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Quantum computing on encrypted data
K.A.G. Fisher1,2,*, A. Broadbent1,3,*, L.K. Shalm1,4, Z. Yan1,5, J. Lavoie1,2, R. Prevedel1,6,

T. Jennewein1,2 & K.J. Resch1,2

The ability to perform computations on encrypted data is a powerful tool for protecting

privacy. Recently, protocols to achieve this on classical computing systems have been found.

Here, we present an efficient solution to the quantum analogue of this problem that enables

arbitrary quantum computations to be carried out on encrypted quantum data. We prove that

an untrusted server can implement a universal set of quantum gates on encrypted quantum

bits (qubits) without learning any information about the inputs, while the client, knowing the

decryption key, can easily decrypt the results of the computation. We experimentally

demonstrate, using single photons and linear optics, the encryption and decryption scheme

on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few

extra resources compared with other schemes it can be easily incorporated into the design of

future quantum servers. These results will play a key role in enabling the development of

secure distributed quantum systems.
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W
hile quantum computers promise to solve certain
classes of problems that are intractable for classical
computers1–4, their development is still in its infancy.

It is probable that the first quantum computers will act as servers
that potential clients can access remotely. In such a server model,
the ability to efficiently implement quantum algorithms on
encrypted quantum information is crucial. In 2009, the first
classical method for fully homomorphic encryption (that is, for
performing arbitrary computations over encrypted data) was
developed5. This enables a client with comparatively little
computational power to use an untrusted classical server for
performing a computation, without compromising the security of
their data.

Here we have developed the first scheme for carrying out
arbitrary computations on encrypted quantum bits (qubits)
where the client only needs to be able to prepare and send single
qubits chosen among a set of four possibilities, and to perform
some limited classical communication and computation. An
important feature of our protocol is that during the computation
no quantum communication between the client and the server
is required. Strictly speaking, fully homomorphic encryption
requires that the client’s total number of operations be
proportional to the size of the input and output only. Our
scheme satisfies this requirement at the quantum level, but not at
the classical one, since the client’s total number of classical
operations is proportional to the size of the circuit. Nevertheless,
our scheme is efficient, requiring only a constant overhead for
performing gates on encrypted data, whereas the best-known fully
homomorphic classical solution6 requires a polylogarithmic
overhead.

Results
Client–server protocol. Our protocol (see Fig. 1) starts with
a client who has quantum information that needs to be sent to
a remote server for processing. The client first encrypts the input
qubits. In the circuit model of quantum computing, a universal
gate set is required, for example, unitary operations from the
Clifford group and one additional non-Clifford gate. For each
non-Clifford gate to be performed in the circuit, the client must
also prepare an auxiliary qubit according to a prescription we will
specify. The client sends the encrypted quantum information and
the auxiliary qubits to the server, and the server then sequentially
performs the gates specified by the quantum circuit. A round of
classical communication between the server and client is required
every time a non-Clifford gate is implemented (as shown in
Fig. 1h), allowing the client to update the decryption key. After
the algorithm is completed, the server returns the encrypted
qubits to the client who then decrypts them. Once decrypted, the
client has the answer to the computation the server performed
while the server has no knowledge about the quantum informa-
tion it has processed. The server, however, can choose to perform
a different computation. However, for many algorithms of
interest4, efficient classical verification methods exist, thus
enabling the detection of an incorrect output.

Our scheme is part of a rapidly developing field that tackles the
problem of secure delegated quantum computation. There have
been several novel approaches to this problem, including hiding
a circuit from the remote quantum server7,8, computing on
encrypted quantum data using multiple rounds and bits of
quantum communication9–12 and sophisticated methods that
provide an additional verification mechanism10–12 (see Table 1).
While some of these schemes, in principle, can be used
to accomplish similar outcomes as our protocol, they can lead
to very different client–server relationships in practice. For
example, a recent experiment used the measurement-based model

of quantum computing to demonstrate the complementary
problem of hiding from a server the circuit that is to be
performed7,8. This method, known as blind quantum computing,
can be extended to compute on encrypted data, but would require
more than eight times as many auxiliary qubits and significantly
more rounds of classical communication. Furthermore, blind
computation uses random qubits chosen from a set of eight
possibilities—our contribution reduces this to just four.
Additionally, our method for computing on encrypted data can
be extended to also hide the algorithm from the server via the use
of a universal circuit (for details, see Supplementary Note 1).

