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Environment-responsive nanophores for therapy
and treatment monitoring via molecular MRI
quenching
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The effective delivery of therapeutics to disease sites significantly contributes to drug

efficacy, toxicity and clearance. Here we demonstrate that clinically approved iron oxide

nanoparticles (Ferumoxytol) can be utilized to carry one or multiple drugs. These so called

‘nanophores’ retain their cargo within their polymeric coating through weak electrostatic

interactions and release it in slightly acidic conditions (pH 6.8 and below). The loading

of drugs increases the nanophores’ transverse T2 and longitudinal T1 nuclear magnetic

resonance (NMR) proton relaxation times, which is proportional to amount of carried cargo.

Chemotherapy with translational nanophores is more effective than the free drug in vitro and

in vivo, without subjecting the drugs or the carrier nanoparticle to any chemical modification.

Evaluation of cargo incorporation and payload levels in vitro and in vivo can be assessed via

benchtop magnetic relaxometers, common NMR instruments or magnetic resonance imaging

scanners.
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T
he effective delivery of therapeutics is critical for treatment.
Drugs must stay in circulation for adequate time, avoiding
clearance by the liver and kidneys and achieve sufficiently

high accumulation in the site of the disease, in order to maximize
therapeutic efficacy and minimize side effects. Towards this goal,
researchers have utilized innovative strategies, including the
modification of drugs like Doxorubicin with polymers and
targeting moieties, in order to achieve delivery to tumours via
the enhanced permeability and retention effect or the targeting
of overexpressed surface markers1–4. Apart from receptors
involved in signal transduction, nutrient receptors, such as
the folate or transferrin receptor, were targeted for the delivery
of chemotherapies5–7. Furthermore, in order to determine
the distribution of these molecular constructs, tracers or
fluorochromes were covalently conjugated to them8–11.
However, since the parent drugs have undergone modifications,
including addition of new bonds, functional groups and entire
molecules to either achieve targeting or monitoring, these
therapeutic agents face extensive scrutiny from regulatory
bodies12–14.

An appealing alternative is the encapsulation of therapeutics
within the nanoparticles that provide aqueous stability and longer
circulation times, without subjecting the drug to any chemical
modification15–17. For instance, liposomal formulations of
chemotherapeutics and antifungals, like Doxorubicin (Doxil)
and Amphotericin B (AmBisome), are in clinical use and provide
improved pharmacokinetics and ability to deliver high loads of
drugs with otherwise poor aqueous solubility. Drug delivery
occurs upon fusion with the plasma membrane or action of
lipases18,19. Alternatives to liposomes are nanoparticles that
consist of polymers, like poly(lactic-co-glycolic) acid and
hyperbranched polyesters, which can be hydrolysed in vivo by
enzymes, like esterases, and acidic conditions20–22. These
nanoparticles delivered drugs, like Taxotere, in cultured cells
and animal models. The encapsulation process resulted in loading
of the drugs within the nanoparticle’s cavity and allowed the use
of the nanoparticle’s surface functional groups for further
bioconjugation of targeting moieties. However, although
targeted nanoparticles can be developed for both drug delivery
and imaging via clinical diagnostic modalities, these nanoparticles
have not been investigated by regulatory agencies23.

Iron oxide nanoparticles (IONP) formulations have been used
as contrast agents for magnetic resonance imaging (MRI).
Currently, Ferumoxytol (Feraheme) is used in the clinic for the
treatment of iron deficiency. These nanoparticles consist of iron
and a carbohydrate (dextran) and are well tolerated, without any
side effects and toxicity. Therefore, we investigated whether
Ferumoxytol can serve as a magnetic drug carrier suitable to carry
several hydrophobic drugs after facile loading through co-
incubation and improve their therapeutic efficacy, without further
modification of either the nanoparticle or drugs. Such a drug
delivery system promises to move faster to the clinic, since it is
based on an already clinically approved vehicle (Ferumoxytol)
and simply takes up the drug without chemical reactions;
therefore, the drug-loaded particles were aptly termed nano-
phores. In addition, developing a facile method to load different
drugs on a common delivery platform has the unique potential of
being readily adopted in clinic. We also hypothesized that the
drug loading could be monitored through MRI, since IONP’s
magnetic properties have been previously used in sensitive assays.
These assays rely on the nanoparticles’ ability to affect the proton
nuclear magnetic resonance (NMR) signal of the surrounding
water molecules. Specifically, IONPs primarily affect the trans-
verse (spin–spin; T2) relaxation time of bulk water protons,
facilitating sensitive quantification and imaging with compact
relaxometers, NMR or MRI instruments24–30.

Herein, we report that magnetic nanophores can be self-
reporting delivery vehicles for many chemotherapeutics. When
the cargo is loaded, the nanoparticle’s magnetic properties are
affected and the relaxation times T2 and T1 increase. Diffusion
MRI, which allows the measurement of water diffusion in a given
voxel through the apparent diffusion coefficient, revealed that the
cargo hinders water’s diffusion within the nanoparticles’ coating
as probable reason for the induced changes in relaxivity. After
establishing this optical-independent method to charac-
terize drug-loaded nanophores, we show that drug-loaded
Ferumoxytol delivers a more efficient therapy than free drugs
in vitro and most importantly in vivo, for the rational inhibition
of select oncogenic pathways.

