid) seem to
assemble independently; the CP and base require multiple
proteasome-dedicated chaperones for efficient and correct
assembly.

In proliferating yeast and some cultured mammalian cells, the
26S proteasome is highly enriched in the nucleus, where it is
involved in degradation of nuclear proteins13–17. Because only a
small number of proteasome subunits contain a nuclear
localization signal (NLS)13,18,19, and because yeast undergoes a
closed mitosis in which the nuclear envelope remains intact and
mitosis occurs within the nucleus, the yeast proteasome must
enter the nucleus in an at least partially assembled form. In
support of this notion, previous studies have shown that CP
components are imported into the nucleus as inactive precursor
complexes via the importin-a/b pathway20. Additional evidence
suggests that the CP and the lid and base subcomplexes are
imported separately19,21. These observations imply that the
yeast 26S proteasome is assembled inside the nucleus from
independently imported modules. By contrast, other studies have
suggested that the holoenzyme or novel form of the preassembled
proteasome undergoes nuclear translocation22–24. Because the
channel of the nuclear pore complex (NPC) can expand to
accommodate cargoes with a diameter of up to 39 nm, as revealed
by studies using gold particles25, it is theoretically possible for
intact CP or even the entire 26S proteasome to pass through the
NPC. However, the inner channel of the NPC is largely composed
of unstructured FG-repeat-containing nucleoporins that create a
hydrophobic meshwork that acts as a permeability barrier26,
potentially preventing the translocation of the proteasome.
Therefore, it remains unclear whether the intact 26S
proteasome can pass through the NPC.

In this study, we investigated the absolute concentration,
dynamics, and complex formation of the 26S proteasome in living
yeast cells by fluorescence correlation spectroscopy (FCS)27–30,
a method for quantitative live-cell imaging. Unexpectedly, we
found that the 26S proteasome is a highly mobile complex, and
that almost all proteasome subunits are stably incorporated into
26S proteasomes in both the cytosol and nucleus. Complex
formation is not significantly altered in an importin-a mutant,
suggesting that the proteasome is assembled in the cytosol.
Consistent with this, a genetically stabilized 26S proteasome in
which the RP and CP are fused does not exhibit any obvious
defects and is distributed normally in the nucleus. These results
suggest that the 26S proteasome can complete its assembly

process in the cytoplasm and translocate into the nucleus through
the NPC as a holoenzyme.

Results
Dynamics of the 26S proteasome revealed by FCS. FCS27–29

measures fluorescence fluctuations within a defined volume,
determined by the laser and the optical setup, to determine a
correlation function for probe molecules (Fig. 1). Fitting of
mathematical models of the fluorescence correlation function
(FCF) allows determination of the concentration of the target
complex, as well as its the diffusion coefficient (D), which is
directly related to molecular weight and shape (Fig. 1). We first
investigated whether these methods could be applied to
macromolecules in extracts from cells expressing chromo-
somally green fluorescent protein (GFP)-tagged proteasome
subunit (Pre6)14,21, Hsp104, or ribosome subunit Rpl19a
(Fig. 2)31–33. All of the FCF curves fit well to a one-component
diffusion model (Fig. 2), suggesting that each of these
macromolecules were present as a single entity in the extract.
The molecular weights (MWfcs) estimated from the measured
D values for Hsp104 and the proteasome were larger than
their theoretical molecular weights (Table 1). However, this
inconsistency can be explained by a model using standard
spherical particles (Supplementary Fig. 1a) that takes into account
the shapes of Hsp104 and the proteasome, including the presence
of cavities in these complexes (Supplementary Fig. 1b–d).

