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Predicting network functions with nested patterns
Mathias Ganter1,*, Hans-Michael Kaltenbach1,* & Jörg Stelling1

Identifying suitable patterns in complex biological interaction networks helps understanding

network functions and allows for predictions at the pattern level: by recognizing a known

pattern, one can assign its previously established function. However, current approaches fail

for previously unseen patterns, when patterns overlap and when they are embedded into a

new network context. Here we show how to conceptually extend pattern-based approaches.

We define metabolite patterns in metabolic networks that formalize co-occurrences of

metabolites. Our probabilistic framework decodes the implicit information in the networks’

metabolite patterns to predict metabolic functions. We demonstrate the predictive power by

identifying ‘indicator patterns’, for instance, for enzyme classification, by predicting directions

of novel reactions and of known reactions in new network contexts, and by ranking candidate

network extensions for gap filling. Beyond their use in improving genome annotations and

metabolic network models, we expect that the concepts transfer to other network types.
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T
o study the function of biological networks, a common
reductionist approach is to identify recurring wiring
patterns within a network. These network patterns are

obtained by decomposing biological networks into their con-
stituent small subnetworks (Fig. 1). Network patterns that are
statistically over-represented with respect to random networks of
similar characteristics have been termed network motifs1,2. These
motifs can act as modules that establish dynamic functions such
as filters, timers or memory1–3. Correspondingly, if one detects a
particular pattern that corresponds to a previously characterized
network motif, one can aim to predict a function associated with
this subnetwork4.

The frequent occurrence of a pattern in a network, however, is
not strictly correlated with a biological function. Network
topologies reflect evolutionary origins and therefore the selection
of particular functions5, but the specific wiring of a network may
be a ‘frozen accident’ in evolution. In addition, network motifs are
typically overlapping or nested—a subnetwork contains smaller
patterns—such that often one cannot decide what the functionally
relevant pattern is. Finally, the actual function of a given motif
depends on how it is embedded into the network context. For
example, the qualitative behaviour of a network motif may
change dramatically depending on the inputs it receives from the
rest of the network, such that the motif’s topology alone is not
necessarily predictive of its biological function6.

It is illustrative to compare this situation with the use of
patterns in nucleotide sequence analysis. Nucleotide sequence
motifs (short sequences with particular statistical properties) are
typically employed to identify open reading frames7 or
transcription factor-binding sites8. In addition, limited overlaps
and interactions of sequence motifs allow one to use probabilistic
models to integrate information over several motifs, for instance,
to quantitatively predict gene expression9. In contrast, the context
dependence and nesting of network motifs imply largely unsolved

problems for network analysis regarding (i) the identification of
network patterns associated with particular functions, (ii) the
inference of functions of previously unseen subnetworks (Fig. 1)
and (iii) the prediction of functions that are established by a
pattern in a different network context, including the assessment of
the hypothesis that a pattern ‘fits’ into a specific network (Fig. 1).

For metabolic networks, motifs have been analysed previously,
suggesting that the biochemical functions are associated with
particular motifs, but motif frequencies alone were not sufficient
to yield high-confidence functional predictions10,11. To establish
novel approaches to network analysis, however, metabolic
networks are an ideal starting point. Their structure
significantly constrains a metabolism’s operation in steady state,
enabling the prediction of many features of its function and some
of its regulation12,13. In addition, metabolic networks are well
characterized, and relevant knowledge is already consistently (yet
implicitly) integrated in the more than 90 available genome-scale
metabolic models (GSMs)14. Briefly, GSMs represent the reaction
structures of biochemical conversions of compounds
(metabolites) along with constraints on these conversions such
as those implied by directed reactions. GSMs are widely used to
predict condition-dependent growth and metabolism, or to
engineer metabolic pathways for various organisms15,16.
However, reconstructing high-quality GSMs still requires
extensive expert knowledge17 because of erroneous and
contradicting database entries18,19, unknown metabolites or
reactions20 and thermodynamically infeasible or unconstrained
reactions21. Correspondingly, improved function predictions for
metabolic networks could lead to a fully automatic model
construction process22, and help in closing the gap between the
number of sequenced genomes and reconstructed GSMs23.