Results
Clinical IONP as drug nanophores. Considering the need for
translational drug delivery platforms and the already existing
clinical use of Ferumoxytol, we first investigated whether Ferum-
oxytol could be used as a nanophore for the delivery of drugs.
Hence, we encapsulated therapeutics and fluorophores within
Ferumoxytol, using the solvent diffusion method, in order to
facilitate the facile entrapment of hydrophobic molecules within
Ferumoxytol’s carboxymethyl dextran coating. After dialyzing the
nanoparticles in order to remove any free cargo from the solution,
we determined that Ferumoxytol could carry different amounts
of the fluorescent Taxol analogue Flutax1 (MW: 1,337), without
affecting the nanoparticles’ physical properties (Fig. 1a;
Supplementary Fig. 1a,b). The encapsulation process had a
minimum of 80% loading efficiency for Flutax1, as determined
through ultraviolet–vis spectroscopy after dialysis of the Flutax1-
loaded nanophores in order to remove free cargo, suggesting
that large amounts of payload could be entrapped within
Ferumoxytol’s coating (Fig. 1b). Furthermore, we demonstrated
that Ferumoxytol could also carry smaller compounds, such as
the near-infrared fluorophore DiR and the chemotherapeutic
Doxorubicin, with molecular weights of 1,013 and 580, respec-
tively. Dynamic light scattering (DLS) analysis revealed that drug
loading did not affect the average diameter of Ferumoxytol,
indicating that the cargo and the encapsulation process do not
affect the nanoparticles’ size (Fig. 1c). Apart from the clinical
Ferumoxytol, these compounds were effectively loaded in in-
house synthesized nanoparticles, such as poly(acrylic acid)
(PAA)-coated and aminated IONP, with the mean diameter of
the loaded nanoparticles being similar to that of the unloaded
(vehicle) nanoparticles (Supplementary Fig. 1c,d), indicating that
the loading capability is not unique to Ferumoxytol. Since serum
stability is a key parameter in drug delivery, we utilized
DiR-loaded Ferumoxytol and determined that the nanoparticles’
near-infrared fluorescence did not significantly change after
prolonged incubation in serum (Fig. 1d), with the formulation
being uniformly suspended and lacking any signs of aggregation
(Supplementary Fig. 1e).

The serum stability of cargo-loaded Ferumoxytol prompted us
to study whether the cargo could be retained at physiological
conditions but released upon sensing the reduced pH in many
tumours. This feature is ideal for cancers that exhibit decreased
interstitial pH, due to upregulated glycolysis as a result of
signalling and metabolic alterations31. In order to examine the
use of Ferumoxytol as a microenvironment-responsive drug
delivery system, we studied the retention of Doxorubicin by
Ferumoxytol at physiological and lower pH levels as seen
in tumours. We employed a dialysis chamber to separate
the nanoparticles from the potentially released drug. Since
Doxorubicin is fluorescent11, we monitored the fluorescence
emission of Doxorubicin-loaded Ferumoxytol, as well as the
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presence of free drug outside the dialysis chamber via
HPLC-based spectrophotometry. We determined that while
Ferumoxytol retained Doxorubicin at pH 7.2, it released the
drug at slightly lower pH (Fig. 1e,f).

We next hypothesized that the release of cargo at lower pH was
facilitated due to disruption of the weak electrostatic interactions
that mediate the association of the drug with the nanoparticles’
polymeric coating by the increased positive protons. Changes in
the protonation of the polymer’s side chains disturb hydrogen
bonding and van der Waals interaction between Ferumoxytol’s
coating and the cargo, thus triggering release at lower pH.
Although Doxorubicin can form amine salts that improve its
water solubility, this occurs at significantly lower pH, with
concomitant changes in the solution’s colour (from orange-red at
neutral pH to yellow-orange at acidic pH) that were not observed
at the pH levels of our study, as the solutions retained their

orange-red appearance. To confirm that the loading of the cargo
into Ferumoxytol is due to weak electrostatic interactions, we
attempted to load the nanoparticles with Doxorubicin in
solutions with varying ionic strength. Fluorescence spectroscopy
studies showed that at salt concentrations of 2M and above,
almost no Doxorubicin was loaded into the nanoparticles
(Supplementary Fig. 2a), with little changes in the nanoparticle
size (Supplementary Fig. 2b). We also demonstrated that the
cargo retention process is reversible, as demonstrated in pH-
based release studies, where after unloading of Doxorubicin at
pH 6.8, the same nanoparticle preparation was re-loaded with the
fluorophore DiR at pH 7.4 (Supplementary Fig. 2c).

