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Requirements for fault-tolerant factoring
on an atom-optics quantum computer
Simon J. Devitt1, Ashley M. Stephens1, William J. Munro1,2 & Kae Nemoto1

Quantum information processing and its associated technologies have reached a pivotal

stage in their development, with many experiments having established the basic building

blocks. Moving forward, the challenge is to scale up to larger machines capable of performing

computational tasks not possible today. This raises questions that need to be urgently

addressed, such as what resources these machines will consume and how large will they be.

Here we estimate the resources required to execute Shor’s factoring algorithm on an atom-

optics quantum computer architecture. We determine the runtime and size of the computer

as a function of the problem size and physical error rate. Our results suggest that once the

physical error rate is low enough to allow quantum error correction, optimization to reduce

resources and increase performance will come mostly from integrating algorithms and cir-

cuits within the error correction environment, rather than from improving the physical

hardware.
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T
he prospect of an entirely new industry based on quantum
mechanics has motivated technological development and
led to a much better understanding of the principals

governing our universe at the atomic scale. For quantum
technology, experimental progress has been pronounced1–6. Not
only has a fledgling industry based on quantum key distribution
emerged7,8, but many experimental groups now routinely
demonstrate the creation, manipulation and measurement of
multiple qubits in various physical systems with increasingly
higher accuracy9. The goal of developing a viable, large-scale
quantum computer is now in sight, due in part to recent
theoretical progress. Techniques for fault-tolerant quantum error
correction, necessary to deal with imperfect physical components,
have been substantially refined10–12. Adaptation of these
techniques to the physical restrictions of quantum hardware has
led to multiple architecture designs, each one representing a
pathway towards a future quantum computer13–21.

Although a large-scale quantum computer is still years away, it
is now possible to make qualitative and quantitative predictions
about the performance and required hardware resources for such
a computer. Some estimates consider architectures based on
specific physical systems20–24, an essential aspect in resource
analysis. However, these estimates omit a full prescription for
executing the algorithms in question. Others consider promising
error-correction codes and circuits, such as post-selection10 and
topological models12, yet do so without reference to particular
architectures or applications. Above the physical device level,
there are a number of implementation layers required to
reliably execute a quantum algorithm. By careful choice of all
technological elements and the integration of all implementation
layers, a complete analysis is now possible.

A full account of the resources required for fault-tolerant
quantum computation must consider several factors. Because
physical components will fail and introduce errors, an error-
correction code must be chosen and then adapted to any
restrictions imposed by the hardware. Physical error rates must
be suppressed below the fault-tolerant threshold of the chosen
code. Next, the code restricts the set of logical gates that can be
directly applied to encoded data. Each gate in the high-level
quantum algorithm must be decomposed into a universal set of
fault-tolerant primitives. To realize these universal primitives,
ancillary states and protocols are typically required to enact
teleported gates that could otherwise not be directly applied to the
encoded data25. Each of these steps increases the total qubit/time
overhead and must be carefully integrated in a way that ensures
all steps are counted.

The precise details of how resources are calculated depend on
the properties of the architecture in question, the techniques used
for fault-tolerant error correction and the circuit-based descrip-
tion of the desired algorithm. One of the most promising error
correction techniques is topological error correction; defined over
a large three-dimensional cluster state of qubits12. This error
correction technique, despite the fact that it is well suited to large-
scale architectures, has only briefly been studied in regards to how
a large-scale algorithm will actually be implemented.

In a scalable quantum computer, high-level quantum pro-
gramming languages will be required to control quantum
algorithms26–29, and effective methods will be required to
synthesize logical circuits for these algorithms30–32. Logical
circuits will need to be compiled to a restricted set of fault-
tolerant operations available in the topological model. Finally,
circuits will need to be expressed in terms of physical operations
in the quantum computer—in the topological model, this requires
the construction of compact braided logic. These steps have a
direct impact on the physical resources needed for computation,
and a concerted effort to understand these requirements has only

just begun33. Typically, estimates consider the number of
required gates in the high-level quantum algorithm and the
basic amount of ancillary space needed for additional fault-
tolerant protocols20–22. However, these estimates provide only a
partial analysis. Error correction codes inevitably suffer from
constraints that need to be taken into account; for example, the
interaction of qubits required by the actual algorithm with qubits
needed for ancillary protocols. The scheduling and routing of
these ancillary protocols are often overlooked when estimating
resources and are likely to dramatically affect the resource
estimates34,35.