Here we demonstrate that decomposing metabolic networks as
they are represented by GSMs into metabolite patterns allows us
to leverage information implicitly encoded in these GSMs by
deriving statistics on patterns and the association of patterns with
biological functions. Our probabilistic methods explicitly incor-
porate information from all patterns to predict unknown reaction
and network characteristics such as classes of enzymes that
catalyse metabolic reactions, constraints on fluxes through
metabolic reactions and missing reactions in a new network
context (Fig. 1). These approaches are general, with potential
applications to other types of biological networks.

Results
Metabolite patterns. A metabolic network is a set of inter-
connected biochemical reactions in which metabolites are con-
verted into each other (see Fig. 2a for an example; formal concepts
were recently reviewed11). Here, we are interested in predicting
properties of individual reactions embedded into a larger network.
This includes the assessment of hypotheses on whether a network
should be augmented by a specific reaction (see Fig. 1). A reaction
can have various properties or features, such as its size (the
number of different participating metabolites), its enzyme
classification (EC) number (that characterizes the type of
biochemical reaction), its intracellular localization or its
direction. A metabolite pattern is a substructure of a reaction
defined by a subset of metabolites for each side of the considered
reaction (see Supplementary Methods for formal definitions). A
metabolite pattern, hence, encodes co-occurrences of metabolites
within the same reaction; its size is again the number of its
different metabolites. We denote metabolite patterns by their left-
and right-hand sets of metabolites separated by a comma. For
instance, reaction R3 in Fig. 2a has one pattern, (BþC, D), of size
three, three patterns, (BþC, ø), (B, D), (C, D), of size two, and
three patterns, (B, ø), (C, ø), (ø, D), of size one (Fig. 2b). Note that
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patterns may share metabolites and that each pattern defines a
hierarchy of nested sub-patterns.

By counting the number of occurrences of a given pattern in
reactions with a particular set of features (that is, single reaction
properties or combinations of reaction properties as described
above), we derive a pattern count-table that represents the joint
distribution of patterns and reaction features. This count-table
forms the foundation for deriving pattern statistics according to the
scheme in Fig. 1 to predict features of unknown reactions. Its
construction is exemplified in Fig. 2c using reaction directions as
the relevant reaction feature. We distinguish between unidirectional
(irreversible) reactions operating in the forward (-) and backward
(’) direction, and reversible (2) reactions. For instance, R2
contributes three reversible counts to its respective patterns, and the
two non-zero entries for pattern (A, ø) originate from R1 and R2.
Metabolite patterns thereby provide quantifiable evidence for the
relationships between (multiple) arbitrary features and reactions.

For the analysis of metabolite patterns, we employed a set of
experimentally validated GSMs that encode metabolic networks
of various complexities and represent organisms from bacteria to
humans (Table 1). When we computed the basic metabolite
pattern statistics—such as the distributions of pattern counts over
pattern sizes—in the E. coli model iAF1260 (ref. 24) as one
example, we found significant occurrences of patterns larger than
two. Moreover, in agreement with previous studies on motif
searches in metabolic networks25 and on general metabolic
network organization26, the pattern frequency distribution
followed a power law (Supplementary Fig. S1). We therefore
conclude that metabolite patterns provide relevant extensions of
coupled metabolites27 from two to arbitrary numbers of co-
occurring metabolites.

Using patterns independently to identify reaction features.
Metabolite patterns are nested. For instance, the size-four pattern

(ATP, ADPþHþPi) (Fig. 3a) establishes a hierarchy of smaller
patterns, whose counts remain constant or increase when going
down this hierarchy. To identify which patterns are predictive of
reaction features, however, we initially ignored pattern nesting.
Reaction directions were our first feature of interest because their
correct assignment is difficult and critical17. For GSMs, the
directions are encoded by flux constraints that hold for any
physiological condition. Heuristic rules that consider, for
example, the production of energy equivalents are often used to
assign these constraints in network reconstruction. We applied
two selected heuristics17,28,29 (Supplementary Table S1) to an
unconstrained E. coli iAF1260 model. In general, we defined the
classification accuracy (CA) of direction assignments as
consistency with manually curated GSMs. Note that this is the
best available—but limited—basis for the evaluation of accuracy.
The two heuristics showed an average CA of E43% for iAF1260
(Supplementary Table S2) in contrast to an expected CA of one
third for random assignments (three different reaction directions
are possible).