The cargo affects the nanophores’ magnetic properties. While
the utilized agents so far were fluorescent, this is not true for the
majority of pharmaceuticals. We reasoned that having a facile
non-optical method to characterize nanophore loading might
have important pharmaceutical implications, especially when the
drug is not fluorescent. Furthermore, such a method could pro-
vide an option to noninvasively monitor drug delivery in vivo. We
evaluated therefore, if the loading of cargo into IONP-based
nanophores would change their relaxivity due to displacement of
water molecules from the vicinity of the IONP’s iron oxide core.
We utilized a benchtop relaxometer and loaded Ferumoxytol with
the fluorescent Taxol derivative ([Flutax1]Ferumoxytol¼ 30mM),
Doxorubicin ([Doxorubicin]Ferumoxytol¼ 828mM) and DiR
([DiR]Ferumoxytol¼ 920 mM), observing cargo-modulated altera-
tions in the T2 and T1 signal (Fig. 2a,b). Interestingly, we
observed that as the drug content in the nanophores increased
(with the particle concentration being constant), the T1 and T2
relaxation times rose also over those of the unloaded nano-
particles (T1¼ 402±7ms; T2¼ 121±2ms; mean±s.e.m; n¼ 3)
(Fig. 2c). This demonstrates the use of this method for the
quantification of non-fluorescent compounds loaded in IONP
with simple relaxometers, NMR instruments or MR imagers
(Supplementary Fig. 3a,b). Since T2 and T1 are inversely pro-
portional to a contrast agent’s spin–spin (r2) and spin-lattice (r1)
relaxivities, Ferumoxytol’s r2 and r1 decreased after addition of
the cargo (Fig. 2d,e). To demonstrate that the loading of non-
fluorescent drugs can be monitored through the changes in
IONP’s magnetic properties, we encapsulated a variety of cancer
chemotherapeutics and observed similar changes in r2 and r1
(Fig. 2d,e; Supplementary Table 1; [Drug]Ferumoxytol¼ 100mM).
We further determined that the changes in the magnetic prop-
erties depended on the drug’s dimethylsulphoxide (DMSO)
solubility (Fig. 2e), where compounds that were highly soluble in
DMSO caused large changes in Ferumoxytol’s relaxivity, likely
due to enhanced retention by the nanoparticles’ coating. This
showed that the hydrophobicity of the drug was an important
factor next to its size for its capability to be loaded into the
nanophores. Relaxivity changes were also observable when Fer-
umoxytol was simultaneously loaded with two drugs at the same
time, such as the androgen receptor antagonist MDV3100 and the
PI3K inhibitor BEZ235 ([MDV3100]Ferumoxytol¼ 250mM and
[BEZ235]Ferumoxytol¼ 75 mM) (Fig. 2d,e). These drugs were
chosen together rationally since the androgen receptor pathway
interacts with the PI3K cascade in prostate cancer, suggesting that
combinatorial approaches targeting both pathways will result in a
more effective therapy32. Notably, although the extent of cargo
loading had an effect on T2 and T1, it did not affect T2*, which
was solely dependent on the iron and therefore particle
concentration. Loading and unloading of Ferumoxytol can
therefore be evaluated via the T2 and T1 parameters, while the
required information on the relative nanophores concentration
(to exclude that changes in T2 or T1 are barely due to different
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Figure 1 | Ferumoxytol as nanophores for drug delivery. (a) The gradual

incorporation of Flutax1 within Ferumoxytol’s coating increased the

nanoparticles’ Flutax1-derived fluorescence emission (mean±s.e.m., n¼ 3),

(b) with the nanoparticle coating capable of accommodating many cargo

molecules within it (mean±s.e.m., n¼ 3). The nanoparticles were first

dialysed to remove any unloaded compound, followed by fluorescence and

DLS measurements. (c) Size distribution of cargo-loaded Ferumoxytol

(vehicle¼ unloaded Ferumoxytol; means and distributions of three

independent experiments). (d) DiR-loaded Ferumoxytol was stable in sterile

fetal bovine serum, with its fluorescence remaining unaltered

(mean±s.e.m., n¼ 3). (e) Ferumoxytol released Doxorubicin at slightly

acidic conditions. The fluorescence emission of the nanoparticles

(lex¼485 nm, lem¼ 590nm, mean±s.e.m., n¼ 3) that were retained

within the dialysis chamber decreased, due to Doxorubicin’s release to the

free fraction found in the chambers’ exterior. (f) The release of Doxorubicin

from Ferumoxytol to the exterior of the dialysis chamber was confirmed by

recording the drug’s absorbance in the free fraction at 480nm

(mean±s.e.m., n¼ 3).
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nanophore concentration) can be provided through the T2*
signal (Fig. 2g; Supplementary Fig. 4a–d). In addition, we tested
drug loading in non-clinical IONP preparations, such as
PAA-coated nanoparticles, and observed that the cargo affected
their magnetic properties similar to what was seen in
Ferumoxytol, indicating that the effect of cargo on the
nanoparticles’ magnetic properties is shared among polymer-
coated IONP (Supplementary Fig. 5a–f).

Using MR to monitor cargo release from the nanophores.
Similar to the prior optical measurements, incubation of
Doxorubicin-loaded Ferumoxytol at physiological conditions for
24 h did not reveal any major changes in the T2, T1 to indicate
loss of cargo over time (Supplementary Fig. 6a–c). However,
changes in T2 and T1 were observed at the slightly acidic pH of
6.8. Again employing a dialysis chamber to separate the nano-
particles from any released drug, we incubated Doxorubicin-
carrying Ferumoxytol in 1� phosphate-buffered saline (PBS)

adjusted to pH 6.8 and 6.0. Rapid decreases in T2 and T1 were
again observed in these mildly acidic conditions (Fig. 3a,b), which
were in accordance with the loss of nanoparticle-associated
Doxorubicin fluorescence due to release of the drug to the
dialysis-free fraction (Fig. 1e,f). In control studies, unloaded
Ferumoxytol at pH 6.8 and below did not exhibit any changes in
T2 and T1 (Fig. 3c,d), indicating that the observed changes in
relaxation times of the loaded Ferumoxytol were attributed to
cargo release and not due to the pH directly affecting the nano-
particles’ magnetic properties. To confirm that these changes
were mediated by cargo release and not aggregation of particles,
we performed DLS-based size measurements. Results indicated
that nanoparticle size and distribution were constant throughout
the experiment, with the nanoparticles being stable after 2 h at pH
6.0 and both Doxorubicin-loaded and unloaded Ferumoxytol
showing the same size distribution profiles (Fig. 3e,f). This
demonstrates that the effect of cargo encapsulation on IONP is
reversible, since payload release facilitates recovery of their
magnetic properties, leading to T2 and T1 decreases.
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Next, we investigated the long-term stability of drug-loaded
nanophores in serum. DiR-carrying Ferumoxytol was stable for
up to 8 days in sterile serum (Supplementary Fig. 7a,b), with no
changes in the relaxation times. However, Doxorubicin- and
Flutax1-loaded nanoparticles released their payload with different
kinetic profiles, as indicated by changes in the relaxation times
(Supplementary Fig. 7c–f). Specifically, Doxorubicin was com-
pletely released within 4 days, which resulted in restoration of
relaxation times (Supplementary Fig. 7c,d). Flutax1 demonstrated
sustained release in serum during the 10-day duration of
the study with B50% of the drug released within 7 days
(Supplementary Fig. 7e,f). We attribute these release patterns to
the different chemical characteristics of each payload. Doxo-
rubicin may be quickly released, due to lower hydrogen bonding
formation between its amino end and the polymer’s carboxyl and
hydroxyl groups that results in its overall weaker association
with the nanoparticles. On the other hand, Flutax1 has multiple
carbonyl and methyl groups that facilitate its tighter association
with Ferumoxytol coating, as well as multiple segments that
favour hydrophobic interactions.

