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Thymic epithelial cell expansion through
matricellular protein CYR61 boosts progenitor
homing and T-cell output
Yalin Emre1, Magali Irla1, Isabelle Dunand-Sauthier1, Romain Ballet1, Mehdi Meguenani1,

Stephane Jemelin1, Christian Vesin2, Walter Reith1 & Beat A. Imhof1

Thymic epithelial cells (TEC) are heterogeneous stromal cells that generate microenviron-

ments required for the formation of T cells within the thymus. Defects in TEC lead to

immunodeficiency or autoimmunity. Here we identify TEC as the major source of cysteine-

rich protein 61 (CYR61), a matricellular protein implicated in cell proliferation and migration.

Binding of CYR61 to LFA-1, ICAM-1 and integrin a6 supports the adhesion of TEC and

thymocytes as well as their interaction. Treatment of thymic lobes with recombinant CYR61

expands the stromal compartment by inducing the proliferation of TEC and activates Akt

signalling. Engraftment of CYR61-overexpressing thymic lobes into athymic nude mice

drastically boosts the yield of thymic output via expansion of TEC. This increases the space

for the recruitment of circulating hematopoietic progenitors and the development of T cells.

Our discovery paves the way for therapeutic interventions designed to restore thymus stroma

and T-cell generation.
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H
ematopoietic progenitor cells recruited from the blood to
the thymus embrace a T-cell lineage fate within specific
microenvironments created by stromal cells1–3. Thymic

epithelial cells (TEC) are the main stromal cell population and
orchestrate the migration, proliferation and survival of
differentiating thymocytes. TEC are subdivided into cortical
TEC (cTEC) and medullary TEC (mTEC), with different
localization and functions2,4,5. A decrease in the number of
TEC and a compromised medullary and cortical architecture are
characteristics of age-associated thymic involution. The resulting
decrease in T-cell production ensues in a loss of repertoire
diversity. Similarly, cytoablative treatments also severely impair
thymic structure and function6.

Deciphering the molecular mechanisms underlying TEC
function and the formation of thymic microenvironments is
mandatory for the development of therapies. To date, cytokines of
the TNF superfamily, such as RANKL, CD40L and lymphotoxin,
have been reported to promote the development and maturation
of mTEC7, whereas Keratin Growth Factor (KGF) has been
implicated in thymic regeneration8. In addition, thymic innate
lymphoid cell-derived IL-22 has been reported recently to
participate in endogenous thymic regeneration by inducing
TEC proliferation9.

Components of the extracellular matrix (ECM) are critically
involved in the formation of thymic microenvironments. They
constitute molecular bridges between thymocytes and stromal
cells, supporting migration and development of thymocytes and
TEC10–13. CYR61 (CYsteine-Rich protein 61) is an ECM cell
adhesive protein produced by several cells, including endothelial
cells, fibroblasts and smooth muscle cells14. CYR61 has been
implicated in carcinogenesis, wound healing and cardiovascular
development through binding to integrins such as aVb3, aMb2
and a6b1 (refs 14–17). Notably, Cyr61-deficient mice are
embryonic lethal because of cardiovascular defects18. Depending
on the cell type and context, CYR61 can promote the
proliferation, survival, migration or senescence of cells14,17–20.
CYR61 is overexpressed in various cancer cells, including cancers
of epithelial origin, and can promote their proliferation21–23.
Furthermore, specific expression of CYR61 in thymic stroma was
evidenced in a study aimed at mapping thymic stromal gene
expression24. However, the role of CYR61 in the thymus has not
been addressed previously.

As CYR61 promotes cell proliferation14,16,21, we examine here
the benefits of CYR61 treatment on T-cell development and the
thymic stroma. We observe that matricellular protein CYR61
specifically induces the proliferation of TEC and the expansion
thymic stroma in vitro. In vivo, engraftment of thymic lobes that
modestly overexpress CYR61 dramatically boosts the production
of T cells in athymic nude mice via the expansion of TEC.
Detailed analyses reveal that the stromal expansion induced by
CYR61 creates additional space for the recruitment of circulating
hematopoietic progenitors and for the development of T cells.
Importantly, animals grafted with CYR61-overexpressing thymus
display a normal T-cell repertoire without any signs of auto-
immunity. Our results show that CYR61 treatment increases
the size of the thymus via expansion of TEC, thus enabling
the recruitment of circulating progenitors and the production of
T cells.