When we computed the metabolite pattern statistics for
iAF1260, we found 180 metabolite patterns that were both
abundant and associated with a preferred reaction direction. Out
of these 180 patterns, 51 patterns were unique for a direction and
they could not be further decomposed; we call them ‘indicator
patterns’ (see Supplementary Methods, Supplementary Note 1
and Supplementary Table S3). For instance, in the hierarchy of
patterns established by (ATP, ADPþHþ Pi) (Fig. 3a), only ADP
alone uniquely determines the direction of reactions with ATP
and ADP on different sides. In contrast, in reactions with pairs of
redox equivalents such as (NADH, NAD), all indicator patterns
have at least one additional metabolite (see Supplementary Table
S4 for a summary). The indicator patterns constitute reaction
rules that were derived from the entire network statistics. When
we applied these inferred rules, the CA increased to E63% for
iAF1260. For the eight GSMs marked by ‘*’ in Table 1, the CAs
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were 47±7% and 50±7% for the two heuristics, and 60±9%
for the indicator patterns (Supplementary Table S2 and
Supplementary Data 1), indicating generally improved predic-
tions of reaction directions.

Next, we focused on EC numbers, which give a hierarchical
four-level description of enzyme function and categorize reac-
tions by (bio)chemical properties. We identified weighted
associations between size two patterns and EC numbers from
five GSMs. We then predicted EC assignments at all four levels
for the sixth model iAF1260, in which only E46% of the
reactions have a corresponding annotation (see Supplementary
Methods and Supplementary Note 2). An EC number could be
predicted for E30% of all reactions with a CA of 497%,
irrespective of the EC number level (Fig. 3b). Importantly, the
transfer of EC annotations resulted in a set of 48 new predictions
that can be used for improved annotation of this model, and
potentially of the E. coli genome (Supplementary Data 2).
Relevant biochemical knowledge is thus implicitly encoded in
networks and it can be leveraged already by using individual
metabolite patterns independently to (re)derive relatively
accurate—and intuitively comprehensible—reaction rules without
exterior knowledge.

Feature propagation hidden Markov model. To infer functions
of both previously unseen and known patterns in a new network
context, we developed a constructive, probabilistic and predictive

method based on hidden Markov models (HMMs)30. It considers
all decompositions of a reaction into its metabolite patterns and
computes the reaction’s feature distribution as a weighted sum of
the patterns’ feature distributions. Thereby, our method leverages
information from non-unique patterns, resolves conflicts between
feature distributions of patterns and handles nested and
overlapping patterns. Briefly, we construct a Markov chain by
representing each metabolite pattern of a reaction as a vertex, as
illustrated in Fig. 4 for reaction R4 (see also Fig. 2a,c). The
corresponding graph has one layer per pattern size, with the
empty pattern (ø, ø) at the bottom and the entire reaction at the
top. A transition from a particular pattern P1 to another pattern
P2 is possible if P2 contains P1. The transition probability derives
from the probability of drawing the pattern that extends P1 to P2.
Hence, each path from bottom to top represents one possibility of
constructing the entire reaction from patterns (see Supplementary
Methods for all formal details).

Emissions of the HMM are modelled according to the specific
feature to be predicted. For instance, for direction prediction,
each transition emits a value in {þ n,� n, 0} on the correspond-
ing edge. The emission probability for each direction is derived
from the direction distribution of the corresponding extension
pattern associated to the edge, scaled by the size n of the
extension pattern. Each possible path starting in the neutral
bottom node and ending in the top node contributes to the
reaction’s direction distribution in the top node (see the example
path in Fig. 4): emitted directions are summed up to give an

Table 1 | GSMs used here and their key characteristics.