We next applied FCS to living yeast cells (Fig. 3;
Supplementary Fig. 2). To elucidate the dynamics of all
subcomplexes of the proteasome at their endogenous expression
levels, we studied yeast cells expressing chromosomally
GFP-tagged Pre6 (a CP subunit), Rpn1 (a base subunit) or
Rpn7 (a lid subunit) (Fig. 3a). Exponentially growing cells were
mounted on a glass-bottom dish to eliminate possible mechanical
stress34. We measured proteasome dynamics in both the
cytoplasm and nucleus. The FCF curves in both compartments
were very similar for all three subunits (Fig. 3b; Supplementary
Fig. 3). Unexpectedly, the mobilities of the subunits in live
cells had two or more components, rather than the simple
one-component diffusion observed in extracts. Because a two-
component diffusional model fitted well to the FCF curves
(see Methods), we conclude that almost all proteasome subunits
exist within cells as components of two species. Based on our
previous finding that the apparent viscosity in the yeast cell is
B4 cP (ref. 31), we calculated that the size of one of these
species (represented by Dfast) is 1–10MDa, whereas the size of
the other (represented by Dslow) is B32GDa (Table 2).
The smaller species seemed to represent the bona fide 26S
proteasome (Supplementary Fig. 4), whereas the larger species
seemed to represent a novel form of the proteasome, possibly
reflecting strong interactions with other cellular components.
From the initial amplitude of the correlation curve, G(0), we
calculated the absolute concentrations of the proteasome
subunits: 140–200 nM in the cytoplasm and 830–980 nM in the
nucleus (Fig. 3c).

As a control for our in vivo measurements of proteasome
dynamics, we analysed a mutant of Rpn2, the second largest
subunit of the proteasome, in which proteasome assembly is
defective. In the rpn2 mutant, the 26S proteasome was almost
completely disassembled into the lid, base (lacking Rpn2) and CP
even at the permissive temperature21. Indeed, the FCF curves of
Pre6-GFP, Rpn1-GFP and Rpn7-GFP were dramatically altered
(Fig. 3d and Table 2). Dfast values for Pre6-GFP, Rpn1-GFP and
Rpn7-GFP were twofold larger than in wild-type cells, indicating
B8-fold reductions of their MWfcs. This experiment illustrates
that dissociation of the holo-proteasome into its constituent
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subcomplexes can be monitored by FCS analysis, and that FCS
analysis can be applied to the in vivo measurement of proteasome
dynamics.

Next, we sought to characterize the slower-mobility species with
an apparent molecular weight of B32GDa. We hypothesized that
the very slow correlation might reflect binding and unbinding to
immobile cellular components. The fractional ratios of Dfast and
Dslow differed slightly between the cytosol and the nucleus, but
overall B40% of total proteasomes in both compartments
appeared to be associated with cellular components (Table 2;
Supplementary Fig. 3). Notably, in rpn2 cells, the fraction of the
slower-mobility species decreased to B20%, suggesting that fully
assembled proteasomes, rather than constituent subcomplexes,
associate with these cellular components. Recent studies suggested
that cytoplasmic proteasomes interact directly with actin fibres35,
and that nuclear proteasomes associate with chromatin during the
transcription process36. To test these ideas, we exposed cells to
drugs targeting these features of the cell. Disruption of actin
fibres by latrunculin A did not affect proteasome mobilities
(Supplementary Fig. 5a,b), suggesting that the proteasomes do not
associate with an intact actin cytoskeleton. By contrast, inhibition
of RNA polymerase II by actinomycin D decreased the fraction of
the slower-mobility proteasomes (Supplementary Fig. 5c),
suggesting that a large fraction of proteasomes is engaged with
actively transcribed chromatin in the nucleus. Further studies
are needed to determine the proteasome-associated cellular
components in the cytoplasm.
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The 26S proteasome is a very stable complex in living cells.
Dual-color fluorescence cross-correlation spectrometry (FCCS)
is designed to examine complex formation between two mole-
cules labelled with different colours (e.g., GFP and mCherry,
Fig. 1)27–29. The observations described above indicated that
almost all proteasome subunits exist as the 26S proteasome.
To confirm these findings, we carried out FCCS analysis in cells
co-expressing Rpn7-GFP (lid) and Pre6-mCherry (CP) (Fig. 4a).
If the lid subunit and the CP subunit exist in the same complex,
we should observe co-diffusion of GFP and mCherry as they enter
and leave the focal volume, represented by the amplitude of
cross-correlation, Gc(0)27–29. As shown in Fig. 4b, high cross-
correlation was indeed observed between Rpn7-GFP and Pre6-
mCherry. The relative interaction amplitude between Rpn7-GFP
and Pre6-mCherry, represented by [Gc(0)� 1]/[Gg or r (0)� 1],
was larger than that of a GFP–mCherry fusion protein, suggesting
that the RP–CP interaction is quite strong (Fig. 4c). Notably, the
same result was obtained in both the cytoplasm and nucleus.
Thus, FCCS analysis revealed that the 26S proteasome is a very
stable complex in live cells.