Results
TEC are the main source of CYR61 in the thymus. We first
quantified the expression of CYR61 in different thymic cell
populations in adult mice. Quantitative PCR revealed CYR61
expression in TEC, fibroblasts and endothelial cells (Fig. 1a). We
then investigated CYR61 expression at the protein level.

Intracellular staining of CYR61 protein detected by flow cyto-
metry revealed higher expression in cTEC (EpCAMþ ,
CD45neg,Ly51þ ) and mTEC (EpCAMþ ,CD45neg,Ly51� /low)
compared with the other populations (Fig. 1b). Some protein
expression was also detected in the CD45neg,EpCAMneg popula-
tion that comprises fibroblasts and endothelial cells but at a far
lesser extent than in TEC (Fig. 1b). No CYR61 was detected on
cell surface according to FACS analyses on non-permeabilized
cells (Supplementary Fig. S1a). Finally, CYR61 production by
TEC was further confirmed with thymic sections stained for the
mTEC marker keratin 5 (K5) and cTEC marker keratin 8 (K8)
(Fig. 1c). Control staining for CYR61 is provided in
Supplementary Fig. S1b. Hence, TEC are the main source of
CYR61 in the thymus.

Binding to CYR61 enhances TEC interactions with thymocytes.
As CYR61 is a secreted molecule with cell adhesive properties14,
we wondered whether CYR61 can support the adhesion of
thymocytes or TEC. Thymocytes, primary TEC and IT76M1, a
mouse TEC cell line, were seeded on microplates coated with
recombinant CYR61-Fc protein or Fc molecule. As shown in
Fig. 2a and Supplementary Fig. S2a, CYR61 was able to support
the adhesion of both thymocytes and TEC.

CYR61 binds to various molecules on the cell surface including
integrins aM and a6 (refs 15–17). Blocking integrin a6 and
ICAM1 with antibodies inhibited CYR61 binding to IT76M1,
primary TEC and thymocytes (Fig. 2b, Supplementary Fig. S2b).
Meanwhile, targeting CD11b (integrin aM), which is not
expressed in TEC and thymocytes, was ineffective (Fig. 2b). In
the case of thymocytes, blocking CD11a (integrin aL) also
inhibited CYR61 binding (Fig. 2b, Supplementary Fig. S2b).

T-cell development relies on interactions between thymocytes
and TEC25, while the ECM provides a structural support for cell
migration and adhesion10. In addition, TEC and thymocytes
interact through molecules such as LFA1/ICAM1 (refs 25,26). To
test whether CYR61 would affect such interactions, adhesion of
CFSE-labelled thymocytes to monolayers of IT76M1 pretreated
either with CYR61-Fc or Fc molecule for 1 h was assayed. We
observed that CYR61 increased adhesion of thymocytes to TEC
monolayers (Fig. 2c, Supplementary Fig. S2c). Although CYR61
can promote or inhibit cell migration depending on cell type19,20,
we observed no chemotactic activity of CYR61 on any thymocyte
subset (Fig. 2d). We conclude that CYR61 binds to ICAM1 and
integrin a6 on the TEC surface, but also to integrin aL on
thymocytes, supporting cell adhesion and interaction.

CYR61 induces TEC proliferation. As CYR61 induces the pro-
liferation of various cell types14,27, we investigated whether
CYR61 treatment would promote TEC proliferation. Fetal thymic
organ cultures (FTOC) were depleted of thymocytes with 20-
deoxyguanosine (2DG-FTOC). Supplementing 2DG-FTOC with
recombinant CYR61 drastically increased thymic stroma size and
TEC numbers (Fig. 3a,b). Neither relative mTEC and cTEC
frequencies nor their maturation based on MHC class II
expression was affected (Supplementary Fig. S3). The effect was
specific of TEC because the number of CD45neg,EpCAMneg was
not modified after treatment (Fig. 3b). A direct effect of CYR61
on TEC was further confirmed with the mouse TEC cell line
IT76M1. Treatment with CYR61 increased absolute numbers of
IT76M1 (Fig. 3c). Accordingly, the percentage of proliferating
Ki67þ cells was almost twofold higher than in controls after 72 h
(Fig. 3d).