The compatibility of the topological model with hardware
architectures has been demonstrated in Devitt et al.18, Yao
et al.19, Meter et al.20 Jones et al.21 In our complete analysis, we
consider an atom-optics architecture18,36, based on the photonic
module37. The photonic module is a relatively simple device that
allows an atomic qubit to mediate the generation of photonic
entanglement. The three-dimensional cluster state that supports
topological error correction is created by an array of these devices.
Decomposition of each logical gate into a series of physical
operations in this architecture is straightforward, and hence all
geometry and connectivity constraints at both logical and
physical levels can be explicitly included in the analysis.

The desired algorithm, Shor’s algorithm, is a comparatively
simple application compared with other problems solvable by a
quantum computer24,38. More importantly, it has a rich history
of theoretical development and a number of explicit circuit
constructions39–41. In the present study, we begin with a suitable
circuit from the literature and further compile the circuit to one
that is fault-tolerant and error corrected. We choose an explicit
construction amenable to the system design described above.
However, to run the circuit, we still have to take the geometric
constraints at the logical level into account. Even though
scheduling at the physical level is taken care of by the
topological model, scheduling and arrangement of gates and
ancillary operations within the logical space impacts
performance. This step is largely unexplored and leaves
substantial room for optimization. The ability of an error-
corrected computer to achieve the optimal circuit size at the
logical level is dependent on adapting to these constraints, hence
estimates should be made with care. Our results show that
factoring a 1,024-bit number requires B2.3 years of
computational time and B1.9 billion quantum devices. These
resources are higher than other estimates; however, the numbers
are an accurate reflection of the quantum circuit and the error
correction model. Our results illustrate that the sophisticated
techniques in quantum compilation must be developed and that
these techniques can significantly reduce the resources required to
execute large-scale quantum algorithms.

Results
Preliminaries. In the topological cluster state model, a three-
dimensional cluster forms the effective Hilbert space in which
computation takes place12,42. In the architecture, a photonic
cluster state is continuously prepared from non-entangled
photons by the hardware. Logical qubits are introduced as pairs
of defects in the cluster. Defects are created in the cluster by
measuring physical qubits in the Z-basis12. An entangling gate is
realised by braiding pairs of defects. Logical errors occur when
chains of physical errors connect or encircle defects, which is
made less likely by increasing the circumference of defects and by
increasing their separation. Physical qubits in the bulk of the
cluster, those not associated with defects, are measured in the
X-basis. These measurements reveal the endpoints of chains of
errors, from which the most likely set of errors can be inferred. To
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estimate physical resources, we are ultimately interested in the
size of the three-dimensional cluster state required to execute
Shor’s algorithm. As the algorithm is executed at the logical level,
it is useful to introduce a scale factor that essentially encapsulates
the overhead associated with error correction12. A logical cell is
defined as a three-dimensional volume of the cluster that has an
edge length of dþ d/4 unit cells, where d is the distance of the
error-correction code. Defects have circumference of d unit cells
and are separated by d unit cells (illustrated in Fig. 1).

Shor’s algorithm. There are a number of different circuit
implementations for this algorithm39–41, which assume that
arbitrary sets of qubits can be simultaneously entangled without
any penalty related to their separation. This is not the case in the
topological model, as gates are realised by braiding defects, which
occupy physical space in the cluster. The scheduling required to
implement multiple gates over long distances in the same time
step is non-trivial and will likely add significant overhead.

