Article | Published:

Anthropogenic radionuclides in atmospheric air over Switzerland during the last few decades

Nature Communications volume 5, Article number: 3030 (2014) | Download Citation

Abstract

The atmospheric nuclear testing in the 1950s and early 1960s and the burn-up of the SNAP-9A satellite led to large injections of radionuclides into the stratosphere. It is generally accepted that current levels of plutonium and caesium radionuclides in the stratosphere are negligible. Here we show that those radionuclides are present in the stratosphere at higher levels than in the troposphere. The lower content in the troposphere reveals that dry and wet deposition efficiently removes radionuclides within a period of a few weeks to months. Since the stratosphere is thermally stratified and separated from the troposphere by the tropopause, radioactive aerosols remain longer. We estimate a mean residence time for plutonium and caesium radionuclides in the stratosphere of 2.5–5 years. Our results also reveal that strong volcanic eruptions like Eyjafjallajökull in 2010 have an important role in redistributing anthropogenic radionuclides from the stratosphere to the troposphere.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    UNSCEAR: Sources and Effects of Ionising Radiation. Report to the General Assembly, Vol. 1, Annex C (United Nations Scientific Committee on the Effects of Atomic Radiation, 2000).

  2. 2.

    The size distribution and interaction of radioactive and natural aerosols in the stratosphere. Tellus XVIII, 486–498 (1966).

  3. 3.

    et al. The 41Ca bomb pulse and atmospheric transport of radionuclides. J. Geophys. Res. 102, 19517–19527 (1997).

  4. 4.

    , , & A new ground-level fallout record of uranium and plutonium isotopes for northern temperate latitudes. Earth Planet Sci. Lett. 203, 1047–1057 (2002).

  5. 5.

    , & Recent deposition of 90Sr and 137Cs observed in Tsukuba. J. Environ. Radioact. 31, 157–169 (1996).

  6. 6.

    et al. Recent trends of plutonium fallout observed in Japan: plutonium as a proxy for desertification. J. Environ. Monitor 5, 302–307 (2003).

  7. 7.

    , & Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan. Appl. Radiat. Isotopes 66, 1675–1678 (2008).

  8. 8.

    , , , & Measurement of plutonium isotopes, 239Pu and 240Pu, in air-filter samples from Seville (2001- 2002). Atmos. Environ. 44, 1851–1858 (2010).

  9. 9.

    et al. Long-term variations of 14C and 137Cs in the Bratislava air--implications of different atmospheric transport processes. J. Environ. Radioact. 108, 33–40 (2012).

  10. 10.

    & Tungsten-185 from nuclear bomb tests as a tracer for stratospheric meteorology. Nature 188, 1062–1064 (1960).

  11. 11.

    , , & The High Altitude Sampling Program Vol. 1, 2A, 2B, 3, 4, and 5. Defense Technical Information Center (1961).

  12. 12.

    Debris from tests of nuclear weapons. Science 133, 735–740 (1961).

  13. 13.

    , , & Transport and fallout of stratospheric radioactive debris. Tellus 18, 316–328 (1966).

  14. 14.

    , , , & Final Report on Project StarDust Report DASA-2166, Defense Atomic Support Agency, Washington, DC, USA (1967).

  15. 15.

    The seasonal stratospheric distribution of plutonium-238 and strontium-90, March through November 1967. HASL-204, 1, I2–16, U.S. Atomic Energy Commission (1969).

  16. 16.

    & Using radioactive tracers to develop a model of the circulation of the stratosphere. J. Atmos. Sci. 26, 1128–1136 (1969).

  17. 17.

    & The High Altitude Sampling Program: Radioactivity in the Stratosphere - Final Report Report No. EML-458 (Environmental Measurements Laboratory, US Department of Energy, New York, USA (1986).

  18. 18.

    Project Airstream: Trace Gas Final Report Report No. EML-549 (Environmental Measurements Laboratory, US Department of Energy, New York, USA (1992).

  19. 19.

    Meteorological benefits from atmospheric nuclear tests. Health Phys. 82, 635–643 (2002).

  20. 20.

    & New conceptions on the meteorology of stratospheric fallout from nuclear weapon tests. Arch. Meteorol. Geophys. Bioklimatol. A 15, 299–317 (1966).

  21. 21.

    , & Fractionation phenomena in nuclear weapons debris. Nature 184, 1771–1774 (1959).

  22. 22.

    , & Deposition of plutonium in Tokyo through the end of 1966. Papers Meteorol. Geophys. 19, 267–276 (1968).

  23. 23.

    et al. The origin of plutonium in the atmosphere. Geochem. J. 19, 283–288 (1985).

  24. 24.

    & Plutonium isotopes in the surface air in Japan: effect of Chernobyl accident. J. Radioanal. Nucl. Chem. 138, 127–138 (1990).

  25. 25.

    , , & inRadioactivity in the Environment Vol. 1, ed. Kudo A. 251–266Elsevier (2001).

  26. 26.

    , , , & Is it possible to use 90Sr and 137Cs as tracers for the aeolian dust transport? Water Air Soil Poll. 130, 349–354 (2001).

  27. 27.

    & Long-term variation (1986-1998) of post-Chernobyl 90Sr, 137Cs, 238Pu and 239,240Pu concentrations in air, depositions to ground, resuspension factors and resuspension rates in south Germany. Sci. Total Environ. 273, 11–25 (2001).

  28. 28.

    et al. Resuspension: decadal monitoring time series of the anthropogenic radioactivity deposition in Japan. J. Radiat. Res. 44, 319–328 (2003).

  29. 29.

    Plutonium isotopes in surface air of Prague in 1986-2006. J. Environ. Radioact. 99, 1653–1655 (2008).

  30. 30.