Intracellular cargo release de-quenches the nanophores. We
next investigated whether cargo-loaded nanophores could deliver
drugs to cancer cells in vitro. Incubation of the prostate cancer

cell line LNCaP with Doxorubicin-loaded Ferumoxytol for 48 h
resulted in significant drug uptake, as indicated by the enhanced
cellular fluorescence due to the presence of Doxorubicin (Fig. 4a).
Similarly, high cell-associated fluorescence was seen in LNCaP
cells incubated for 48 h with nanophores carrying the near-
infrared fluorophore DiR, compared with empty control nano-
particles (Fig. 4b). Inhibition of the endocytic process with
sodium azide and 2-deoxyglucose or incubation at 4 �C prevented
Ferumoxytol’s uptake and led to nominal fluorescence, which
demonstrated that Ferumoxytol was taken up via the functional
endocytic machinery and not through passive means. In addition,
we found that the unloading of DiR within the cells recovered
Ferumoxytol’s superparamagnetic properties, which approached
the r2 and r1 relaxivities of the parent empty nanoparticles
(Fig. 4c,d). It is likely that some of the cargo might have still been
retained within Ferumoxytol, consequently affecting its properties
and preventing r2 and r1 to fully regain the relaxivity of the
unloaded nanoparticles. Since Ferumoxytol undergoes lysosomal
degradation with release of iron cations, the observed changes in
relaxivity are most likely attributed to cargo release, and not
due to nanoparticle aggregation within the endocytic vesicles.
Our findings demonstrate that measurement of nanoparticle
relaxation can be used for the sensitive characterization of
non-fluorescent payloads carried by IONP utilizing portable
relaxometers33,34, NMR analysers and MRI.

The cargo affects nanophores’ water accessibility. To elucidate
the cargo’s effect on the relaxivity, we reasoned that once the
payload intercalates non-covalently within the nanophores’
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shown in red (scale bar, 50mm). (b) Cells were treated with DiR-loaded

Ferumoxytol, and after washing and trypsinization, the harvested cell pellets

were imaged with an Odyssey reader at 800 nm to quantify the uptake of

the nanophores. Control cells were treated with unloaded nanoparticles.

Inhibition of endocytosis was performed at 4 �C and with the inhibitors

sodium azide and 2-deoxyglucose (mean±s.e.m., n¼ 3). The cell pellets

were subjected to iron digestion, and revealed that upon release of the

cargo the r2 (c) and r1 (d) relaxivities of DiR-carrying Ferumoxytol were

higher than those of the corresponding fully loaded formulation

(mean±s.e.m., n¼ 3).
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polymeric coating, it might obstruct the free diffusion of water to
the vicinity of their magnetic core. This may reduce the nano-
particles’ capability to affect the relaxation time of the bulk water
and consequently result in higher relaxation times (Fig. 5a). To
study whether the cargo limits the accessibility of water molecules
or exerts an effect by itself, we evaluated DiR-loaded IONP in
increasing concentrations of deuterium oxide (D2O) instead of
H2O. Deuterium has a different magnetic moment from hydro-
gen, allowing its use in the identification of the role of water and
its hydrogen protons via NMR methods. If the drug would exert
an intrinsic effect then the changes in relaxivity would not be
affected as much by the Deuterium. However, with increasing
amount of D2O, the T2 and T1 signal of DiR-loaded IONP
solutions decreased, indicating that the changes in relaxation
times are due to the cargo reducing the access of the bulk water
molecules rather than an effect exerted by the drug itself
(Fig. 5b,c; Supplementary Fig. 8a,b). Since the relaxation of water
by IONP arises from the water molecules diffusing near the
nanoparticles35,36, we utilized diffusion-weighted MRI, in order
to confirm with an additional method that the cargo impairs the
diffusion of water molecules within the nanophores’ coating. The
apparent diffusion coefficient map revealed that the Flutax1- and
Doxorubicin-loaded Ferumoxytol had lower diffusion coefficients
than the unloaded nanoparticles (vehicle) at the same particle
concentration (Fig. 5d–f). This supported our hypothesis that the
changes in relaxation times are due to the cargo reducing the

diffusion of water within the nanoparticles rather than the cargo
itself exerting a direct effect.