We next investigated which signalling pathways would be
modulated by CYR61 treatment using the IT76M1 cell line to face
the issue of highly restricted cell numbers in FTOC. CYR61
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induced Akt phosphorylation in IT76M1 cells (Fig. 4a),
whereas ERK1/2 phosphorylation was transiently repressed
(Supplementary Fig. S4). Analysis of NF-kB activation (through
I-kB degradation), and phosphorylation of JNK and p38,
excluded any implication of these pathways (Supplementary
Fig. S4). Previous studies showed that reduced Akt activity in
TEC was responsible for altered thymic architecture, early
involution and defects in keratinocyte proliferation28–30. In
order to determine the implication of Akt in CYR61-mediated
TEC proliferation, 2DG-FTOC were cultured with recombinant
CYR61 in the presence of Akt inhibitor MK2206. Inhibition of
Akt suppressed the effect of CYR61 on TEC numbers (Fig. 4b) as

well as the blocking of integrin a6 (Fig. 4c). Collectively, our data
show that matricellular protein CYR61-induced proliferation of
TEC was thymocyte-independent and stimulated a6-integrin and
the Akt signalling pathway.

CYR61 enhances thymic output. Integrity of thymic stroma
being essential, we aimed at improving thymus function in vivo
by expansion of TEC with CYR61. To this purpose, 2DG-FTOC
were transduced with a lentiviral CYR61 expression vector or a
control vector, and grafted under the renal capsules of B6-nude
mice (Supplementary Fig. S5a). CYR61 expression was increased
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Figure 1 | TEC are the main source of CYR61 in the thymus. (a) Adult murine thymus. mRNA expression of CYR61 measured by qRT–PCR in thymocytes,

DC (CD45þ , CD11chigh), macrophages (CD45þ , F4/80þ ), cTEC (CD45neg, EpCAMþ , Ly51þ ), immature mTEC (CD45neg, EpCAMþ , Ly51� /low,

CD80� ), mature mTEC (CD45neg, EpCAMþ , Ly51� /low, CD80high), fibroblasts (CD45neg, PDGFRaþ ) and endothelial cells (CD45neg, PECAMþ ).

Expression was normalized to immature mTEC and represents the mean ±s.d. of two to four independent experiments. (b) Flow cytometry profile for

intracellular CYR61 expression of CD45þ -depleted thymic cells of adult murine thymus. (c) Thymic sections from adult mice were stained for CYR61, K5

(mTEC marker) and K8 (cTEC marker) expression. Scale bars, 10mm. Control staining for CYR61 is provided in Supplementary Fig. S1b.
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4.5-fold (Supplementary Fig. S5b) with 490% of TEC being
transduced, based on GFP expression (Supplementary Fig. S5c).
Nude mice lack functional thymus and are therefore devoid of T
cells because they bear a spontaneous mutation in the FoxN1
gene31, a transcription factor essential for TEC development32. As
hematopoietic precursors are normal in nude, transplantation of
WT-thymic lobes into nude mice re-establishes normal T-cell
development33. Similarly, thymus transplantation in infants
deficient for FoxN1 or with complete DiGeorge anomaly leads
to T-cell reconstitution and to normal immune function34,35.
Nude mice transplanted with CYR61-overexpressing lobes

(CYR61-nude) or control lobes (control-nude) were monitored
for 8 weeks. The numbers of CD8þ (Fig. 5a) and CD4þ T cells
(Fig. 5b) in blood was drastically increased in CYR61-nude
compared with control-nude mice. The number of T cells in
blood had doubled at the end of the experiment. Interestingly, the
size of ectopic thymus in CYR61-nude mice was bigger than that
of controls (Fig. 5c). The number of TEC (Fig. 5d) and
thymocytes (Fig. 5e) were increased approximately twofold in
CYR61-nudes, although the subset frequency was identical
(Fig. 5f). Importantly, no signs of autoimmunity could be
detected, as spleen size (Fig. 5c) and weight, serum IgG levels
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and the frequency of mature CD4þ and CD8þ T cells in the
spleen were similar in both groups (Supplementary Fig. S5d–g).
There were also no inflammatory infiltrates in the pancreas, liver,
lung or kidney of CYR61-nudes (Supplementary Fig. S5h). Based
on TCR Vb usage, the T-cell repertoire was identical in control
and CYR61 grafts (Fig. 5g,h). Finally, we performed a T-cell

proliferation assay using CD3/CD28 stimulation on CD8þ - and
CD4þ T cells purified from spleen of control-transplanted and
CYR61-nude mice. Proliferative response was similar, thus
indicating that T cells from CYR61-nude mice were as
competent as T cells from control-transplanted nude mice
(Fig. 5i). These findings indicate that mild overexpression of
CYR61 expands TEC and boosts thymic output.