A simpler approach is to use a circuit that has already been
modified to require only nearest neighbour gates in some
restricted geometry. We have chosen to use the Beauregard
circuit, which is a linear nearest neighbour (LNN) construction
with swap gates used to rearrange qubits in the circuit43,44. This
circuit is not as efficient as others, but its explicit LNN
construction means it can be applied in the topological model
without modification. The Beauregard circuit performs modular
exponentiation in Fourier space, which is usually approximated,
while modular exponentiation based on reversible Boolean
circuits is exact45. However, the complicated nature of fault-
tolerant protocols makes the manual design and optimization of
Boolean addition intractable. With logical qubits arranged in a
line, the circuit to factor an L-bit number requires Q¼ 2L qubits
and has depth K¼ 32L3 to the leading order. The circuit is not
inherently robust to errors46, requiring an error rate per gate
B 10� 1/KQ¼ 10� 1/64L4 to ensure a 90% chance of success.

Topological circuits. The Methods section details the steps that
decompose Shor’s algorithm into a valid set of operations that can

be performed in the topological model. We can translate this
decomposed circuit into a sequence of braids (a topological cir-
cuit) in the three-dimensional cluster state. In the Methods sec-
tion, we detail the geometric structures of all the valid topological
operations; initialization, measurement, state injection, tele-
portation and the CNOT gate. Decomposing Shor’s algorithm
with respect to these gates converts the algorithm into a sequence
of Rz(p/8) rotations, which dominate the resource costs of the
algorithm. This is the logical gate that will be designed. Shown in
Fig. 2 is the topological circuit for the logical Rz(p/8) rotations
with one and two levels of concatenated state distillation. The full
details underlying the topological circuit in Fig. 2 can be found in
Supplementary Figs S1–S8 and the Supplementary Discussion.
The topological circuits are compressed manually into cuboids
such that they can be stacked tightly in both the spatial and
temporal directions in the cluster. The algorithmic qubits (the
qubits specified in the Beauregard circuit) are the defects marked
as green (two defects per algorithmic qubit occupying a cross-
sectional area of two logical cells). Immediately above each
algorithmic qubit is an empty region of the cluster—this space is
used for CNOT gates needed in the Beauregard circuit and swap
gates required by the Beauregard circuit. Because the layout of
algorithmic qubits in the cluster mimics the LNN aspect of the
Beauregard circuit, no optimization is required to achieve the
original circuit depth. Above the empty region is the distillation
space for |YS states, required to implement a Rz(p/4) correction
for each applied Rz(p/8) gate and for Hadamard operations.
Below the algorithmic qubits is the distillation space for |AS
states, Fig. 3 illustrates.

At one level of concatenation, each algorithmic qubit has a
dedicated |AS and |YS state distillery. As the algorithmic layer is
linear, these distilleries connect from above and below in the
cluster, where direct connections in the topological model
correspond to teleported gates12. At two levels of concatenation,
the topological circuit encapsulates four algorithmic qubits. The
first concatenation level has physical injection points for low
fidelity |AS and |YS states, and the size of the defects is half of
what is required at the algorithmic layer. This reduction in size
and separation of defects for the first concatenation level reflects
the fact that distillation circuits have a residual error. If the error
of an injected state at the physical level is O(10� 3–10� 4), then
implementing full-strength error correction for these circuits is
redundant, as the residual error from distillation will always
dominate. At the second layer of concatenation, the residual error
becomes commensurate with the required logical error needed for
computation. Therefore, after the first layer of concatenation,
defects are expanded and separated to the same size and distance
as in the required error correction for the algorithm. Additionally,
at the second level of the |AS state distillation circuit, we require
the distilled |YS state at the first level of concatenation. The
appropriate circuits are placed in the relevant free space in the
cluster, as required.