Previous studies have utilized the target-induced clustering of
IONP in sensitive assays for the detection of numerous bio-
molecules and targets24,29,30. Specifically, it was demonstrated
by others and us that the nanoparticles form extensive
supramolecular assemblies in the presence of their target30,37,38.
The formation of these assemblies containing multiple
nanoparticles was predominantly associated with T2 decreases
but no reported effect on T1 (ref. 39). While we did not observe
any size changes to indicate clustering (Fig. 1c; Supplementary
Fig. 1a), we nevertheless sought to confirm that the mechanism
described herein is not due to aggregation-induced changes. We
utilized Concanavalin A (Con A), a protein with high affinity
towards carbohydrates40,41, to facilitate the clustering of the
carbohydrate-coated (carboxymethyl dextran) Ferumoxytol. As
expected, addition of the Con A to Ferumoxytol induced decrease
in the solution’s T2 but little increase in the T1 (Supplementary
Fig. 9a,b), with nanoparticle aggregation confirmed with DLS
(Supplementary Fig. 9c). Moreover, when excess dextran was
used to obtain larger clusters ([Dextran]¼ 2.5mgml� 1), the T1
increased, but the T2 decreased (Supplementary Fig. 9a–c) due to
Ferumoxytol’s Con A-induced clustering and did not increase as
seen secondary to drug loading. Therefore, these results
demonstrate that the effect of cargo on the nanoparticles, such
as after drug loading, is novel, and not based on nanoparticle
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Figure 5 | The cargo obstructs the access of water in the nanophores’ proximity. (a) Schematic representation of the proposed model that suggests that

the presence of cargo within the coating of IONP hinders the diffusion of water molecules, concomitantly affecting the ability of nanoparticles to efficiently

dephase water’s protons. At high D2O concentrations, the changes on (b) T2 and (c) T1 were abrogated (mean±s.e.m., n¼ 3), suggesting that the

observed increases in T2 and T1 during cargo loading occurred upon blockage of water molecules by the entrapped cargo ([Fe]PAA-IONP¼ 2.5mgml� 1)

rather than an effect exerted by the payload. (d–f) Diffusion-weighted MRI revealed that the presence of molecular payload within Ferumoxytol’s coating

affected the diffusion of water molecules ([Fe]Ferumoxytol¼ 5 mgml� 1 for all wells; mean±s.e.m., n¼ 6). The cargo’s effect on ADC correlated with the

observed changes in T2 and T1 signal (mean±s.e.m., n¼ 6; linear regression correlation coefficients rT2¼0.95 and rT1¼0.92; vehicle: unloaded

nanoparticles; mean±s.e.).
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clustering. This likely explains why previous studies have not
identified the effect of clustering on T1 (ref. 39), as the extent of
the aggregation state is critical.

Improved therapy efficacy with cargo-carrying nanophores.
Finally, we examined whether Ferumoxytol-based nanophores
could efficiently deliver chemotherapeutics to cancer cells and
cause cytotoxicity. Due to the aberrant signalling of many path-
ways in cancer, combinatorial therapies ideally require the suc-
cessful administration of several chemotherapeutics at the same
time. Towards this direction, we utilized Ferumoxytol as a drug
delivery vehicle for combinatorial therapy in prostate cancer, in
order to concurrently inhibit the crosstalk between the androgen
receptor pathway and the PI3K cascade and prevent resistance to
chemotherapy32. We simultaneously encapsulated BEZ235—a
PI3K inhibitor—together with the androgen receptor antagonist
MDV3100 in order to deliver both drugs to prostate cancer cells.
Dose-response studies revealed that nanophores loaded with both
BEZ235 and MDV3100 had an IC50 of 10 nM (BEZ235) and
0.2 mM (MDV3100) for the human prostate adenocarcinoma cells
LNCaP cultured in media with charcoal-stripped serum, where
the serum was depleted of any androgens (Fig. 6a). However,
administration of both drugs in their free forms had IC50 values
of 75 nM (BEZ235) and 1.5 mM (MDV3100). The unloaded
nanophores did not affect the cells’ viability, which demonstrated
that the drug delivery vehicle lacked any intrinsic cytotoxic
properties. To confirm that the nanophores could facilitate the
cargo’s tumour delivery, we used nanophores loaded with
the near-infrared fluorophore DiR and performed reflectance
fluorescence imaging. Twenty-four hours after injection, there
was enhanced fluorescence in the tumours, showing that
the nanophores targeted to the tumours with no observable
signal from other organs on surface weighted fluorescence
imaging (Fig. 6b). In vivo therapy studies with nude male mice
bearing PC3-derived prostate cancer xenografts (Fig. 6c,d) and
nude female mice with breast cancer BT20 tumours (Fig. 6e)
revealed that the drug-loaded nanophores were considerably
more effective than the free drugs, following intravenous (i.v.)
administration. Notably, delivery of bortezomib with nanophores
achieved enhanced tumour regression, while the free drug was
ineffective and marginally suppressing tumour growth when
compared with the tumour’s volume of control (DMSO-treated)
animals (Fig. 6f). Prostate and breast tumours treated with
doxorubicin-carrying nanoparticles significantly regressed, as
opposed to the free drug that only achieved tumour control at
its initial pre-treatment size and vehicle (DMSO) therapy that
resulted in continuous tumour growth (Fig. 6g,h).

Biodistribution studies with radiolabeled PU-H71 (131I-PU-
H71) showed that the nanophores substantially improved the
delivery of the drug to the tumours, serving as efficient, long-
circulating delivery vehicles (Fig. 6i,j). We selected this Hsp90
inhibitor for these studies, because this drug contains as iodine
atom, which can be substituted with radioactive iodine, such as
131I, without altering the drug’s structure and intermolecular
interactions. Twenty-four hours post i.v. administration, the
amount of drug at the tumours more than doubled thanks to the
nanophore-based delivery. Apart from higher tumour uptake,
the nanophores allowed the drug to stay longer in circulation, as
indicated by the higher levels of radiolabeled compound in blood,
lungs and spleen. This allows a larger amount of chemother-
apeutic to be released at the tumour, without the need for higher
dosages or more frequent drug administration. These results also
suggested that the nanophores are cleared through the hepatic
route, similar to other nanoparticles of the same size. Taken
together, these findings demonstrate that encapsulation of drugs
within the nanophores enhances the therapeutics’ bioavailability,

preventing their nonspecific association with proteins and lipids,
while delivering them within tumours and cells at effective
dosages, thus vastly improving the efficacy of the utilized drugs
over their free administration.