CYR61 does not affect T-cell development per se. Two
hypotheses could account for increased thymic output. First,
CYR61 could potentiate thymocyte development directly, favor-
ing T-cell production and release. Second, CYR61-induced thy-
mus hypertrophy could increase the hosting capacity of CYR61
lobes for circulating precursors, thus increasing T-cell develop-
ment indirectly.

We tested whether CYR61 directly promotes thymocyte
development using FTOC. Thymic lobes are composed of a
complete stromal compartment and a defined number of
thymocyte precursors, which differentiate over time. Two days
after treatment with recombinant CYR61, the frequency and the
number of thymocyte subsets were similar to controls (Fig. 6a,b).
After 6 days of culture, differentiation of thymocytes had
progressed but still no difference was observed between CYR61-
treated cultures and controls (Fig. 6c,d). However, recombinant
CYR61 increased the number of TEC by day 2 of treatment
(Fig. 6e), consistent with 2DG-FTOC experiments (Fig. 3a,b). Six
days after CYR61 treatment, the number of TEC remained higher
than controls but the difference did not further intensify (Fig. 6f).
Neither the relative mTEC and cTEC frequencies nor their
maturation were affected (Supplementary Fig. S6).

The proliferative state of thymocytes after 6 days of CYR61
treatment was similar to that of controls as determined by Ki67
staining (Fig. 6g). Finally, presence of CYR61 during the T-cell
proliferation assay using CD3/CD28 stimulation CYR61 did not
further enhance T-cell proliferation or survival (Fig. 6h).
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These results show that starting with an equal number of
progenitors, CYR61 treatment is not able to increase the
production or promote the proliferation of T cells. Thus, a direct
effect of CYR61 on thymocyte development can be excluded.

CYR61 increases the hosting capacity for progenitors. We then
assessed the capacity of control lobes and CYR61-overexpressing
lobes to import circulating progenitors with short-term homing
assays36. WT-C57BL6 mice were transplanted under the renal
capsule with control lobes in one kidney and CYR61 lobes in the
other kidney (Supplementary Fig. S7a). Three weeks later, CFSE-
labelled WT-bone marrow cells were injected i.v. After 48 h,
thymic receptivity of grafted lobes was determined by counting
the number of recruited Linneg CFSEþ cells (Fig. 7a) and Linþ

CFSEþ cells (Fig. 7b). We observed that the hosting capacity of
expanded CYR61 lobes of precursors was significantly improved

compared with control lobes (Fig. 7a). It should be noticed that
increased receptivity of CYR61 lobes was not specific to precursor
cells, as evidenced by the higher number of recruited Linþ

CFSEþ cells (Fig. 7b).
The difference of recruitment of progenitors into CYR61 lobes

can result from a passive (increased available space) or active
process (increased chemokine production). Homing of progeni-
tors is dependent on chemokines and cell adhesion molecules
such as CCL25 and P-selectin3,36. FTOC treated with CYR61 for
6 days were analysed for expression of CCL25 and P-selectin.
Overall CCL25 content in CYR61 lobes was increased compared
with controls (Fig. 7c). This was an expected result because
CYR61 treatment increases the number of TEC (Figs 3a,b and
6e,f, Supplementary Fig. S7b). After normalizing CCL25 levels to
EpCAM, we observed no effect of CYR61 treatment on CCL25
expression (Fig. 7d). No difference was obtained for P-selectin
(Fig. 7e,f). We conclude that the difference in the recruitment of
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**Pr0.01 (control-nude (n¼6) and CYR61-nude mice (n¼ 5), two-tailed unpaired Student’s t-test). (e) Number of each thymocyte subsets±s.e.m. in

grafts. *Pr0.05 (control-nude (n¼ 6) and CYR61-nude mice (n¼ 5), two-tailed unpaired Student’s t-test). (f) CD4/CD8 distribution in grafts from

control-nude and CYR61-nude mice. Percentages are mean ±s.e.m. Control-nude (n¼ 6) and CYR61-nude mice (n¼ 5). (g,h) Control and CYR61 lobes

were grafted in each kidney of WTmice. Four weeks after transplantation, TCR Vb usage by thymic CD4þ (g) and CD8þ (h) T cells were measured by

FACS. Results from two independent experiments are pooled and shown ±s.e.m. (n¼ 7). (i) T-cell proliferation assay. CD8þ - and CD4þ T cells from

spleen were positively purified and then stimulated in anti-CD3-coated plates with anti-CD28 antibodies for 72 h. Data are the mean of control-nude

(n¼6) and CYR61-nude mice (n¼ 5) ±s.e.m.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3842

6 NATURE COMMUNICATIONS | 4:2842 | DOI: 10.1038/ncomms3842 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


progenitors into CYR61 lobes is passive. Other thymopoietic
factors, such as IL7 and FGF7, were neither modified by CYR61
(Fig. 7g–j).