The 26S proteasome can form in the cytoplasm. Our FCS
analysis did not detect proteasome assembly intermediates in
wild-type cells, probably because such intermediates are not
abundant37–40. Previous studies using a specific importin-a
mutant, srp1-49, suggested that nucleocytoplasmic transport
mediated by importin a/b is coupled to proteasome
biogenesis19–21,23. We hypothesized that proteasome inter-
mediates might be detected in the srp1-49 mutant. To test this
idea, we analysed proteasome dynamics in the srp1-49 mutant by
FCS/FCCS. As reported previously, when cultures of srp1-49 cells
were shifted to the restrictive temperature for 6 h, corresponding
to four doubling times, newly synthesized proteasome subunits
were retained in the cytoplasm and accumulated at the outer
membrane of the nuclear envelope21 (Fig. 5a). Under these
conditions, we determined the absolute concentrations of the
proteasome subunits. In srp1-49 cells, the concentration of each
subunit was increased 2-fold in the cytoplasm relative to the
concentration in wild-type cells, whereas the nuclear con-
centrations were decreased threefold (Fig. 5b). Unexpectedly,
we did not detect assembly intermediates or free subcomplexes in
srp1-49 cells by FCS. This observation raised the possibility that
the proteasome is assembled in the cytoplasm. To monitor the
assembly status of the proteasome complex, we constructed an
srp1-49 RPN7-GFP PRE6-mCherry strain and analysed it by
FCCS. The relative cross-correlation amplitudes between Rpn7-
GFP and Pre6-mCherry did not change over 3 or 6 h of culture
(two or four doublings, respectively) at the restrictive temperature
(Fig. 5c). Accordingly, the interaction amplitudes changed only
slightly in both the cytoplasm and the nucleus (Fig. 5d). These

Table 1 | Summary of calculated molecular weights (MW) and diffusion coefficients (D) of GFP-tagged macromolecules in
extracts.

Proteins GFP-tagged proteins Theoretical MW Dfcs (lm2 s� 1)* MWfcs

Fluorescent proteins GFP monomer, mCherry 28� 103 78±1.8 25� 103

Tandem 3XGFP (rod-like shape) 85� 103 43.2±1.4 164� 103

Hsp104 Hsp104-GFP (6 nm cavity) 132� 103 (792� 103)w 12±1.0 8.6� 106

26S proteasome Pre6-GFP (rod-like and small cavity) 2.56� 106 (26Sþ two GFP)z 10±1.5 10� 106

Ribosome Rpl19a-GFP (diameter B28 nm) Unknown 7.5±1.0 28� 106

*Diffusion coefficients (D) were calculated from the FCF fitting result (means±s.d.; n¼ 3).
wMW of Hsp104-GFP as hexamer.
zMW of the proteasome as double-capped 26S proteasome.
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results suggest that the 26S proteasome was still able to form in
the cytoplasm even when nuclear import is impaired.

To rule out the possibility that cytoplasmic accumulation of the
subcomplexes artificially induced formation of 26S proteasomes,
we deleted RPN4 from srp1-49 cells. Rpn4 is a transcription
factor that regulates proteasome concentrations; deletion of
RPN4 significantly reduces the levels of proteasome subunits39,41.
Consistent with this, the cytoplasmic concentration of Rpn7-GFP,
measured by FCS, decreased to B160 nM in srp1-49 rpn4D
double-mutant cells at both the permissive and non-permissive
temperatures (Supplementary Fig. 6). Next, we analysed these
cells by FCCS. Although the interaction amplitude between
Rpn7-GFP and Pre6-mCherry in the srp1-49 rpn4D mutant was
slightly lower than that in wild-type cells, it did not change at the
non-permissive temperature. Thus, 26S proteasomes could still
form in srp1-49 rpn4D mutant cells. Together, these results
suggest that nuclear import is not required for the formation of
the 26S proteasome.

Stabilized holoproteasomes are localized in the nucleus. Our
results obtained from live-cell measurements demonstrate that

the 26S proteasome can form in the cytoplasm, and then enter the
nucleus. As noted above, the channel of the NPC can expand to
39 nm (ref. 25), the 26S proteasome could translocate into the
nucleus through via the NPC. However, the inner channel
of the NPC serves as a permeability barrier26, which potentially
prevents translocation of the 26S proteasome as intact complex.
The 26S proteasome is intrinsically unstable: it is easily
dissociated into the RP and the CP in vitro, and recent studies
have also suggested that the RP–CP interface is structurally fragile
on exposure to oxidative stress in vivo42. Because only a few
proteasome subunits contain NLS sequences, dissociation
might occur at the subcomplex level, especially at the RP–CP
interface. In our FCCS measurements, the time resolution is
limited to410 ms, therefore, the data described above cannot rule
out the possibility that 26S proteasome undergo very fast
dissociation and re-association during translocation through
the NPC.