More fundamentally, blind quantum computing demands
a very different relationship between the client and server as
compared with our approach that is inspired by homomorphic
encryption. In the blind model, the client must provide both the
hidden algorithm to be performed and the encrypted data to be
computed on; in our scheme the client provides only the data
while the server provides the agreed upon algorithm. Our
protocol mirrors the client–server relationships that exist today
where a server is free to focus on iterating and improving the
algorithms they provide. This frees the client from needing to
develop and optimize the algorithms they use, while the server is
able to specialize in providing targeted services. In the blind
model this division of labour does not exist; the server is treated
as a ‘dumb’ resource while the client is fully responsible for
maintaining and supplying the algorithms. While there are
many scenarios where carrying out blind quantum computing
is desirable, our protocol enables secure delegated quantum
networks to develop in ways that closely resemble today’s
networks.

In our scheme, to encrypt a qubit cij , a client applies a
combination of Pauli X and Z operations:

XaZb cj i ¼ cij encrypted; ð1Þ

where a and b are randomly assigned to the values of 0 or 1 and
form the key. The action of the encryption maps the initial state
of the qubit to one of four possible final states, which sum to the
completely mixed state; as long as the values a and b are used only
once, this is the quantum equivalent13 of the classical one-time
pad. Knowing a and b, it is possible to decrypt the state by
reversing the X and Z rotations. The Clifford gates we study14

include the single-qubit Pauli X and Z rotations, the two-qubit
controlled-NOT (CNOT) gate and the single-qubit Hadamard,
H jj i7! 1ffiffi

2
p 0ij þ ð� 1Þj 1ij

� �
, and phase, P jij 7! eip=2

� �j
jij , gates

where jA{0,1}. The actions of the Clifford gates on an encrypted
qubit are straightforward due to their commutation relations with
the Pauli operators (see Fig. 1b–f), and do not require any
additional classical or quantum resources9. The client only needs
to know what gates are being carried out to update the knowledge
of the decryption key.

Clifford gates alone are insufficient for universal quantum
computing15; at least one non-Clifford gate is required. We
study the non-Clifford R gate, which has the following action:
R jij 7! eip=4

� �j
jij for jA{0,1}. Performing the R gate on encrypted

qubits is not trivial as it does not commute through the
encryption in the same simple manner as the Clifford gates.
This is because the server, when applying the R gate, can
introduce an error, equivalent to applying an extra P gate, when
a¼ 1: RXaZb cij ¼XaZa"bPaR cij . To prevent the client from
needing to divulge the value of a, compromising the security of
the computation, the server implements a hidden P gate that is
controlled by the client (see Fig. 1g). To do this, before the server
begins the computation the client sends as many auxiliary
qubits as there are R gates in the circuit. These auxiliary qubits are
encoded as PyZd þij with y, dA{0,1}, resulting in one of the four
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following states that lie along the equator of the Bloch sphere:

þij ¼ 1ffiffi
2

p 0ij þ 1ijð Þ; �j i ¼ 1ffiffi
2

p 0ij � 1ijð Þ; þ y
��� ¼ 1ffiffi

2
p 0ij þ i 1ijð Þ;

n

� y
��� ¼ 1ffiffi

2
p 0ij � i 1ijð Þ

o
. These are the four standard BB84 states16

rotated to a different basis. After the server implements an R gate, it
then performs a CNOT between one of the auxiliary qubits and
the encrypted state RXaZb cij . The server measures the encrypted
qubit in the computational basis, and returns the outcome c to the
client to update the decryption key. After the CNOT, the state of the

auxiliary qubit is Xa0Zb
0
Pa"yR cij ; the extra unwanted phase gate

now depends on the values of both a and y which only the
client knows. The client sends a single classical bit, x¼ a"y, which
controls whether the server implements an additional corrective
P gate without ever revealing the value of a. The final state is
then Xa

0 0
Zb

0 0
R cij as desired, and the decryption key bits, a00 and b00,

now depend on the values of a, b, c, d, and y as shown in
the caption for Fig. 1. A detailed proof of this solution, inspired
by circuit manipulation techniques17,18, is provided in the
Supplementary Figs 1–4 and Supplementary Notes 2 and 3. Also

Decryption
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d
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h
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Client

Encryption Server
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Figure 1 | Protocol for quantum computing on encrypted data. (a) A client encrypts a quantum state cij and sends it to a quantum server, who performs

a computation U on the encrypted qubit. The server returns the state which the client decrypts to get U cij . (b–g) Encryption and decryption protocols for

a universal gate set. Two random classical bits a, bA{0,1} (as well as c, dA{0,1} for the CNOT, (f)) control Pauli rotations X and Z to encrypt state cij .