Monitoring drug release in vivo with MRI. Finally, monitoring
of in vivo drug release was achieved by examining changes in the
T2 and T2* relaxation times via MRI (Fig. 7a–d). Our imaging
studies showed that 2 and 4 h after i.v. administration, the tumour
T2 signal of animals treated with drug-loaded FH was higher than
that of mice treated with empty nanoparticles (Fig. 7a,c). At the
same time, there were no significant differences in the tumour
T2* of animals treated with drug-loaded or empty nanoparticles,
indicating similar particle concentrations in the tumour. How-
ever, as expected, the presence of the nanophores at the tumour
caused decrease in T2* compared with the pre-administration
(0 h) reading (Fig. 7b,d). Twenty-four hours after nanophore
administration, there were no differences between the tumour
T2 and T2* of animals treated with Doxorubicin-loaded
Ferumoxytol or empty nanophores, demonstrating that release of
the drug occurred in vivo due to the vehicle’s fast drug release
kinetics (Figs 1e,f and 3a,b).

Discussion
Here, we demonstrated the use of clinical nanophores as drug
carriers, in a process that relies on weak electrostatic interactions
and preserves both the drug’s and nanoparticle’s structure, while
enhancing their aqueous stability and bioavailability. We showed
that Ferumoxytol is a diverse drug delivery platform, accom-
modating payloads with a wide range of molecular weights. As
the cargo incorporation causes significant changes in the
nanophores’ magnetic properties, the loading of non-fluorescent
agents—otherwise difficult to monitor—can be evaluated via
magnetic relaxation, thus providing a drug delivery platform that
self-reports the drug delivery and release through the changes in
their MR signal properties. Importantly, the therapeutic efficacy
was significantly improved over the free drug using nanophores.
Therefore, this novel integrated drug delivery and monitoring
strategy, which employs clinically approved agents in a non-
altered form, is suitable to improve chemotherapy of cancer
significantly and will be an integral part of understanding the
dynamics, risk assessment and approval of nanoparticle-based
drug delivery12.

Methods
Materials. All chemicals were of analytical grade, unless otherwise stated. Ferrous
and ferric chloride (FeCl2 � 4H2O and FeCl3 � 6H2O) were from Fluka and D2O was
from Acros. PAA (MW 1.8 kDa), ammonium hydroxide, hydrochloric acid and
dimethyl sulfoxide (DMSO) were from Sigma-Aldrich. Dextran (10 kDa) was
acquired from Pharmacosmos, while Con A was bought from Sigma-Aldrich.
Payload included the following compounds: Alendronate (MW: 325) from Sigma-
Aldrich, AZD8055 (MW: 466) from Selleck Chemicals, BEZ235 (MW: 470) from
Cayman Chemicals, BKM120 (MW: 580) was a gift from Professor Lewis Cantley
(Weill Cornell Medical College, Cornell University), Dasatinib (MW: 488) from
Selleck Chemicals, DiR (1,10-dioctadecyl-3,3,30 ,30-tetramethylindo-tricarbocyanine
iodide, MW: 1,013) from Invitrogen, doxorubicin (Adriamycin, MW: 580) from
Selleck Chemicals, Flutax1—a fluorescent Taxol analogue (MW:1337) – from
Tocris Bioscience, FR230 (MW: 687) was provided by Dr Horst Kessler (Tech-
nische Universität München), GSI-34 (MW: 534) was provided by
Dr Yueming Li (MSKCC), Lapatinib ditosylate (MW: 925) was purchased from
Selleck Chemicals, MDV3100 (MW: 464) was provided by Professor Charles
Sawyers (MSKCC), Bortezomib (MW: 384) was purchased from Selleck Chemicals
and PU-H71 (MW: 512) was provided by Dr Gabriela Chiosis (MSKCC). Stocks of
these chemicals were prepared in DMSO, and stored at � 20 �C according to
the suppliers’ instructions. Commercial IONP preparations were obtained from
Micromod Partikeltechnologie GmbH (Rostock, Germany; NH2-nanomag-D-spio)
and AMAG Pharmaceuticals (Lexington, MA; Ferumoxytol).
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In-house preparation of alternate IONP. PAA-coated IONP were prepared with
the alkaline precipitation method, involving the rapid mixing of ferrous and ferric
chloride in ammonium hydroxide that was followed by addition of the polymer
solution42. To remove excess reagents and byproducts, the nanoparticles were
washed, concentrated and reconstituted in pH 7.4 PBS, with a KrosFlo Research II
TFF system that was equipped with a 10 kDa column (Spectrum). The nanoparticles
were stored at 4 �C until further use, without any precipitation being observed,
similar to the aminated nanoparticles obtained from Micromod, which were used

without any additional preparation. Ferumoxytol was subjected to magnetic
separation using a 1� PBS-equilibrated LS25 MACS column (Miltenyi, Cambridge,
MA), in order to isolate IONP with good magnetic properties from any free polymer
in the solution. Subsequently, Ferumoxytol was stored at 4 �C until further use.