The application of corrective Rz(p/4) rotations for |AS state
distillation and the probabilistic nature of the circuits themselves
are compensated for at the second level of concatenation by
placing extra distilleries in the cluster (see the Supplementary
Discussion section). For |YS state distillation, there is sufficient
space for one extra circuit adjacent to the second-level circuit, to
compensate for any one failure at level one. For |AS state
distillation, there is space for two extra circuits within the cuboid
to compensate for a given circuit failure. These circuit failures
occur with probability of O(p), where p is the error associated
with the injected states. Given the additional level one circuits
that we have incorporated into the gate and assuming p is
of O(10� 3–10� 4), we will have too many failures at level one
with a probability of O(10� 5–10� 7) for |YS states and of

d +
d

4

d/4

Figure 1 | A logical cell. The size of topological quantum circuits are

expressed in terms of logical cells, giving an error correction-independent

measure. The lengths are expressed in terms of unit cells of the cluster

state. The defect is the coloured region within the cell. Pairs of defects form

a logical qubit.
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O(10� 7–10� 9) for |AS states, respectively. Therefore, we expect
that we will not have sufficient first-level states every 105–107

logical gates. Although these failures lead to an increase in circuit
depth, they occur infrequently enough to be neglected. Finally, at
the second level of state distillation, a total of 15 first-level circuits
for corrective |YS states, needed by the second-level |AS state
circuit, are used. The probability that not enough level-one |YS
states are available is given by 15p/215. This occurs when all 15
Rz(p/8) corrections are needed, and a single level-one |YS
distillation failure occurs, and if p is of O(10� 3), this is also of
O(10� 7). Corrective |YS states, needed with a probability of 0.5,
for the logical Rz(p/8) gate are located above the algorithmic
layer.

The total logical volume of cluster for one and two levels of
state distillation can be calculated explicitly. For one level of
concatenation, each Rz(p/8) gate occupies a volume of V¼ 5
� 21� 2 cells with a depth along the temporal axis of the cluster
of D¼ 5 cells and a cross-sectional area of A¼ 21� 2. For two
levels of concatenation, the volume is V¼ 8� 77� 9/4 with a
depth along the temporal axis of D¼ 9 and a cross-sectional area
of A¼ 77� 2/4. The factor of 1/4 accounts for the fact that the
cuboid represents four gates.

Cluster volume. To determine the total size of the cluster state,
we need to know the amount of error correction and state

distillation required. Each logical gate requires L�V logical cells.
The factor of L comes from the decomposition of each gate at the
algorithmic level into Rz(p/8) gates47. This decomposition is
detailed in the Methods section. Hence, the failure probability of
such a gate needs to be

1�ð1� pf ÞLV � 1
640L4 ; ð1Þ

where pf is the failure rate of a logical cell. The right hand side sets
the target failure rate for the logical gates in the circuit for Shor’s
algorithm. For standard depolarizing noise, we can estimate the
failure probability of a single logical volume of the cluster as
pfEC1(C2p/pth)I(dþ 1)/2m, where d is the distance of the code, p is
the physical error rate, pth is the threshold error rate (E0.62%),
C1E0.13, and C2E0.61 (ref. 12). Assuming that pfoo1 and
1/640L4oo1, the distance required to achieve the target error
rate is

d � 2 log 640C1L4LVð Þ
logðpthÞ� logðC2pÞ

� 1

� �
: ð2Þ

Here we use the fact that the residual error after l levels of state
distillation should be below the error rate of a logical cell, such
that 7(3

l–1)/2p3
l
rpf and 35(3

l–1)/2p3
l
rpf for |YS states |AS states,

respectively. These conditions determine the level of state
distillation required. Only for very large L (L\216) or for high
values of P (\0.001) does state distillation require three levels.