These results show that CYR61 expands thymic stroma, thus
improving available space in CYR61 lobes for hosting circulating
progenitors. In addition, CYR61 is not able to directly promote
the development of thymocytes.

Discussion
The generation of a self-tolerant T-cell repertoire is an intricate
process. Progenitors recruited from the blood embrace the T-cell
lineage fate within specific microenvironments created by
stromal cells such as TEC3,5. Unfortunately, age-associated
involution or atrophy of the thymus resulting from infection,
chemotherapy or radiation all damage thymic architecture. This
results in a decrease in TEC number and impairment of T-cell
development, resulting in alteration of the T-cell repertoire and
enhanced susceptibility to infections6. Therefore, unravelling the

mechanisms mediating thymic stroma development is required
for the development of therapies aimed at maintaining thymus
function6. In this context, KGF administration was reported to
enhance thymic recovery after irradiation and dexamethasone
treatment8 and to expand mTEC in Rag2� /� mice37. Also, IL-22
administration accelerates the recovery of epithelial micro-
environment after total body irradiation9, and miR-29a protects
thymic epithelium from inappropriate infection-associated
involution38. Finally, suppression of inflammasome-dependent
caspase-1 activation decreases age-associated thymic involution
by TEC and T-cell progenitors39.

Matricellular CYR61 has been studied in cancer. Its binding to
cell-surface integrins promotes cancer cell proliferation and
metastasis. Notably, overexpression of CYR61 in breast, prostate
or ovarian cancer cells enhances tumour growth21,22,40, whereas
CYR61 silencing in pancreatic and prostate cancer cells decreases
tumour growth22,23. Finally, recombinant CYR61 treatment
accelerates repair of epithelium in vitro in a model of
inflammatory lung epithelium injury41. As thymocytes and TEC
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undergo intense proliferation and apoptosis, we investigated
whether matricellular CYR61 could improve TEC status and
thymocyte development. Our findings demonstrate a beneficial
impact of CYR61 treatment on progenitor handling and thymic
output. Specifically, CYR61 induced the proliferation of TEC
and expansion of thymic stroma, thereby increasing available
space for the recruitment of circulating cells to then embrace
normal T-cell development. Consequently, thymic output is
improved (Fig. 8). Our results provide evidence that modest
overexpression of CYR61 efficiently expands the epithelial
compartment. This represents a novel approach for improving
or restoring immune competence. We propose CYR61 as an
adjunctive treatment to thymus transplantation, which was
performed successfully in patients with complete DiGeorge
syndrome34 or deficient for FoxN1 (ref. 35), and that restored
T-cell production and function. Interestingly, CYR61 gene
transfer has been used previously for therapeutic angiogenesis
in models of lower-limb ischaemia42, ischaemic retinopathy43 and
experimental autoimmune myocarditis44.

Homing of circulating progenitors to the thymus is a tightly
controlled process, which maintains continuous T-cell output
without overgrowth of the thymus. Strikingly, this process is
restricted by competition for limited stromal niches that provide

important survival and differentiation factors45. Niche occupancy
itself regulates the periodicity of expression of cell adhesion
molecules and chemokines such as P-selectin and CCL25 in the
thymus at steady state for progenitor importation36. A second
level of control comes from the pool of peripheral lymphocytes
that influence thymic P-selectin and CCL25 levels under acute
conditions36. CYR61-overexpressing lobes exhibit increased
thymic stromal size and receptivity for progenitor and Linþ

cells without affecting relative CCL25 production. Therefore, our
results can be explained by an increased number of niches in
CYR61 lobes available for circulating progenitors.