Drug loading into nanophores. Encapsulation of the molecular payload was
achieved using a modified solvent-diffusion-based protocol, facilitating the
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Figure 6 | Nanophores as in vitroand in vivo chemotherapeutic vehicles. (a) Cytotoxicity profile of the human prostate cancer cells LNCaP treated with

co-administered free drugs or Ferumoxytol that was loaded with both the PI3 kinase inhibitor BEZ235 and the anti-androgen MDV3100 (mean±s.e.m.,

n¼ 3). (b) Representative IVIS images of DiR-loaded nanophores demonstrating the fluorophore’s localization in the tumours. (c–e) Drug-loaded

nanophores (FH-Bortezomib or FH-Doxo) efficiently reduced tumour volume in mice bearing (c,d) human prostate and (e) human breast xenografts

(mean±s.e.m.; n¼ 3 per treatment group for the Bortezomib study; for prostate cancer chemotherapy with Doxorubicin: nDMSO¼ 3, nDoxo¼ 3, nFH-Doxo¼4;

for breast cancer chemotherapy with Doxorubicin: nDMSO¼ 3, nDoxo¼ 3, nFH-Doxo¼4). (f–h) The bar graphs depict the change in tumour volume

between day 10 and 0 of the (c,d) treatment regimes. (i) Biodistribution profiles of the free and nanophore-encapsulated 131I-PU-H71 24 h after

administration (n¼4 per treatment group). (j) Tumour retention profiles of free and nanophore-encapsulated 131I-PU-H71 (%Id/g: % injected

dose/tissue mass, n2h¼ 3 per treatment group, n8h¼ 3 per treatment group, n24h¼4 per treatment group), with the corresponding net change in

drug delivery and retention achieved with the nanophores (D[PU-H71]NP).
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entrapment of hydrophobic molecules within IONP’s polymeric coating. In
general, the nanoparticles (25 ml of either PAA-IONP or NH2-nanomag-D-spio,
30ml of Ferumoxytol) were resuspended in 500 ml distilled water, whereas the cargo
was diluted to the desired concentration in DMSO (final volume of payload
solution was 100 ml). The fluorophore or drug payload solution was added
dropwise to the nanoparticle solution under vortexing (1,000 r.p.m.) at room
temperature, without any visible precipitation. Subsequently, the preparation was
subjected to dialysis in a small-volume dialysis chamber (MWCO 3000, Fisher)
against 1� PBS. The cargo-carrying IONP were subsequently stored in the dark at
4 �C, until further use.

Nanophore characterization. The size of the nanophores was determined through
DLS (Nano-ZS, Malvern, Westborough, MA). The same instrument was used in
nanoparticle surface charge measurement (z potential), whereas to determine
Ferumoxytol’s nanoparticle concentration the NS500 instrument was utilized
(NanoSight, Duxbury, MA). Magnetic relaxation measurements, including r1 and
r2 relaxivities, were determined with a 0.47T mq20 NMR analyser (Minispec,
Bruker, Billerica, MA). For T2 measurements, a CPMG pulse-echo train with a
1.5ms interpulse spacing was used, whereas the T1 sequence varied the interpulse
spacing from 5ms up to 8,500ms. The preparations’ iron concentration was
determined spectrophotometrically as previously reported43, using a SpectraMax
M5 instrument (Molecular Devices, Sunnyvale, CA). Briefly, the nanoparticles were
subjected to acid digestion, and subsequent conversion of all iron ions to iron(III).
A standard curve was created based on the absorbance at 410 nm of solutions of
known concentration of FeCl3 in the digesting solution. Fluorescence emission
measurements were performed using the SpectraMax M5, as well as an Odyssey
near-infrared imaging station (LI-COR Biosciences, Lincoln, NE), equipped with
two solid-state lasers for excitation at 685 and 785 nm. To determine the cargo load
of each preparation, the following molar extinction coefficients were used:
eDoxorubicin ¼ 11,500M� 1 cm� 1 at 480 nm, eFlutax1¼ 52,000M� 1 cm� 1 at
495 nm and eDiR ¼ 270,000M� 1 cm� 1 at 748 nm. For all other cargo, we
quantified the amount of drug-loaded into the nanoparticles using HPLC and
standard curves with known amounts of the corresponding drug. We first induced
release of the cargo by incubating the loaded nanoparticles in a 2M NaCl solution
for 30min, followed by spin filtration (MWCO 5000) to collect the cargo-
containing solution. Stability experiments were performed in pH-adjusted PBS,
whereas serum experiments were performed at 37 �C, using fetal bovine serum
obtained from Gemini Bio-products. The sterile serum lacking any nanoparticles
had a T2 of 600±10ms and T1 of 1,700±30ms (mean±s.e.m.; n¼ 3), which
remained unaltered during the experiments. The clustering of Ferumoxytol

([Fe]¼ 20mgml� 1) was studied in the presence of Con A ([Con A]final¼
50 mgml� 1) using DLS and the Minispec. Release of doxorubicin from drug-
loaded Ferumoxytol was performed using a dynamic dialysis setup, as previously
described22. A dialysis chamber was utilized (MWCO 3000, Fisher), containing
doxorubicin-loaded Ferumoxytol in either pH 7.2 or pH 6.8 1�PBS. The
nanoparticles were dialyzed against the corresponding pH-adjusted buffer at room
temperature and under constant stirring (150 r.p.m.), where at regular time
intervals, aliquots from the external aqueous milieu of the device were collected for
further analysis. The collected samples were analysed via a Beckman Coulter HPLC
instrument, equipped with a C18 reverse phase column and set to monitor
doxorubicin’s absorbance at 480 nm mixing An animal MRI from Bruker Biospin
(Billerica, MA) operating at 4.7T and a 35-mm radiofrequency coil were used to
image phantoms of the nanoparticle preparations that were spotted on a
microplate.