To rule out the possibility and show that the holo-complex can
enter the NPC, we constructed a strain in which the RP and CP
particles were fused: specifically, the CP subunit Pre6 (a4) was
genetically fused to the RP subunit Rpt1 or Rpt2 (Fig. 6a).
The RP-CP–fused strains exhibited wild-type growth even in the

Table 2 | Comparisons of the proteasome mobility between wild-type and rpn2 cells.

Wild type rpn2

GFP-tagged proteins Dfast (lm2 s� 1)* (%)w Dslow (lm2 s� 1)* (%) Dfast (lm2 s� 1)* (%)w Dslow (lm2 s� 1)* (%)

Pre6 (CP) 6.0±0.35 (55) 0.25±0.01 (45) 11.3±0.30 (73) 0.7±0.10 (27)
Rpn1 (base) 6.0±0.51 (53) 0.31±0.03 (47) 12.1±0.34 (80) 1.0±0.14 (20)
Rpn7 (lid) 5.3±0.48 (59) 0.31±0.03 (41) 12.0±0.50 (81) 1.3±0.20 (19)
GFP monomer (control)z 21.6±0.7 (93) 0.2±0.1 (7)

*Diffusion coefficients (D: Dfast, Dslow) were calculated from the FCF fitting result (means±s.e.m.; n¼45 for WT and n¼ 20 for rpn2 mutant).
wFractional ratios, Ffast and Fslow of Dfast and Dslow are represented by percentage.
zDiffusion of GFP monomer in live yeast cells is shown as a reference.
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presence of oxidative stress (Fig. 6b). Because these subunits are
essential, the genetic studies suggested that the fusion proteins
were functional. Protein bands corresponding to the Rpt1–Pre6
and Rpt2–Pre6 fusion proteins could be detected in the
corresponding lysates and in affinity-purified RP-CP–fused
proteasomes (Fig. 6c; Supplementary Fig. 7). The RP–CP
proteasome could be purified as the holo-complex even in the
absence of ATP (Fig. 6c, right panel), suggesting that almost all
proteasomes contained stoichiometric amounts of the fusion
proteins. These observations support the CP template assembly
model of the RP39. Furthermore, structural analysis by
cryo-electron microscopy revealed that the Pre6-Rpt2–fused
proteasome was almost indistinguishable from the wild-type
proteasome (Fig. 6d). Thus, we concluded that the RP-CP–fused
proteasomes were functional both in vivo and in vitro.

Using these strains, we analysed the subcellular distribution of
the RP-CP–fused proteasome. As shown in Fig. 7a, proteasome
subunits were distributed normally in the nucleus. Importantly,
the diffusion properties of the proteasomes measured by FCS
were indistinguishable between RP-CP–fused and wild-type cells
(Supplementary Fig. 7c). Nevertheless, it remained possible
that the RP-CP–fused proteasomes assembled in the nucleus.
Therefore, we performed nuclear import assays on these
proteasomes. In quiescent cells, proteasomes form cytoplasmic
granule structures called proteasome storage granules (PSGs)34.
On addition of fresh medium, PSGs rapidly disappear, and
proteasomes re-enter the nucleus within a few minutes34.
By exploiting this phenomenon, we investigated whether the
RP-CP–fused proteasomes could re-enter the nucleus. Because of
the low efficiency of PSG formation in our W303 background

cells, we used respiration-deficient cells in which intracellular pH
rapidly declines on carbon depletion, resulting in efficient
formation of PSGs (to be published). Both wild-type and the
PRE6-RPT1–fused cells formed PSGs after 48 h of culture.
Strikingly, on the addition of fresh medium, PSGs in both
strains rapidly disappeared, and the proteasomes mobilized into
the nucleus with the same kinetics (Fig. 7b). Thus, RP-CP–fused
proteasomes entered the nucleus through the NPC, indicating
that dissociation into RP and CP is not required for nuclear
import of the assembled proteasome. Taken together, these
results suggest that the 26S proteasome can enter the nucleus as
the holoenzyme.