Model Organism Kingdom Reactions Metabolites Reference

iAF1260 Escherichia coli Bacteria 2,382 1,688 (BiGG; *)24

iJR904 Escherichia coli Bacteria 1,075 761 (BiGG; *)31

iJO1366 Escherichia coli Bacteria 2,583 1,805 42

iIT341 Helicobacter pylori Bacteria 554 485 (BiGG; *)52

iSB619 Staphylococcus aureus Bacteria 729 645 (BiGG; *)53

iBsu1103 Bacillus subtilis Bacteria 1,684 1,377 (*)29

iABaylyiv4 Acinetobacter baylyi Bacteria 996 828 (*)32

iAF692 Methanosarcina barkeri Archaea 690 628 (BiGG; *)54

iND750 Saccharomyces cerevisiae Eukaryotes 1,266 1,061 (BiGG; *)55

Recon1 Homo sapiens Eukaryotes 3,742 2,766 (BiGG)41

‘BiGG’ denotes that implementations from the BiGG database49 were employed, and ‘*’ specifies the subset of models used for direction predictions (see Methods for details).
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overall direction, weighted by the probability to choose the
particular path. The reaction’s feature distribution is calculated
recursively by using the contributions of all possible paths. For
discrete features in GSMs such as reaction directions, we compute
the log-ratio score S of the probabilities of a non-positive and a
non-negative direction sum and we apply classifiers on S to assign
the features. For instance, S¼ � 1.25 for R4 in Fig. 4 provides
strong evidence for forward operation of the reaction (we employ
the sign convention from thermodynamics where a negative
formation energy corresponds to operation of a reaction in the
forward direction; see Supplementary Methods for details).

Prediction of reaction directions with dependent patterns. To
evaluate the HMM framework for reaction directions, we first
performed a leave-one-out cross-validation (LOOCV) analysis by
predicting the direction of each reaction using pattern statistics
derived from the remaining reactions of the corresponding
model. Scores for iAF1260 clearly distinguished between
the original forward, reversible and backward reactions
(Supplementary Fig. S2). Optimized model-specific classifiers for

each reaction length resulted in a CA of 78%, which is sig-
nificantly higher than expected (P¼ 10� 4) when compared with
randomized versions of iAF1260. We obtained similar results for
the other GSMs marked by ‘*’ in Table 1 and for non-specific
classifiers (Fig. 5a; see also Supplementary Methods and
Supplementary Data 1), indicating robustness against model and
classifier specifics.

To transfer knowledge from existing to new models, we first
predicted reaction directions for the model iAF1260 using the
smaller predecessor E. coli model iJR904 (ref. 31) (Table 1) to
derive the pattern statistics, and vice versa. With general
classification parameters, our method yielded on average E80%
correct predictions in both directions, and a majority (E64%) of
consistent assignments for reactions unique to each model
(Fig. 5b; some directions remained undefined because iAF1260
contains additional metabolites). The more challenging
prediction of metabolic functions in a different species based on
pattern statistics from iAF1260 resulted in an average CA of
E74% and coverage of E92% per transfer (Fig. 5b). Not
surprisingly, we obtained the lowest accuracies for yeast, which is
phylogenetically most distant from E. coli among the organisms
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considered. In addition, accuracies were lower for models
iBsu1103 (ref. 29) and iAbaylyiv4 (ref. 32) that originate from
different research groups and have limited similarity to the
other models. Notably, when we repeated the analyses with
patterns of size one only, the average CA dropped to E63%
(Supplementary Fig. S3), confirming our implicit assumption
that co-occurrences of metabolites (patterns of sizeZ2) carry
significant information.

Because the assignment of reaction directions is critical for
GSM performance, we tested the models with inferred directions
for functionality in terms of biomass formation, and therefore
growth. Such tests can be performed by flux balance analysis
(FBA) simulations, in which the model fluxes are optimized for
maximal growth rate33. The models with inferred reaction
directions showed clear growth capabilities in six out of 16
cases and for four out of eight organisms (Supplementary Data 3).
In particular, non-zero-predicted growth rates make these models
suitable for further model optimization using established
algorithms34; for cases with zero growth after direction transfer,
similar optimization algorithms could be developed that
incorporate only a subset of the predicted direction constraints
while maintaining growth. Thus, our pattern-based framework
yields accurate and practically useful predictions by statistically
evaluating and weighting knowledge implicitly encoded in all
relevant metabolite patterns.

Comparison with chemically detailed prediction methods.
Metabolite patterns as defined above are agnostic to the

metabolites’ chemical attributes. It is therefore a priori unclear if
they can yield detailed predictions on reaction chemistry or
thermodynamics. Yet, the reaction direction score S can be
interpreted as a quantitative approximation of the reactions’
standard Gibbs free energy changes, DrG� (up to a scaling factor;
see Supplementary Methods). Because few experimental ther-
modynamic data are available28, reaction energies of chemical
reactions in general are often estimated by group contribution
methods that consider the additive reaction energies of chemical
sub-structures35. Reaction directions then depend on these
energies and on metabolite concentrations. For iAF1260,
direction predictions based on group contribution methods36

show an average CA of E36% (Fig. 5c). They are most accurate
for short reactions, but the accuracy decreases with increasing
reaction length, presumably due to error propagation when
energy estimates for individual metabolites are added. Our
pattern-based approach makes more accurate predictions for
longer reactions because those reactions provide more patterns
and pattern counts (Fig. 5c). Existing heuristics predict reactions
with seven or more metabolites with high accuracy because the
majority of those reactions (for example, ABC transporters)
contains ATP as a substrate, but the heuristics do not cover all
relevant metabolites, such as the redox-pairs FMN(H2) and
NAD(H). However, note that a direct comparison of the results is
difficult because the methods employ different prior information.