Temporal axisTemporal axis

Algorithmic qubits

State injection points

Distillation output

State distillation

Gate teleportation

State distillation

State distillation

State distillation

Algorithmic qubits
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|A〉

|A〉

|Y 〉

|Y 〉

Figure 2 | Topological circuits for a Rz(p/8) rotation in the topological cluster. Panel a shows one level of concatenated state distillation, whereas

panel b is for two levels. The temporal axis in the cluster is illustrated. For a detailed explanation of these constructions see Supplementary Figs S3–S8 and

the Supplementary Discussion. Qubits that are part of the algorithmic circuit for Shor’s algorithm are illustrated in green and represent a small

fraction of the total circuit. The white and dark structures represent primal and dual defects in the topological cluster whereas the coloured pyramids are

injection points corresponding to the circuit elements illustrated in Supplementary Fig. S2. The volumes and depths of these two circuits are V¼ {210,1386}

and D¼ {5,9} logical cells, respectively.
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The volume and depth at this level was extrapolated from the
level-two circuits to be V¼ 10,000 and D¼ 15.

Finally, we can specify the properties of the entire cluster state.
The cluster contains 4L�A logical cells. The total cross-sectional
area of the cluster is 5Ld� 5dA/4 physical unit cells. The third
dimension of the cluster represents the temporal axis, and its
length determines the computational time. The depth of a single
logical gate is L�D, and the depth of a single Rz(p/8) gate is
LD� (5d/4). Therefore, the total depth of the cluster is
(32L3LD)� (5d/4).

Physical resources. In the architecture, photonic modules are
used to prepare the cluster state as well as to initialize and measure
single photons36. There is a one-to-one mapping between the
cross-sectional size of the three-dimensional cluster and the
number of required modules. For a cluster with a cross-sectional
area of N1�N2 physical unit cells, a total of (2N1þ 1)(2N2þ 1)
optical lines exist. Of these, (2N1þ 1)(2N2þ 1)/2 lines require
two modules for photon detection and (2N1þ 1)(2N2þ 1)/2
lines require four modules. All optical lines require one
module as a probabilistic photon source. The number of
modules required to prepare the cluster state is
2(N1þ 2)(N2þ 1)þ 2(N2þ 2)(N1þ 1)18. This gives a total
number of modules equal to (12þ 14N1þ 14N2þ 20N1N2),
where N1¼ 5Ld and N2¼ 5d/4A. In addition to the number of
modules, we can specify the physical size of the computer and its
runtime. The dimensions of the computer are Sx¼ 5LdM and
Sy¼ 5dMA/4, where M�M is the surface area of a photonic
module (with depthoM)18. The physical depth of the computer is
Szr2Tcf, where cf is the speed of light in fibre and T is the time
required to prepare a single layer of the cluster state18,
corresponding to the operational speed of the photonic module.
This depth is governed by the optical lines that recycle photons

from the detectors to the sources36. The time required to run the
algorithm is 32L3LD� 5d/4� 2T.

Figure 4 shows the runtime of the algorithm, the total number
of photonic modules and the dimensions of the computer as
functions of the physical error rate and the problem size. Here we
have assumed that pth¼ 0.62% (refs 12,48), M¼ 100mm and
T¼ 10ns (ref. 49). Contour lines in Fig. 4 indicate when the
completion time is 1 year, when the total number of photonic
modules is one billion and when the cross-sectional dimensions are
1m. With a physical error rate an order of magnitude below the
threshold and without any further algorithmic improvements, the
largest problem size that can be completed within a year is LE810.

Discussion
A recent milestone was the factorization of a 768-bit RSA
modulus over several years using the number field sieve classical
factoring method50. Hence, these results show the clear advantage
of quantum computation. They seem not to demonstrate a
significant increase in the processing power of quantum
computers. Our results give a comfortable upper bound for the
resource requirements using explicit circuit constructions in the
topological model. The time required to factor a 1024-bit number
in this analysis is 2.3 years with 1.9 billion photonic modules
required to prepare the cluster. An interesting question is how
these numbers can be compared with the fundamental circuit
used in this analysis. As we mentioned in the introduction, there
are different techniques to construct a circuit for Shor’s
algorithm. The overhead associated with error correction
should be calculated based on the resource costs associated with
the same non-error-corrected circuit. For instance, the circuit
using Toffoli-based quantum adders45 and/or using an
approximate quantum fourier transform51 could reduce the
overall physical recourses; however, the error correction overhead
is highly non-trivial. In this analysis, the basic circuit requires a
computational depth of 32L3 and 2L qubits. For physical gate
times of 10 ns, for L¼ 1,024, the error correction overhead
amounts to a factor of 2.3� 105 in time and 9.1� 105 in terms of
qubits (modules). These numbers are based on a physical error
rate an order of magnitude below threshold. This overhead can be
significantly reduced by optimisations unrelated to the
fundamental hardware. This is illustrated by the fact that
decreasing the error rate by an order of magnitude results in a
computational speed-up to 1.2 years. The same speed-up can be
achieved by compacting the topological circuits shown here by
B 45% along the temporal axis of the cluster.