    & Überwachung der Radioaktivität der Luft mit Militärflugzeugen. Environmental Radioactivity and Radiation Exposure in Switzerland - Annual Report Federal Office of Public Health: Switzerland, (2010).

  31. 31.

    Überwachung der Radioaktivität der Luft mit Militärflugzeugen. Environmental Radioactivity and Radiation Exposure in Switzerland - Annual Report Federal Office of Public Health: Switzerland, (2006).

  32. 32.

    , & Determining Pu-241 in environmental samples: case studies in alpine soils. Radiochim. Acta 99, 121–129 (2011).

  33. 33.

    , , , & Depositional history of artificial radionuclides in the Ross Ice Shelf, Antarctica. Earth Planet Sci. Lett. 44, 205–223 (1979).

  34. 34.

    , , , & Characterization of radioactive fallout from pre- and post-moratorium tests to polar ice caps. Nature 296, 544–547 (1982).

  35. 35.

    & Age of stratospheric air: theory, observations, and models. Rev. Geophys. 40, 1-1–1-26 (2002).

  36. 36.

    et al. Mean ages of stratospheric air derived from in situ observations of CO2, CH4, and N2O. J. Geophys. Res. 106, 32295–32314 (2001).

  37. 37.

    Stratospheric Transport. J. Meteor. Soc. Jpn 80, 793–809 (2002).

  38. 38.

    Atmospheric dynamics: the age of stratospheric air. Nat. Geosci. 2, 14–16 (2009).

  39. 39.

    et al. Age of stratospheric air unchanged within uncertainties over the past 30 years. Nat. Geosci. 2, 28–31 (2009).

  40. 40.

    et al. Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period. Atmos. Chem. Phys. 12, 3311–3331 (2012).

  41. 41.

    et al. Stratospheric mean ages and transport rates from observations of CO2 and N2O. Science 274, 1340–1343 (1996).

  42. 42.

    et al. Characterization of Eyjafjallajökull volcanic ash particles and a protocol for rapid risk assessment. Proc. Natl Acad. Sci. 108, 7307–7312 (2011).

  43. 43.

    , , & 35 yr of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond. Atmos. Chem. Phys. 13, 5205–5225 (2013).

  44. 44.

    et al. The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany. Geophys. Res. Lett. 37, L13810 (2010).

  45. 45.

    et al. In situ observations of volcanic ash clouds from the FAAM aircraft during the eruption of Eyjafjallajökull in 2010. J. Geophys. Res. 117, D00U24 (2012).

  46. 46.

    , , , & Lidar observation and model simulation of a volcanic-ash-induced cirrus cloud during the Eyjafjallajökull eruption. Atmos. Chem. Phys. 12, 10281–10294 (2012).

  47. 47.

    , , & Self-charging of the Eyjafjallajökull volcanic ash plume. Env. Res. Lett. 5, 024004 (2010).

  48. 48.

    et al. Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010. J. Geophys. Res. 116, D00U02 (2011).

  49. 49.

    , , , & Alignment of atmospheric mineral dust due to electric field. Atmos. Chem. Phys. 7, 6161–6173 (2007).

  50. 50.

    & Scavenging of electrified radioactive aerosol. Atmos. Env. 35, 5817–5821 (2001).

  51. 51.

    et al. Ice formation in ash-influenced clouds after the eruption of the Eyjafjallajökull volcano in April 2010. J. Geophys. Res. 116, D00U04 (2011).

  52. 52.

    et al. Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume. Atmos. Chem. Phys. Discuss. 11, 2733–2748 (2011).

  53. 53.

    , , & Konzentrationsmessungen von Be-7, Cs-137 und jungen Spaltfragmenten an der Tropopause. Tellus XXVIII5, 434–441 (1976).

  54. 54.

    , , , & A new method for the determination at ultra-low levels of plutonium and americium, using high pressure microwave digestion and alpha-spectrometry or ICP-SMS. J. Radioanal. Nucl. Chem. 281, 425–432 (2009).

  55. 55.

    & Plutonium from above-ground nuclear tests in milk teeth: investigation of placental transfer in children born between 1951 and 1995 in Switzerland. Environ. Health Perspect. 116, 1731–1734 (2008).

Download references

Acknowledgements

We acknowledge the financial support of the Swiss Federal Office of Public Health. We also acknowledge the long-term support of the Swiss Air Force for taking the high-altitude aerosol samples.

Author information

Affiliations

  1. Institute of Radiation Physics (IRA), Lausanne University Hospital, Rue du Grand-Pré 1, 1007 Lausanne, Switzerland

    • J. A. Corcho Alvarado
    • , F. Bochud
    •  & P. Froidevaux
  2. Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland

    • J. A. Corcho Alvarado
  3. Division of Radiation Protection, Federal Office of Public Health, Schwarzenburgstrasse 165, 3003 Berne, Switzerland

    • P. Steinmann
    •  & S. Estier
  4. Division of Food Safety, Federal Office of Public Health, Schwarzenburgstrasse 165, 3003 Berne, Switzerland

    • M. Haldimann

Authors

  1. Search for J. A. Corcho Alvarado in:

  2. Search for P. Steinmann in:

  3. Search for S. Estier in:

  4. Search for F. Bochud in:

  5. Search for M. Haldimann in:

  6. Search for P. Froidevaux in:

Contributions

P.S., P.F. and J.A.C.A. organized the research. P.S. and S.E. provided the samples and performed gamma spectrometry analysis. J.A.C.A. and P.F. performed the radiochemical analyses. M.H. was in charge of the ICP-MS analysis. P.S., P.F., F.B. and J.A.C.A. interpreted the data. P.S., P.F. and J.A.C.A. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to J. A. Corcho Alvarado.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ncomms4030

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.