Discussion
In this study, we determined the local concentrations of the
proteasome in living yeast cells, and characterized the formation
of the proteasome complex, using a quantitative imaging method.
Previous studies have demonstrated that the base, base-like
complex, and RP function in transcription, independent of the
proteolytic function of the proteasome, implying that the
proteasome subcomplexes may have specific roles in cells43–45.
However, our results suggest that the 26S proteasome is a very
stable complex, and that free base, RP, and subunits are not
present at detectable levels anywhere in the cell, at least under
normal culture conditions. In line with our findings, a recent
study showed that the transcriptionally relevant form is the
canonical 26S proteasome46.

In a widely accepted model, the precursors of both RP and CP
are translocated independently into the nucleus, where they are
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assembled into the 26S proteasome19–21. In contrast to this
canonical pathway, our results obtained by FCS/FCCS analysis of
the importin mutant and cells expressing genetically stabilized
proteasomes (Fig. 5; Supplementary Fig. 7) suggest that the 26S
proteasome is assembled in the cytoplasm. Because we could not

detect proteasome intermediates by FCS, even in the importin
mutant, we cannot rule out the possibility of the canonical
pathway. Clearly, further studies are needed to clarify which
pathway predominates within cells. Regardless, our results
strongly suggest that the nuclear import of the precursors is not
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essential for proteasome assembly (Fig. 5; Supplementary Fig. 6).
Furthermore, the results of nuclear import assays performed on
RP-CP–fused proteasomes suggest that the 26S holoenzyme can
translocate through the NPC (Fig. 7). Because the dimensions of
the 26S proteasome are 20 nm� 45 nm, we speculate that the
proteasome could be transported along its longitudinal axis
through the 39-nm NPC channel25. The direction and orientation
of translocation might be governed by Sts1, an NLS-containing
protein that binds the lid subunit Rpn11 (ref. 22).

In summary, we have demonstrated a method for quantitative
imaging analysis that enables direct observation of proteasome
dynamics in living yeast cells in which all component proteins
expressed at their endogenous levels. We unambiguously
determined the local concentrations of the proteasome in distinct
subcellular compartments, and also characterized the process of
proteasome complex formation. Our live-cell paradigm avoids
the potential artifacts of classical biochemical studies of the
26S proteasome, which is a labile complex in vitro. The 26S
proteasome is an attractive target for pharmaceutical develop-
ment47, and the proteasome dynamics revealed by ‘in vivo
biochemistry’ provide a new perspective that should facilitate the
development of next-generation proteasome inhibitors.

Methods
Yeast strains and media. Strains used in this study are listed in Supplementary
Table 1. Standard protocols were used for yeast manipulation48. The proteasome
subunits RPN1, RPN7 and PRE6 were chromosomally tagged with yeast enhanced
green fluorescent protein (GFP) or monomeric Cherry fluorescent protein
(mCherry), as described previously21,40,49. Genetically stabilized 26S proteasomes
in which the CP subunit PRE6/a4 was fused to the RP subunit RPT1 or RPT2
were constructed as follows. The 50-truncated PRE6 open reading frame (ORF)
(þ 304 to þ 762, NotI-BamHI) was inserted into the NotI-BamHI site of the
yeast-integrating vector pRS306. Next, the RPT1 ORF with its transcriptional
terminator (þ 1 to þ 1,753, BamHI-SalI) or the RPT2 ORF with its terminator
(þ 1 to þ 1,633, BamHI-XhoI) was inserted into the BamHI-XhoI site of
pRS306-50Dpre6. The resulting plasmids, pOKA511, pRS306-50Dpre6-RPT1 and
pOKA512, pRS306-50Dpre6-RPT2, were linearized at the SalI site within PRE6
and transformed into RPT1/rpt1D::LEU2 and RPT2/rpt2D::HIS3, respectively.
Uraþ transformants were sporulated, and tetrads were dissected. Because RPT1 is
an essential gene, Ura� Leuþ spores did not germinate. However, we could obtain
Uraþ Leuþ cells, indicating that the PRE6-RPT1 fusion gene complements the
RPT1 deletion. Likewise, Ura� Hisþ spores did not germinate, whereas Uraþ

Hisþ cells could be obtained, indicating that the PRE6-RPT2 fusion gene
complements the RPT2 deletion. To generate r0 mutants, cells were cultured in
YPD containing 10mgml� 1 ethidium bromide for 24 h, and diluted cells were
streaked onto YPD plates; the resultant colonies were then screened for inability to
grow on YPGly plates50.