We also compared our approach to the IGERS method37,
which uses detailed chemical features to assign the experimentally
determined DrG� value of the most similar reaction to a reaction
with unknown DrG�. Metabolite patterns and IGERS showed 82
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and 80% prediction accuracy for the qualitative directions of 171
and 105 (out of 173 tested) reactions, respectively (Fig. 5d,
Methods and Supplementary Data 4). Linear correlations between
quantitative predictions and experimental data were significant in
both cases (Po10� 10). The average correlations of IGERS were
higher, but less stable under random resampling of the test data
(Methods, Supplementary Fig. S4 and Supplementary Methods).
Hence, despite being agnostic about chemistry, our pattern-based
approach seems largely complementary to thermodynamic and
chemically detailed approaches.

Gap filling. Finally, we addressed pattern-based predictions in a
different network context by considering the problem of gap
filling, that is, the identification of missing reactions in a given
metabolic network. This problem is more global than predicting
reaction features, because it amounts to deciding whether a
candidate reaction belongs to a specific target network, or not.
Several automated gap filling methods exist38, but they typically
require formally detectable effects of the gap34, additional
experimental data39 or comprehensive model annotations40. We
aimed to rank candidate reactions according to their probability
of belonging to a target GSM without computationally expensive
tests of model functions or external information. For this
purpose, we used a feature propagation HMM to compute a
log-ratio score S that measures how closely related a candidate
reaction is to the target model, compared with an average of all
models in a repository. We constructed the HMM with emissions
{þ n,� n} for observing the reaction in the model or in our
model repository, respectively. A higher score indicates that a
candidate reaction more specifically belongs to the target model
than to an ‘average’ metabolic model (see Supplementary
Methods).

We evaluated the method by scoring 750 unique reactions
across nine models for different organisms (see Table 1 for the
GSMs employed, Supplementary Data 5 for the reactions
considered, and Methods) to identify reactions from other
models that could fill gaps in the E. coli model iAF1260. The
reaction scores clearly separate by species of origin, as indicated
by their cumulative probability distribution functions (Fig. 6a).
Here, human Recon1 (ref. 41) serves as a negative control and
iJO1366 (ref. 42), the most recent extension of iAF1260, as a
positive control. Similarly, the positions of the 10% best ranked
reactions of each model (Fig. 6b) show a proximity of E. coli-
specific reactions as well as a separation between reactions of
eukaryotic (human and yeast) and prokaryotic (all other
networks) origin.

For a more detailed analysis, we manually inspected the 100
bottom and top ranked reactions in the list of 750 candidate
reactions. The bottom 100 reactions contained 26 duplicates in
iAF1260 (for example, because the reaction was defined in other
models without differentiating between cellular compartments),
and no other candidates could be validated (Fig. 6c). In contrast,
most of the 100 top candidates could be substantiated by further
inspection. Many of these reactions were incorporated into other
manually curated E. coli models and can thus be assumed correct
(Fig. 6c). Another set of 32 reactions could be corroborated by
independent evidence. Out of these 32 candidates, one reaction
originated from the predecessor E. coli model iJR904, and 17
reactions originated from the successor E. coli model iJO1366.
The 14 reactions shown in Table 2 constitute novel predictions,
for instance, on transport mechanisms for metal ions and on the
synthesis of complex lipids. Based on homology, we identified
genes in E. coli that are presumably associated with those
reactions (Supplementary Table S5 and Supplementary Data 5),
and this will allow for future experimental testing of the
hypotheses. In addition, we performed functional tests of
iAF1260 with and without adding the 32 candidates. In FBA
simulations to determine maximal growth rates and accuracies of
predictions on the viability of the organism when single genes are
inactivated, the original and the extended model performed very
similarly for a standard experimental data set43 (Supplementary
Table S6). In addition, 29 of the 32 candidate reactions could in
principle carry steady-state carry flux (see Methods) in the
extended network, and the network extension rendered an
additional 11 reactions in the original model functional. These
tests indicate that gap filling with the candidate reactions
enhances model functionality. Overall, the top 100 list was
significantly enriched for E. coli-specific reactions (Po10� 7) in
contrast to all other organisms considered (P43 � 10� 2). Thus,
the analysis provided strong support for the pattern-based
approach to gap filling.