There have been several other resource estimates made for
various quantum computer architectures using concatenated and
topological error correction. Thaker et al.22 estimated that to
factor a 1,024-bit number on an architecture based on trapped
ions would take around 25 days. Van Meter et al.20 estimated that
a 2048-bit number on a distributed architecture based on
quantum dots would take around 400 days . Jones et al.21

recently improved the latter estimate to around 10 days by using a
monolithic array of dots and increasing the speed of error
correction. New results in superconducting designs suggest a
factoring time for a 2,000-bit number of slightly less than 1 day52.
The differences in these estimates arise due to how the algorithm
is implemented. In particular, more resource-efficient techniques
are utilized in these results, which need to be explicitly integrated
within the topological model.

All resource estimates, including ours, illustrate that a large
fraction of the overhead arises from the need to prepare ancillary
states. Other results assume sufficient space within the computer
such that ancillary protocols can be completed rapidly enough so
that the depth of the algorithmic circuit is unchanged. This could

2L algorithmic qubits

Algorithmic qubits

SWAP region

|A〉 State
distillation

|Y 〉 State
distillation

Figure 3 | Layout of logical qubits for Shor’s algorithm. The layout

includes the necessary cluster space for |AS and |YS state distillation. The

small squares represent the defects that exist within each larger box

defining a cross-sectional area of a logically encoded qubit. The region for

algorithmic qubits is green, a SWAP region for performing gates between

algorithmic qubits does not contain any defects and is illustrated in

orange whereas the regions devoted to state distillation are illustrated

in white.
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be of significant benefit. However, the appropriate routing of
these ancillary protocols needs to be explicit. How distillation
circuits are interfaced with data qubits needs to be detailed, and
which protocols are utilized needs to be analysed. Estimates from
Jones et al., 21 and Fowler et al.52 use the most optimal circuit for
Shor’s algorithm39,45; however, this circuit has not yet been
adapted to the geometric constraints of the topological cluster.
Until an appropriate construction is presented for the topological
cluster, it is difficult to assume that the circuit size will remain
unchanged. If such a circuit design is presented, then we
anticipate immediate reductions in resources. Previous results
also assume that various subcomponents of a fault-tolerant
implementation can be applied without space/time penalty. There
have been many results published optimizing various
components in a fully error-corrected quantum algorithm53–56.
However, each of these results has been derived in isolation, some
have not been converted into the topological model and none
have been carefully integrated together. This is the primary
challenge of topological compilation. Subcomponents may be
efficient, but the success of a large-scale computation requires
delicate integration. Our results illustrate that there is a significant
gap between optimistic resource estimates and those performed
using explicit circuit constructions.

It is clear that algorithmic compilation is a necessity before a
quantum computer is actually built. Reducing the burden on
experimental development is ultimately a function of how we
realize abstract algorithms. Our results illustrate that there is still
much work to be done. Although the topological model is
promising, its ultimate success is dependent on continual efforts

to integrate all necessary protocols in a way that minimizes the
number of devices and the time required to execute an algorithm.