In vitro drug release from loaded nanophores. LNCaP cells were grown to
confluence, on a 12-well poly(lysine)-coated plate in 10% FBS-containing RPMI
medium at 37 �C, 5% CO2. The medium was aspirated, and the cells were
supplemented with 1ml fresh media, plus 50 ml of either empty (vehicle),
Doxorubicin-loaded Ferumoxytol or DiR-loaded Ferumoxytol. After 48 h, the cells
treated with Doxorubicin-loaded Ferumoxytol were examined under a Nikon
Eclipse TiE fluorescence microscope, in order to determine the nanoparticle
uptake. Likewise, following 48 h-long incubation at 37 �C, 5% CO2, the cells treated
with vehicle and DiR-loaded nanoparticles were trypsinized and subjected
to centrifugation at 1,000 r.p.m. for 6min. The resulting pellets were then
resuspended in 400ml 1� PBS and aliquoted in two eppendorf tubes for
fluorescence emission and magnetic relaxation measurements, using the near-
infrared imager (LI-COR) and the benchtop relaxometer (Bruker). Studies of
inhibition of nanoparticle uptake were performed at 37 �C, 5% CO2 in the presence
of sodium azide (10mM) and 2-deoxyglucose (50mM), as well as at 4 �C, with
either way inhibiting active endocytosis. For near-infrared fluorescence, excitation
was achieved at 785 nm, with emission recorded at 800 nm; with the instrument
settings set as follows: focus offset¼ 4mm, intensity¼ 0.5 and resolution¼ 169
mm. The iron content of the cell pellets was determined as described above with
untreated samples of equal cell numbers serving as control.

Cell viability and in vivo studies. LNCaP, PC3 and BT20 cells were obtained from
ATCC (Manassas, VA), and maintained according to the supplier’s instructions.
LNCaP cells were seeded on black-walled, clear bottom 96-well plates at a cell
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density of 10,000 cells per well, supplemented with 100 ml 10% FBS-containing
RPMI medium. Controls included cells incubated with unloaded nanoparticles or
DMSO, corresponding to the free drug’s final solvent concentration. Dose-response
curves were obtained after the cells were treated for 48 h with corresponding agent.
Subsequently, the old medium was aspirated, and cell viability was assessed via the
Alamar Blue method (Invitrogen). Briefly, the cells were supplemented with 10%
Alamar blue-containing medium (10% FBS-containing RPMI), followed by 3-h
incubation in a humidified incubator (37 �C, 5% CO2) and recording of fluores-
cence emission (lexc¼ 565 nm, lem¼ 585 nm) with the SpectraMax M5 plate
reader. The localization of DiR-loaded nanophores was assessed with an IVIS 200
in vivo imaging system, equipped with an ICG filter set (Waltham, MA). Adult,
male, nude mice (n¼ 3) with LNCaP xenografts on their flanks were administered
100ml of nanophores ([DiR]¼ 400mM) i.v. (radiant efficiencymax¼ 9.1±0.4� 108;
mean±s.e.m.). Adult, male, nude mice (n¼ 12) that had PC3 tumours on their
flanks were treated on days 0, 2, 6 and 8 with 100 ml of equimolar
([Bortezomib]¼ 0.5mM) concentrations of either free (diluted in 5% DMSO-
containing 1X PBS) or Ferumoxytol-encapsulated bortezomib. Control animals
were treated with either 5% DMSO-containing 1X PBS or unloaded Ferumoxytol
that had the same iron concentration as the loaded nanophores ([Fe]¼ 0.75
mgml� 1). Adult, male, nude mice (n¼ 10) bearing PC3 tumours and adult,
female, nude mice (n¼ 10) with BT20 tumours on their flanks were treated every
other day (days 0, 2, 4, 6 and 8) with 100ml (retroorbital injection) of either
doxorubicin alone or doxorubicin-loaded Ferumoxytol, both at a final doxorubicin
concentration of 0.28mM. Control animals were treated with 100 ml of 10%
DMSO-containing 1� PBS to match the DMSO content of free Doxorubicin, since
the drug was dissolved in DMSO and diluted to the desired concentration in PBS.
Change in tumour volume was defined as the ratio of the tumour volume on day
10 minus the tumour volume on day 0 divided by the tumour volume of day 0. For
biodistribution studies, we used 20 adult, male, nude mice with PC3 xenografts on
their flanks, and either free or Ferumoxytol-loaded 131I-PU-H71. Following ret-
roorbital administration, the mice were euthanized at the designated time points,
and the radioactivity of the collected organs was measured on PerkinElmer’s
(Waltham, MA) Wizard2 2480 Automatic Gamma Counter. Change in drug
uptake and retention following nanophore administration (D[PU-H71]NP) was
calculated as the ratio of nanoparticle-delivered radiolabeled drug minus the free
radiolabeled drug divided by the free radiolabeled drug. An animal MRI from
Bruker Biospin (Billerica, MA) operating at 4.7T and a 35-mm radiofrequency coil
was used to image the mice. Changes in tumour size were evaluated with a
microcaliper, and at the end of the study, the mice were euthanized, according to
the MSKCC Institutional Animal Care and Use Committee guidelines.

Data analysis. All experiments were performed in triplicate unless otherwise
stated, with the results presented as mean±s.e.m. The data were analysed in Prism
(GraphPad Software), whereas the MR images were processed through the OsiriX
DICOM viewer.
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