T-cell development is compartmentalized and dependent on
adhesion events between maturing thymocytes and TEC.
Although cell migration is guided by chemokine gradients, the
ECM provides a structural support for cell migration and
adhesion10,46. Hence, fibronectin and laminin produced by TEC
favour thymocyte–TEC interactions as well as thymocyte
migration through the thymus by binding to a4b1, a5b1 and
a6b1 (refs 10,47). CYR61 is likely at the core of such interactions
because it is known to bind to and thereby connect integrin a6
and ECM components (laminin, fibronectin and collagen)14. Here
we show that CYR61 supports the adhesion of thymocytes to TEC
through binding to LFA1 and ICAM1 or integrin a6 (ref. 47).
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CYR61 has also been reported to promote the adhesion and
transendothelial migration of circulating hematopoietic CD34þ

precursors16, as well as the migration of PBMC20. However, we
did not observe chemotactic activity of CYR61 on developing
thymocytes in similar transwell experiments. Integrin a6 is a
target of CYR61 and responsible for its regulatory functions on
cell adhesion, migration, senescence, apoptosis14 and notably
proliferation27. TEC adhesion, spreading and proliferation can be
enhanced through activation of integrin a6 (ref. 47). Therefore,
CYR61-mediated TEC proliferation likely results from binding to
integrin a6. We did not observe any effect of CYR61 on thymocyte
proliferation, in agreement with a previous study performed in our
laboratory showing that blocking integrin a6 in FTOC did not
influence T-cell development and proliferation48.

CYR61-induced TEC proliferation was independent of thymo-
cytes and was associated with the activation of the Akt signalling
pathway. This is in accordance with previous studies showing that
a reduced activity of Akt in TEC was responsible for altered
thymic architecture and early involution30, as well as defects of
keratinocyte proliferation28,29. Moreover, Akt was recently shown
to be a target of CYR61 in lung epithelial cells49 but also in
PBMC, ovarian cancer, gastric cancer, cardiomyocytes and
fibroblast-like synoviocytes20,50–52. Although, inhibition of Akt
with MK2206 suppressed the proliferative effect of CYR61 on
TEC, it also affected normal TEC homoeostasis.

The effect of CYR61 on TEC occurred rapidly within 2 days
in FTOC. The difference did not further increase significantly
after 6 days, suggesting that recombinant CYR61 was no more
active in culture. This loss of activity implicates that in vivo
treatment with CYR61 protein for thymic involution for instance
would require repeated protein administration or in situ delivery.
Alternatively, thymic lobes may have reached a critical mass
in vitro, avoiding any further growth. It should also be noticed
that only the number of TEC were increased following
CYR61 treatment in vitro and not other stromal cells such as
endothelial cells. Therefore, CYR61 effects are mediated directly
on TEC and not indirectly through improvement of angiogenesis,
for instance.

Thymus, lymph nodes, spleen and bone marrow share
similarities with respect to their stromal cell-based architec-
ture53,54. Therefore, our results on thymic stroma expansion by
CYR61 offers new therapeutic perspectives and pave the way for
studies on the developmental and functional implications of
CYR61 in the immune response.

Methods
Mice. Mice were housed under specific pathogen-free conditions. Male C57BL6
nude mice (B6.Cg/NTac-Foxn1nu NE10) were purchased from Taconic and were
8-weeks old on the day of engraftment. Male 6–8-week-old C57BL6 WT mice were
from the CMU animal facility or purchased from Charles River. Pregnant C57BL6
WT mice were purchased from Charles River. All animal procedures were per-
formed in accordance with the Institutional Ethical Committee of Animal Care in
Geneva, Switzerland and the Cantonal Veterinary Office.

Antibodies and proteins. Control sheep Ig, polyclonal sheep anti-mouse CYR61
antibody (1/1000), recombinant human CYR61-Fc and Fc molecules were from
R&D Systems. DyLight488-goat and DyLight650-goat anti-human Ig polyclonal
antibody (1/1000) were from Abcam. A list of the other used antibodies is provided
in Supplementary Table S1.

Quantitative RT–PCR. Total RNA was prepared with TRIzol (Invitrogen). cDNA
was synthesized with random hexamers and Superscript II RT (Invitrogen). qPCR
was performed with iCycler iQ RT–PCR Detection System and iQ SYBR green
Supermix (Bio-Rad). Results were quantified using a standard curve generated with
serial dilutions of a reference cDNA. The list of the used primers is provided in
Supplementary Table S2.

For CYR61 mRNA expression experiments, thymic populations were sorted on
a MoFlow Astrios or an Aria Cell sorter. Purity of thymocytes was 99%. Purity of
the other stromal populations was 485%.

Immunostaining. Thymi of 6–8-week-old mice were embedded in OCT (Sakura
Finetek). Sections (20 mm) were fixed with 4% paraformaldehyde. Antibodies and
secondary reagents were diluted in 0.1M Tris (pH7.4) containing 5% of donkey
serum (Jackson Immuno Research). Sections were counterstained with DAPI and
mounted with Mowiol (Calbiochem). Images were acquired with a Zeiss LSM
510Meta confocal microscope (BioImaging Facility in CMU) and analysed with
ImageJ software.