Discussion
Previous studies on motifs11 and on subgraph patterns10

demonstrated that local topologies in metabolic networks are
associated with biological functions such as the localization of
metabolic reactions within a cell and the non-random use of
common substrates in metabolic reactions, respectively. These
associations, however, were weak and not directly applicable to
predict network features, also because of the focus on statistical
over-representation of patterns and the restriction to patterns of a
single size. Other approaches to the analysis of metabolic
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networks accounted for the network context in order to predict
tissue-specific metabolic functions44, or to automatically assign
genes to metabolic reactions38,45, but they require information in
addition to the network topology. Similarly, existing frameworks
for the automatic construction of metabolic network models
involve model optimization by network-internal criteria as well as
by comparison of model predictions with experimental data46.

In contrast, our metabolite pattern-based framework relies on
network topologies alone, and it predicts metabolic functions by
leveraging the statistical information contained in well-curated
network models. In essence, it is a constructive approach for
analysing biological network features because it evaluates
hypotheses by (potentially) integrating over all possible paths
for constructing them, which leads to high-accuracy predictions.
The predictions are complementary to those from alternative
methods (such as thermodynamics or current heuristics for
reaction directions), and the method allows for a systematic
information transfer between different networks. In addition, we
demonstrated that pattern-based methods can systematically
evaluate candidate reactions with respect to their likelihood of
being part of a given network (model)—which could as well be
applied to computationally predicted biochemical reactions47. For
the metabolic network application area, we therefore envisage our
framework to help improve existing, and to construct new
network models.

More generally, the proposed framework for analysing network
features using pattern statistics is generic in two regards: it could
be extended to other network types, and it provides direct
connections to the extensive standard theory of Markov chains
and HMMs. The latter makes it easy to incorporate additional
knowledge; for metabolic networks, one could consider, for
example, the detailed chemical structure of metabolites, or the
complicated subcellular localization of reactions in higher
eukaryotes48. Such combined predictions would not only enable
a coherent integration of existing knowledge on biological
networks, but also the generation of experimentally testable
hypotheses to discover new network features.

Methods
Genome-scale metabolic network models. We downloaded publicly available
genome-scale models from the BiGG database49 and from published
Supplementary Materials. All models were translated into the BiGG naming
scheme and common naming conventions31 were used. A metabolite occurring in
several compartments was associated with several distinct metabolite identifiers,
and we added external reactions whenever external metabolites were either a sink
or a source. Reaction constraints from the original models were used.

Generation of randomized networks. We consider a metabolic network with
stoichiometric matrix N containing r metabolites in r reactions. Much of our
proposed method involves co-occurrences of metabolites and seeks to exploit
statistically significant frequencies of such co-occurrences. Our algorithm for
sampling random networks (Supplementary Fig. S5) keeps all relevant statistical
properties of the original network, while completely randomizing co-occurrences of
metabolites. It takes the original stoichiometric matrix and repeatedly selects two
reactions uniformly at random; two metabolites with the same sign of the mole-
cularity, one in each reaction, are chosen and exchanged. Afterwards, educts and
products in a reaction are repeatedly swapped. As a result, the new network has the
same number of reactions and the ith reaction has the same left- and right-hand
sizes as the ith original reaction. The reactions’ directions as well as their numbers
of metabolites remain unchanged.

Performance evaluation for reaction direction predictions. To compute the
statistical significance of the number of correct assignments of reaction directions,
we first randomly generated 10,000 variants of each model considered by setting
one half of the irreversible reactions in a model to ‘backward’ (and consequently
exchanging the left- and right-hand sides of the reaction equations). For each of
these models, we then computed a LOOCV of the HMM-based reaction-direction
prediction. Let k be the number of these 10,000 randomly shuffled models that
reach higher CA than the original model. The P-value for the CA of the original
model is then given by P ¼ 1

1þ k.