(b-f) Clifford gates do not require any additional resources and decryption is straightforward. (g) The non-Clifford R gate requires the client to send

an auxiliary qubit PyZd þij , where y, dA{0,1}, to control a CNOT gate with the encrypted qubit. The server measures the encrypted qubit and outcome

cA{0,1} is returned to the client, which is used in decryption. The client sends a single classical bit, x¼ a"y, to control a P gate on the auxiliary qubit, which

is returned to the client as Xa
0 0
Zb

0 0
R cij , where a0 0 ¼ a"c and b0 0 ¼ a(c"y"1)"b"d"y. (h) For a computation, the client encrypts and sends cij to be

processed, as well as auxiliary qubits, auxj ii, for any R gates in the computation. The server performs a series of gates U ¼GNyG1. Communication is only

needed when gate Gi is an R, and then only with classical bits. Processed qubits are returned to the client for decryption.
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included in Supplementary Note 3 is a novel simulation-based
security definition applicable to any untrusted server sharing
arbitrary prior information with the client and a proof via
an entanglement-based protocol19. It is important to note that
our security proof assumes the client’s encryption operations
are performed perfectly. In Supplementary Note 5 we discuss
how imperfections in our experiment affect the security of
the protocol.

Experimental implementation of the protocol. We implement a
proof-of-principle of the protocol using linear optics. The state of

the qubit is encoded into the polarization of a single photon with
horizontal and vertical polarization representing 0ij and 1ij ,
respectively. Single photons are generated (see Fig. 2a) via spon-
taneous parametric downconversion. The state preparation and
encryption, XaZb cij , are carried out using a polarizing beams-
plitter (PBS), quarter-waveplate (QWP) and half-waveplate
(HWP), and the single-qubit Clifford gates are implemented using
wave plates (see Fig. 2b). The CNOT gate (see Fig. 2c) is imple-
mented using two-photon interference20 at a partially polarizing
beamsplitter (PPBS)21–23, which fully transmits horizontally
polarized light, but reflects 2/3 of the vertical polarization.

Table 1 | Comparison with related work.

Previous protocol Characteristics of previous protocol Characteristics of this work

Secure assisted quantum
computation9

O(s) rounds of quantum communication
Clients performs quantum SWAP gate

One round of quantum communication
Client performs no two-qubit gates

Quantum prover interactive
proof10

Client needs constant-sized quantum
computer

Client’s quantum power limited to encryption and
preparing random BB84 states

Verification of result No verification of result

Universal blind quantum
computing7

Each gate (including identity) uses 8 auxiliary qubits
(chosen out of 8 possibilities) and 32 bits of classical
communication

Clifford group gates are non-interactive
R gate requires a single auxiliary qubit (chosen out of
4 possibilities) and 1 bit of classical communication in
each direction

Here s is the size of the circuit. Previous results have achieved similar functionality, but require more resources.
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Client Server Client
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Detectors and
coincidence logic
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c

Figure 2 | Experimental set-up. (a) Photon pairs are generated via spontaneous parametric downconversion using a frequency-doubled Ti:sapphire

laser to pump a barium borate (BBO) crystal. Photons are coupled into single-mode fibres. (b) The client prepares and encrypts the qubit cij , upper rail,

using a PBS, QWP and HWP, and then sends it to the server. Single-qubit Clifford gates, shown as G, are implemented as follows: X is a HWP at 45�;
Z is a HWP at 0�; H is a HWP at 22.5�; P is a QWP at 0�. The photon is returned to the client, where it is measured using a HWP, QWP and PBS,

and detected in coincidence with the second photon from the spontaneous parametric downconversion pair (lower rail). (c) The client prepares and

encrypts cij , upper rail, as in b. The client also prepares an auxiliary photon, lower rail, to one of þij ; �ij ; þ y