Methods
Valid operations in the Topological cluster. There are five primitive, fault-tol-
erant operations allowed in the topological model: measurement, initialization,
state injection, the two-qubit CNOT and the teleported phase rotations
RzðqÞ; q ¼ p

4;
p
8

� �
. These are illustrated in Fig. 5. There are two types of defects that

can be created, primal and dual. Braided logic operations can only occur between
defects of opposite type and the geometric structures for X- and Z-basis initi-
alization and measurement are interchanged depending on the type of defect.

Gate decomposition. As in the case of all error-corrected models of quantum
computation, the topological model does not allow all gate operations to be directly
applied in a fault-tolerant manner. At the logical level, only preparation of the
states |þS and |0S, X and Z gates, measurement in the X and Z bases, and the
CNOT gate can be directly applied. Swap gates are achieved by deforming the
trajectory of the defects. To complete a universal set, we add the Rz(p/8) and
Rz(p/4) rotations12. The Rz(p/4) rotation is constructed using the [[7,1,3]] Steane
code to distil an appropriate ancillary state. This construction of the Rz(p/4)
rotation is more resource efficient than two Rz(p/8) rotations, which require
distillation protocols based on the [[15,1,3]] Reed–Muller code. To apply
these gates, we perform a teleportation operation with the ancillary states
j Ai ¼ ð j 0iþ eip=4 j 1iÞ=

ffiffiffi
2

p
and j Yi ¼ ð j 0iþ i j 1iÞ=

ffiffiffi
2

p
. Each time we

attempt the Rz(p/8) gate, there is a 50% chance that a Rz(p/4) correction is
required.

To ensure that the error rate of the Rz rotations is sufficiently low, the states
|AS and |YS must be of sufficient fidelity. As these ancillary states are prepared in
the cluster via injection protocols12, state distillation is used to increase the fidelity
of the ancilliary states25, consuming multiple |AS or |YS states with a lower
fidelity. This process can be concatenated until the desired fidelity is reached. If pl is
the error probability of the state after l levels of state distillation, then pAlþ 1 ¼
35 pAl
� �3

and pYlþ 1 ¼ 7 pYl
� �3

for |AS and |YS states, respectively25. Each
distillation circuit is probabilistic with a failure probability of O(p). Supplementary
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Fig. S2 illustrates the quantum circuits for these distillation protocols, and
Supplementary Fig. S1 illustrates the compacted topological structures.

Given our set of logical gates, which now includes the Rz(p/8) rotation, we
decompose the circuit for Shor’s algorithm into an appropriate sequence of these
operations. To estimate an upper bound on the number of gates required, we will
(pessimistically) assume every gate is a non-trivial phase rotation. These rotations
must be approximated by a sequence of logical gates found using the Solovay–
Kitaev algorithm57. B50% of the gates in this sequence58 are Rz(p/8) rotations,
which are the most resource intensive of our logical gates. For simplicity, we will
(pessimistically) assume all of these gates are Rz(p/8) rotations.

Recent algorithms, which can efficiently calculate these been developed47,59,60.
These sequences are restricted to arbitrary Z-axis rotations, Rz(y), and arbitrary
axis rotations are achieved with standard Euler angle decompositions and
additional Hadamard gates. Fortunately, the nature of the Beauregard circuit is
such that only arbitrary Z-axis rotations are required (The Quantum Fourier
transform can be decomposed into arbitrary Z-axis rotations and CNOTs). We
utilize the algorithm of Kliuchnikov et al.59, as it has demonstrated the best
quantum scaling to date. Each gate in Shor’s algorithm is approximated by a
sequence of L¼ 2� (3.21log2(640L4)� 6.93) rotations. The factor of two comes
from the fact that the scaling reported in Kliuchnikov et al.59 is only the number of
Rz(p/8) rotations that are needed for approximating an arbitrary rotation. This
constitutes approximately half of the sequence, with the additional half consisting
mainly of Hadamard operations. Although we assume that the entire sequence
consists of Rz(p/8) gates, explicitly constructing fault-tolerant Hadamard
operations has only a marginal influence on resources. For further details, see
Supplementary Figs S9–S11 and the Supplementary Discussion.
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