Western blot. Whole-cell extracts were obtained by cell lysis with 4� Laemmli
buffer. Extracts were loaded onto polyacrylamide gels, separated by electrophoresis

Control
thymus
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Blood
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CYR61
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Figure 8 | CYR61-induced thymic stroma expansion increases thymic output.Matricellular CYR61 increases TEC proliferation and the size of the thymus.

Expanded thymic stroma offers increased available space for the recruitment of circulating progenitors, which embrace normal T-cell development.

Consequently, thymic output is improved.
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and transferred onto Hybond–ECL membranes. Signal was generated with ECL-
Plus (Amersham). Chemiluminescence was recorded with LAS4000 (Fujifilm).
Bands were quantified with Gel Analyzer tool in ImageJ.

FTOC 2DG-FTOC and cell culture. Thymic lobes isolated from 15.5-day embryos
were cultured on Isopore membrane filters (Millipore) laid on gauze sponge in
DMEM with 10% FCS, 2mM Gln, 100Uml� 1 penicillin and streptomycin at
37 �C in a humidified atmosphere with 7% CO2 for 2 or 6 days in the presence or
absence of CYR61 (5mgml� 1; 75.5 mM). For depletion of thymocytes, thymic lobes
were cultured for 5 days with 1.35mM 20-deoxyguanosine (2DG; Sigma-Aldrich).
After washing, lobes were further cultured for 4 days in presence of CYR61. Each
experiment contained 4–8 lobes. Recombinant CYR61-Fc and Fc molecule were
added on the first day of culture.

IT76M1 cells were obtained from Dr P. Itoh (Japan) and initially developed
from primary cultures of thymic stromal cells from Balb/c mice. IT76M1 were
cultured in RPMI1640 with 10% heat-inactivated FCS, 2mM Gln, 1mM sodium
pyruvate, 1% nonessential amino acids, 0,05mM 2-mercaptoethanol, 100Uml� 1

penicillin and streptomycin at 37 �C in humidified atmosphere with 7% CO2.
For signalling experiments, IT76M1 were cultured overnight in 5% FCS then

cultured in medium supplemented with 1% FCS for 4 h. Kinetics were performed
by adding CYR61 (5 mgml� 1) to the medium for the indicated times.

Flow cytometry. Labelling was performed in staining buffer (PBS containing 0.5%
BSA, 5mM EDTA). Cells were acquired with a FACS Gallios (Beckman Coulter) at
the Flow Cytometry Facility in CMU and analysed with Kaluza software (Beckman
Coulter). Doublets were excluded. For intracellular CYR61 staining, single-cell
suspensions from whole thymus were prepared by digestion in HBSS containing
collagenase (Roche) and DNase I. Cell preparations were then depleted of CD45þ

cells using anti-CD45 magnetic beads and autoMACS (Miltenyi Biotec). Intracel-
lular staining was performed with BD Cytofix/Cytoperm (BDBiosciences)
according to the manufacturer’s instructions. For CYR61 staining, donkey serum
was used instead of BSA. The use of collagenase for sample preparation and the
presence of EDTA in staining buffer abolished CYR61 binding to cell surface. Thus,
CYR61 staining only corresponds to intracellular CYR61. In addition, surface
labelling for CYR61 is provided in Supplementary Fig. S1b.

CYR61 binding experiments by flow cytometry. For primary TEC, single-cell
suspensions from whole thymus were prepared by digestion in HBSS containing
liberase (Roche) and DNase I. Cell preparations were depleted of unwanted cells
using biotin-coupled anti-CD45, anti-CD11b, anti-CD11c, anti-CD4, anti-CD8,
anti-CD3, anti-NK1.1, anti B220, anti-CD19, anti-TER119 antibodies and anti-
biotin magnetic beads. Negative selection was performed on MACS LS columns
(Miltenyi Biotec). Cells were incubated in RPMI 0.5% BSA without EDTA at 37 �C
for 4 h to recover from digestion and purification before CYR61 binding assay. For
thymocytes, thymi were mechanically dissociated on 70-mm cell strainers and cells
were resuspended in RPMI without EDTA. IT76 were detached from culture plates
using cell detachment buffer (Invitrogen).