Fluorescence correlation spectroscopy. Yeast cells chromosomally expressing
GFP- and/or mCherry-tagged proteins were grown in SC medium (0.67% yeast
nitrogen base without amino acids, 0.5% casamino acids, 2% glucose, 20mg/l
tryptophan, 20mg/l uracil, 400mg/l adenine, and 10mM phosphate buffer, pH 7.5)
at 25 �C to logarithmic phase, and then the cultures were shifted to 37 �C for the
indicated times. The cells were mounted on a glass-bottom dish (MatTek Cor-
poration). FCS and FCCS measurements were all performed at 25 �C with a
ConfoCor2 (Carl Zeiss) microscope, as described31,51–53. The ConfoCor2 consisted
of a CW Arþ and He–Ne lasers, a water-immersion objective (C-Apochromat,
40� , 1.2 numerical aperture; Carl Zeiss), and two channels of avalanche
photodiodes (SPCM-200-PQ; EG&G). GFP was excited with the 488-nm laser line,
and RFP with the 543-nm laser line, with the minimal total power that yielded a
sufficient signal-to-noise ratio. The confocal pinhole diameter was adjusted to
70mm for 488 nm and 78mm for 543 nm. The emission signals were split by a
dichroic mirror (570-nm beam splitter) and detected at 505–530 nm in the green
channel (for GFP) and 600–650 nm in the red channel (for RFP). Simultaneous
excitation of GFP- and mCherry/RFP-tagged proteins was carefully carried out at
minimal and optimal excitation powers, chosen to obtain sufficiently high signal-
to-noise ratios for analysis of diffusion times while preventing artifacts such as
saturation, blinking and photobleaching that might affect the results of such
analyses. Because cell and nuclear sizes differ significantly between yeast mother
and daughter cells, our FCS and FCCS measurements were carried out on mother
cells of similar size throughout the study. However, it should be noted that the
FCS/FCCS results did not differ substantially between large mother cells and small
daughter cells (data not shown).

Data were analysed using the ConfoCor2 software, as described in our previous
study. Briefly, the fluorescence auto-correlation functions of the red and green

channels, Gr(t) and Gg(t), and the fluorescence cross-correlation function, Gc(t),
were calculated from

Gx tð Þ ¼ 1þ dIi tð Þ � dIj tþ tð Þ
� �

Ii tð Þh i Ij tð Þ
� � ð1Þ

where t denotes the time delay; Ii the fluorescence intensity of the red channel
(i¼ r) or green channel (i¼ g); and Gr(t), Gg(t), and Gc(t) denote the red
(i¼ j¼ x¼ r) and green (i¼ j¼ x¼ g) auto-correlation functions and the
cross-correlation function (i¼ r, j¼ g, x¼ c), respectively. The acquired Gx(t)
values were fitted using a one-, two- or three-component model:

Gx tð Þ ¼ 1þ 1
N

X
i

Fi 1þ t
ti

� �� 1
1þ t

s2ti

� �� 1=2
ð2Þ

where Fi and ti are the fraction and diffusion time of component I, respectively;
N is the average number of fluorescent particles in the excitation-detection volume
defined by the radius w0 and the length 2z0; and s is the structure parameter
representing the ratio s¼ z0/w0. The structure parameter was calibrated using
Rhodamine-6G (Rh6G) standard solution at room temperature. The relationship
between absolute concentration and calculated N was calibrated using a known
concentration of Rh6G or recombinant mGFP solution. The effect of photo-
bleaching on evaluation of concentration was determined according to a previous
study31. Fluorescence correlation functions (FCFs) in live cells were measured
sequentially 5–10 times with duration of 10 s to minimize the photobleaching
effect, because gradual photobleaching by cellular depletion of GFP (RFP) affected
diffusion analysis of FCFs obtained from measurements of longer duration
(Supplementary Fig. 1).

The diffusion time of component i, ti, is related to the translational diffusion
coefficient D of component i by

ti ¼
w2
xy

4Di
ð3Þ

The diffusion of a spherical molecule is related to various physical parameters
by the Stokes–Einstein equation as follows.