Assignment of EC numbers. We performed EC number assignments as detailed
in Supplementary Methods and evaluated the method’s performance using the
iAF1260 model as test set and the remaining five BiGG models listed in Table 1 as
training set. Detailed results on the identified patterns are given in Supplementary
Data 2. Specifically, we transferred the results to iAF1260 by associating all of its
reactions with EC numbers. We distinguish four cases as follows: (i) an association
is unique (multiple), giving exactly one (multiple) associated EC number(s); (ii) an
association is either correct by containing the same EC number as the one in
iAF1260, or incorrect otherwise; (iii) an association with at least one EC number is
made, but its correctness cannot be established because the reaction is not anno-
tated in iAF1260; these cases are called newly associated; (iv) finally, it is possible
that no association above a given threshold is found. Note that only 957 out of
2,077 reactions in iAF1260 carry an EC number and proper evaluation is only
possible on this subset.

Comparison of predictors for reaction energies. For detailed performance
comparison, we used a previously published data set of 173 reactions28, for which
standard Gibbs energies are available for physiological conditions. The same data
set was also used as a reference set for IGERS37. For each reaction, we computed
the reaction directionality score S, using LOOCV of the 173 reactions for
calculating metabolite pattern counts. To evaluate how robust the two regressions
are, we re-sampled the data by randomly selecting 1,000 sets each containing 50%
of the reactions. We then calculated the linear regressions for each of these sets and
evaluated the variation in the resulting coefficient r2. Detailed data are provided in
Supplementary Data 4.

Evaluation of gap filling. To evaluate the proposed method for gap filling (see
Supplementary Methods), we created a joint database using all reactions of the
models iAF1260, iJR904, iIT341, iAF692, iSB619, iND750 and iJO1366 for com-
puting the database count-table; these counts represent the ‘common biochemical

Table 2 | Candidate reactions and predicted loci for inclusion into iAF1260.

Reaction Rank Source model Comment/predicted locus

Peroxynitrite formation 1 iIT341 Spontaneous
Manganese transport via ABC system 33 iAF692, iSB619 b1859
3-hydroxy-palmetoyl-ACP synthesis 36 iIT341 b0180
3-hydroxy-octadecanoyl-ACP synthesis 39 iIT341 b0180
Iron (III) dicitrate transport via ABC system 43 iAF692, iIT341 b4291
Fatty-acyl-ACP hydrolase 50 iND750, Recon1 b0494
Acyl-CoA dehydrogenase (hexanoyl-CoA) 52 iSB619 b0221
Phosphoribosyl pyrophosphate phosphatase 64 iAF692 Spontaneous
Acyl-CoA dehydrogenase (butanoyl-CoA) 66 iSB619 b0221
Aldehyde dehydrogenase (formaldehyde, NAD) 71 iAF692 b0608 or b0356
Alpha-glucosidase 75 iND750, iSB619, Recon1 b0403 or b3878
Thiocyanate transport via diffusion 80 Recon1 Closes a structural gap in iAF1260
Nucleoside-diphosphate kinase (ATP:dIDP) 82 Recon1 b2518
Acyl-CoA dehydrogenase (octanoyl-CoA) 83 iSB619 b0221
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reactions’. As a target model, we chose the E. coli model iAF1260. Note that this
model is also a part of the joint database; its reactions are used to compute the
background knowledge of biochemical reactions. We identified all reactions in the
joint database that are (i) not already contained in iAF1260 and (ii) only contain
metabolites also present in iAF1260. The resulting 750 reactions were then tested as
candidates for gap filling in the target model and ranked according to the score
computed by the HMM framework. To assess flux through novel reactions, we
used the kernel matrix K (right null space) of the stoichiometric matrix N and the
reaction reversibilities to determine zero-flux reactions. These reactions always
have a zero rate in steady state due to the overall network structure because they
are either dead-end reactions or they belong to inconsistent correlation groups50.

Implementation and simulation. All analyses and computational simulations
were performed using MATLAB (The MathWorks, Natick, MA) or R (http://
www.r-project.org). Coin-CLP (https://projects.coin-or.org/Clp) was used as linear
programming solver for FBA. An average prediction takes B10min for intra- or
interspecies transfer of reaction directions on a single Intel(R) Xeon(R) 2.93 GHz
core.

Availability. The HMM-based methods are available at http://www.meta-
netx.org51; MATLAB code is available upon request from the authors.
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