Cells were pre-incubated with control rabbit Ig or polyclonal rabbit antibodies
against integrin a6, aL, aM or ICAM1 for 45min at RT in RPMI without EDTA.
Then, cells were treated with recombinant Fc (75.5 mM) or CYR61-Fc (1mgml� 1;
75.5 mM) for 15min at RT. CYR61-Fc binding was detected using an AF488-
coupled anti-human Fc antibody (Jackson Immuno Research). After washing in
RPMI, binding was assessed by flow cytometry. In the case of primary TEC, we
used recombinant Fc and CYR61-Fc that we directly coupled to DyLight 650
(Thermo Fischer).

Thymocyte adhesion to TEC. Thymocyte suspension was obtained by mechanical
dissociation of thymi on 70-mm cell strainers. Thymocytes were CFSE-labelled and
then added on IT76M1 cultured on m-slide VI (Ibidi) pretreated with CYR61-Fc
(5mgml� 1; 75.5 mM) or Fc molecule (75.5 mM) for 60min at 37 �C in DMEM.
After 60min at 37 �C, unbound thymocytes were washed away with fresh DMEM.
Images were acquired with a Nikon A1r microscope (BioImaging Facility in CMU).
Four independent experiments were performed. Adherent CFSE-cells were counted
with Cell Counter plugin in ImageJ.

T-cell proliferation assay. Ninety six well plates were coated or not overnight at
4 �C with anti-CD3 antibody diluted in PBS (2mgml� 1). Splenic CD4þ and
CD8þ T cells were purified by positive selection and cultured in the presence or
absence of anti-CD28 antibody (2 mgml� 1) in RPMI1640 with 20% heat-inacti-
vated FCS, 2mM Gln, 0.05mM 2-mercaptoethanol, 100Uml� 1 penicillin and
streptomycin at 37 �C. After 72 h, cells were counted with a Countess Automated
Cell Counter (Invitrogen). In Fig. 6h, cells were cultured with CYR61 (5 mgml� 1;
75.5 mM) or Fc molecule (75.5mM).

Chemotaxis assay. Effect of CYR61 on the migratory ability of thymocytes was
assessed using 5-mm pore-size transwells (Costar). Thymocytes (2.5� 106) were
added in the upper chamber in RPMI1640, 0.5% BSA in the presence of CYR61-Fc

(5 mgml� 1; 75.5 mM) or Fc molecule (75.5mM). The lower chamber contained
RPMI1640, 0.5% BSA with CYR61-Fc (5 mgml� 1; 75.5 mM) or Fc molecule
(75.5 mM). After 3 h, percentage of input Linneg (B220, CD11c, CD11b, CD19,
F4/80, Ly6G, PDCA1, NK1.1, EpCAM) cells recovered in the lower compartment
were determined by analysis with FACS Gallios.

Lentiviral transduction of thymic lobes. Mouse Cyr61 cDNA was subcloned
from the pYX-Asc vector (Invitrogen) into the lentiviral pWPI vector containing
an IRES-GFP sequence under the control of EF1a promoter. Recombinant lenti-
viruses were produced by co-transfecting 293T cells55. 2DG-treated lobes were
cultured for 24 h in virus-containing medium, 50 ml being regularly added onto
lobes. After 24 h, medium was replaced by fresh virus-containing medium for an
additional 24 h. Lobes were further cultured for 3 days in normal medium.

Thymic graft. For thymic output experiments, six pieces of thymic lobes were
grafted under the renal capsule of 8-week-old C57BL6 nude mice56.

For short-term homing experiments and TCR Vb usage, two pieces of CYR61
lobes were grafted under the kidney capsule of 8-week-old C57BL6 mice. One
kidney was grafted with control lobes and the other one with CYR61 lobes.

Short-term homing experiments were adapted from Gossens et al.36 Three
weeks after transplantation, each mouse was i.v. injected with 30� 106

CFSE-labelled WT-bone marrow cells (7.5 mM, 5min at 37 �C). After 48 h, mice
were killed and CFSEþ cells recruited to control and CYR61 lobes were counted
with a FACS Gallios. Lin was defined as B220, CD11c, CD11b, CD19, CD3, CD4,
CD8, Ly6G, PDCA1, NK1.1, EpCAM.

Serum Ig levels. Microtiter plates (Nunc) were coated with serum from grafted
mouse. Bound IgG was captured by HRP-labelled anti-mouse IgG antibody
(Jackson Immuno Research), revealed with Substrate Reagent (R&D Systems)
and stopped by the addition of 0.5 N HCl. Serum IgG levels were determined at
450–570 nm.
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