��� ; � y

���� �
using Pockels’ cells (PC1, PC2)

triggered by randomly generated classical bits y and d. The R gate, a tilted HWP at 0�, acts on photon cij . Both photons pass through the CNOT,

where they interfere at a PPBS. The encrypted photon cij , in the lower rail, is measured by the server after the CNOT, and the outcome c is used

by the client in decryption. The auxiliary photon, now in the upper rail, passes through a third Pockels’ cell (PC3), performing Px, where x¼ a"y is a

classical bit sent from the client, and is returned to the client for decryption and measurement. To test the CNOT gate Pockels’ cells are not used,

and state preparation and measurement apparatuses are used in both arms.
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To implement the R gate on an encrypted qubit we use an
auxiliary qubit along with the CNOT as shown in Fig. 2c. The
auxiliary qubit is randomly prepared by the client in one of the
four rotated BB84 states, PyZd þij , using waveplates and Pockels’
cells as fast optical switches24–26 (see Methods), and then sent to
the server. The Pockels’ cells are switched at 1MHz—two orders
of magnitude faster than the single-photon detection rate from
spontaneous parametric downconversion. This is done to limit
the probability of having multiple photons passing through the
Pockels’ cells for the same setting of y and d, reducing the amount
of information the server can obtain about the state of the
auxiliary qubit, and hence the value of a. The server first performs
an R gate on the encrypted qubit followed by a CNOT with the
auxiliary qubit. The client then sends the server a classical bit,
x¼ a"y, which controls whether the server implements an
additional corrective P gate using a third Pockels’ cell. Finally, the
server returns to the client the encrypted auxiliary qubit
containing the final state for processing.

In order to characterize our gates we use quantum process
tomography14,27–29; this provides us with complete information,
in the form of a process matrix w, about how each gate acts on

and transforms an arbitrary input state. The client first prepares a
set of encrypted input states that the server acts on, and then the
client performs measurements on the outputs. For our single-
qubit gates the client prepares an overcomplete set of inputs that
are the eigenstates of the Paulis 0ij ; 1ij ; þij ; �ij ; þ y

��� ; � y
���� �

.
Our encryption scheme, XaZb cij , maps each of these Pauli
eigenstates into one another. After the server processes the gate,
the client performs measurements in each Pauli basis. By
choosing this set of input states, and keeping track of the
values of a and b, the client is able to completely characterize
the action of the gate over all possible encryptions. Similarly,
for the two-qubit CNOT gate the client prepares and measures
all 36 eigenstates of the tensor products of the Paulis
00ij ; 01ij ; :::; � y � y

���� �
. Again, the encryption scheme maps

each of the input eigenstates of the Pauli tensor products into one
another, allowing all encryption possibilities to be studied.

The client, knowing the decryption key, is able to decrypt and
post-process the tomography data. The results for the decrypted
single-qubit gates are shown in Fig. 3 and the results for the
CNOT are shown in Fig. 4. The fidelities14 of the X, Z, H, P, R
and CNOT gates are 0.984±0.002, 0.985±0.001, 0.983±0.001,
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Figure 3 | Single-qubit gate results. The first two columns, the client, shows real and imaginary parts of reconstructed w matrices (expressed in the

basis of Pauli operators) for the single-qubit gates when decrypted. Fidelities with ideal X, Z, H, P and R gates are 0.984±0.002, 0.985±0.001,

0.983±0.001, 0.985±0.001 and 0.863±0.004, respectively. The third column, the server, shows the real parts (imaginary parts were negligible) of

the reconstructed w matrices when not decrypted, all giving process fidelities of FZ0.999 with the completely depolarizing channel. Ideal w matrices

are shown in Supplementary Note 4.
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0.985±0.001, 0.863±0.004 and 0.869±0.004 respectively. Loss
of fidelity for single-qubit Clifford gates is predominately due to
coherent noise, that is, over- or under-rotation of a unitary,
meaning that multiple gates can be performed in sequence
maintaining high fidelity. Loss of fidelity for the CNOT and
R gates originates from emitted double pairs in the photon source
and mode mismatch at the main PPBS. From the client’s
perspective, the server has performed the correct computations
on the encrypted inputs. However, if the decryption keys are not
known, then each gate acts as a completely depolarizing channel
that leaves input qubits in the maximally mixed state (as shown in
Figs 3 and 4). The process matrices were then reconstructed
from the same data as before, but without decryption. Each case
had high fidelity with the completely depolarizing channel:
0.999±0.001 for the single-qubit gates and 0.996±0.001 for the
CNOT. Without knowledge of the decryption keys, the server
gains no information about the state cij .