Di ¼
kBT
6pZri

ð4Þ

where T is the absolute temperature, ri is the hydrodynamic radius of the spherical
molecule, Z is the fluid-phase viscosity of the solvent, and kB is the Boltzmann
constant. The diffusion coefficient of GFP-tagged proteins in a solution sample
with 1 cP viscosity was evaluated using the known diffusion coefficients (apparent
molecular weights) of the Rh6G standard and the recombinant mGFP solutions:
respectively, 280 and 78 mm2 s� 1. For live cells, the diffusion coefficient
(apparent molecular weight) of GFP-tagged proteins was evaluated using GFP (or
mCherry) expressed in yeast cells. Data containing severe photobleaching, possibly
resulting from a high proportion of immobilized fluorophores, were excluded
from the diffusion analysis. For FCCS analysis, the amplitude of the cross-
correlation function was normalized to the amplitude of the auto-correlation
function of mCherry to calculate the relative cross-correlation amplitude
([Gc(0)� 1]/[Gr(0)� 1])28,52,53. Interaction amplitude was represented by the
relative cross-correlation amplitude corresponding to the fraction of associated
molecules (Nc/Ng). All measured FCFs were globally fitted, using the model
described above, with the software installed on the ConfoCor 2 system. FCFs of
Rh6G, GFP (RFP) and GFP/RFP-tagged molecules in solution were well fitted by a
one-component model (i¼ 1) with or without a triplet term). In living cells, both
FCS and FCCS analyses revealed that the mobilities of GFP/mCherry-tagged
subunits were well fitted by a two-component model, because the results of
analyses using two- and three-component models did not differ significantly. Thus,
any third (or higher-order) components were either very weak or otherwise
undetectable by these methods. To estimate the diffusion coefficients, FCFs in live
cells were fitted by a two-component model (i¼ 2, Dfast and Dslow) with or without
a triplet term. Intriguingly, in the two-component analysis, FCFs of GFP- or
mCherry-tagged subunits frequently exhibited Dfast values with D410 mm2 s� 1,
much larger than the value calculated from D of Pre6-GFP in solution
(Supplementary Fig. 1) and the apparent viscosity of a yeast cell51. This fast
component with a large D value was barely detected for FCFs of cross-correlation
functions, which exclude independent photochemical effects (such as blinking)
from the two fluorescent molecules (Supplementary Fig. 4). Therefore, this fast
component for GFP- or mCherry-tagged proteins may be an apparent diffusional
term, caused by blinking of the probes, even though the time scale of the
blinking was different from that reported in a previous study54. Such data were
excluded from FCS analysis. The details of the simulations of molecular shapes
of various proteins from analyses of FCFs were described in our previous
studies31,55,56.

Fluorescence microscopy. Cells grown in SC medium, described above, were
mounted on glass slides and observed with a BX52 fluorescence microscope
(Olympus) equipped with a UPlanApo 100� , 1.45 numerical aperture objective
(Olympus), a confocal scanner unit CSU22 (Yokogawa) and an ORCA-ER CCD
camera (Hamamatsu Photonics), as described previously21. Images were processed
using the IPLab software (Scanalytics Inc). For proteasome nuclear import assays
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(Fig. 7b), we acquired images at 0.5-mm intervals in the Z focal plane, and then
generated maximal projections of Z stacks.

Purification of 26S proteasomes and cryo-electron microscopy. Intact 26S
proteasomes from wild-type yeast and the RP-CP–fused strain were purified using
the Rpn11-3� FLAG tag57. The cells cultured in YPD medium were lysed with
glass beads in lysis buffer, 50mM Tris-HCl, pH 7.5, 100mM NaCl, 10mM MgCl2,
4mM ATP and 10% glycerol. After removal of the glass beads, extracts were
cleared by centrifugation and incubated with anti-FLAG M2 agarose beads (Sigma)
for 2 h at 4 �C. Beads were washed three times with the same buffer and the intact
26S proteasomes were eluted with 400mgml� 1 3XFLAG peptide (Sigma). For
enrichment of the double-capped 26S proteasomes, the eluted samples were
subjected to a 15–40% sucrose density gradient, subsequently fractionated, and
analysed by SDS–polyacrylamide gel electrophoresis. The vitrified samples were
imaged using a Tecnai F20 transmission electron microscope7. Using XMIPP58, we
computed 25-Å and 27-Å resolution maps (Fourier–Shell correlation, FSC¼ 0.5)
for the wild-type and RP-CP–fused proteasomes from 43,000 and 15,000 single
particles, respectively.
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