Security of the protocol. Imperfections in the server’s gates do
not affect the security of the protocol, rather just the outcome of
the computation. However, imperfections in the client’s encryp-
tion and decryption operations do affect the security. We analyse
this in Supplementary Note 5 and find that imperfections in the
client’s X and Z gates can leak information to the server about the
encrypted qubit. Another experimental limitation that impacts
the security of the R gate protocol arises from the emission of
multiple photon pairs from the source. This can lead to more
than one photon being present during a Pockels’ cell setting that
is controlled by the bits y and d. The server could potentially use
the extra photons to learn the value of the encryption bit a. Based
on our source brightness and coupling efficiency we estimate that
22% of the Pockels’ cell settings used contained more than one
photon that could be used by the server to break the protocol (see
Supplementary Note 5). With source development and switching
the Pockels’ cells faster, one can improve the security dramati-
cally. For example, if we matched the Pockels’ cells switching rate
to the repetition rate of the laser then the number of photons
present during each setting can be reduced to 0.6%. One of the
key factors in reducing these multi-photon events is to improve
the detection efficiency in our system. A primary limitation is the
CNOT gate we use, which has a 1/9 success probability. A current
theoretical challenge remains to develop more efficient imple-
mentations of optical CNOT gates, or alternatively to develop
hybrid methods where our photonic qubits can be converted into
qubits of another form, that is, ion or microwave qubits, so that
the server’s processing can be done on a different architecture
more suited to this task. While we make efforts towards quanti-
fying how multi-photon emissions affect the experimental
security of the protocol, a complete security analysis is beyond the
scope of this current work.

Discussion
In information security often the weakest link is not the
transmission of encrypted data, but rather security breaches at
the end points where the data is no longer encrypted. A major
advance of our scheme is that it eliminates one of the end points
as a security risk; a remote server no longer needs to decrypt the
quantum information in order to process it and carry out
computations. The overhead in quantum resources required to
compute on encrypted quantum data is so low (only one auxiliary
qubit per non-Clifford gate) that it will be straightforward
for future quantum servers to incorporate our protocol in their
design, dramatically enhancing the security of client–server
quantum computing; our protocol has even less overhead than
the best classical fully homomorphic encryption scheme, and
provides information-theoretic (as opposed to just computa-
tional) security. This method for computing on encrypted
quantum data, combined with the techniques developed for
quantum circuit hiding7,8, form a complete security system that
will enable secure distributed quantum computing to take place,
ensuring the privacy and security of future quantum networks.

Methods
R gate implementation. In the R gate protocol, we initialize auxiliary photons to
one of the four þij ; �ij ; þ y

��� ; � y
���� �

states using rubidium titanyl phosphate
Pockels’ cells. The values of bits y and d are randomly generated by a computer,
and a trigger circuit (based on a self-built CPLD design) is used to drive the
Pockels’ cells at a rate of 1MHz. Single-photon rates are reduced to B3,800Hz in
the auxiliary qubit path to limit the probability of two photons being present in the
Pockels’ cells during a single setting of y and d. Reduced rates also limit the effect of
emitted double pairs on the fidelity of the CNOT operation. Photons are detected
using silicon avalanche photo-diodes (PerkinElmer four-channel SPCM-AQ4C
modules), and coincidence photon events are recorded using a custom design
coincidence logic. For all gates, the process that the server observed was attained by
summing the measured counts over all the encryption cases a,bA{0,1}.
For example, if the client inputs the state 0ij , then the server, not knowing the
encryption key, would half of the time assume 1ij was input and sort the measured
counts accordingly. For the R gate the client decrypts by sorting photon counts into
eight bins based on the values of y, d and c. The server, not knowing values of
y and d, could at most sort counts into two bins based on c, and observes a
maximally mixed state due to the active switching, before summing over the
encryption key cases.

Quantum process tomography. Quantum process tomography was performed
using a maximum likelihood technique29,30. Uncertainties in these values are found
by adding Poissonian noise to the measured photon counts and performing 100
Monte Carlo iterations of the w matrix reconstructions.
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