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The fibroblast growth factor receptor 2 (FGFR2) locus has been consistently identified as a

breast cancer risk locus in independent genome-wide association studies. However, the

molecular mechanisms underlying FGFR2-mediated risk are still unknown. Using model

systems we show that FGFR2-regulated genes are preferentially linked to breast cancer risk

loci in expression quantitative trait loci analysis, supporting the concept that risk genes

cluster in pathways. Using a network derived from 2,000 transcriptional profiles we identify

SPDEF, ERa, FOXA1, GATA3 and PTTG1 as master regulators of fibroblast growth factor

receptor 2 signalling, and show that ERa occupancy responds to fibroblast growth factor

receptor 2 signalling. Our results indicate that ERa, FOXA1 and GATA3 contribute to the

regulation of breast cancer susceptibility genes, which is consistent with the effects of anti-

oestrogen treatment in breast cancer prevention, and suggest that fibroblast growth factor

receptor 2 signalling has an important role in mediating breast cancer risk.
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N
early 70 loci show significant association with breast
cancer risk in genome-wide association studies (GWAS)1.
However, in most cases we do not yet understand

how these loci contribute to the risk of developing cancer. A
locus within an intron of the FGFR2 (fibroblast growth factor
receptor 2) gene is consistently the most strongly associated with
risk1–3. Here we take a systems biology approach to examine the
regulatory network in breast cancer, how it is perturbed by
FGFR2 signalling and how the identified network and its master
regulators relate to disease risk.

The highly significant association of the FGFR2 locus with
breast cancer risk2 has been replicated in multiple studies in
Europeans3, Asians and African-Americans4. The risk is for ERþ
disease5. The known role of FGFR2 signalling, the occurrence of
FGFR2 gene amplification in breast cancer and the location of
the risk SNPs (single-nucleotide polymorphism) within its intron,
make FGFR2 a plausible mediator of risk. Functional studies
suggest that the risk allele increases FGFR2 gene expression6,
most likely in mammary epithelial cells, but recent genotype-
expression correlations in breast tumours have failed to confirm
an association of the risk SNPs either with expression of FGFR2
(refs 7,8) or with other nearby potential target genes (K.B.M.,
unpublished observation). However, studies in the mouse
have shown that FGFR2 has an important role in mammary
development9 and in maintenance of breast tumour initiating
cells10, consistent with a role for FGFR2 in conferring risk.

FGFR2 signalling cascades have been studied in some detail11,
but less is known about the resulting changes in gene expression
and how different risk genotypes might affect this response.
Gene expression changes are ultimately mediated by the activity
of transcription factors (TFs). In a number of systems, such as
embryonic stem cells12 or glioblastoma13, it has been demon-
strated that a small number of TFs act as master regulators
(MRs) that co-ordinate cellular behaviour. MRs can be identified
by deriving TF-centric regulatory networks using algorithms such
as ARACNe14, where each TF in the network is connected to a set
of genes that it directly regulates (referred to as a ‘regulon’).
Enrichment of a relevant gene signature in each of the regulons
can point to the TFs acting as MRs of the response or phenotype
(master regulator analysis, MRA)13–15.

Here we describe a network-based strategy to uncover
the molecular mechanism underlying breast cancer risk. We
identify the TFs acting as MR of the FGFR2 response and
demonstrate that FGFR2-responsive genes and genes in the
regulons of the MRs are linked to GWAS hits. Our results suggest
that the risk-associated with altered FGFR2 signalling is due to
altered activity of the ERa-associated transcriptional network
(TN) that includes SPDEF and we provide evidence that the
FGFR2 signalling pathway is an important contributor to ERþ
disease risk.

Results
Deriving an FGFR2-associated gene expression signature. To
examine the effects of FGFR2 signalling in breast cancer, we
established three model systems for FGFR2 signalling. As the
FGFR2 locus primarily confers risk of ERþ disease, we chose to
study the ER-dependent breast cancer cell line MCF-7 (Fig. 1a).
First, we stimulated endogenous FGFRs (FGFR1b and FGFR2b)
with FGF10 (Exp1). FGF10 has higher affinity for FGFR2b, but
can also signal through FGFR1b16. Second, we used a system
where the FGFR2-kinase domain is linked to a dimerization
domain (iF2 construct)17 and the kinase is activated artificially by
adding the small molecule AP20187 (Exp2). Third, we over-
expressed the full-length FGFR2b from a tetracycline-inducible
expression vector and again activated the receptor using FGF10

(Exp3). In each experiment, MCF-7 cells were synchronised by
oestrogen starvation, before adding minimal levels of estradiol
in conjunction with the relevant FGFR stimulus (Methods).
Supplementary Figs S1–S3 summarize the experimental design
and results. Gene expression was examined at multiple time
points and the software limma was used to call differentially
expressed genes (DEGs) (Supplementary Methods). Principal
component analysis demonstrated low experimental variation
and the specificity of the FGFR response (Supplementary Figs
S1–S3). The gene expression response to estradiol increased from
6 to 24 h. In contrast, the FGF10 response in Exp1 and 3 was
greatest after 6 h. In Exp2, where AP20187 was used to stimulate
FGFR2, the response continued to increase with time. Each
estradiol plus FGFR2 stimulation was compared with estradiol
stimulation alone, ensuring that the derived DEG list is FGFR2
specific. Figure 1b summarizes the number of DEG called in each
of the experiments (Exp1–3). A full list of DEG derived from each
experiment is available in the R package Fletcher2013a.

The microarray data were confirmed in independent biological
replicates by performing quantitative RT–PCR for a number of
selected genes. IL8 is one of the most strongly induced genes and
we demonstrate that increased IL8 mRNA expression is detected
similarly by two microarray probes and by RT–PCR (Fig. 1c,d).
Furthermore, we find that IL8 secretion increased after FGF10
stimulation (Fig. 1e). Both increased expression and secretion
were blocked by the FGFR kinase inhibitor PD173074, confirm-
ing that the effect is FGFR specific.

FGFR2-regulated genes are linked to breast cancer risk loci. As
the FGFR2 locus is strongly associated with breast cancer risk, we
wished to examine whether FGFR2-regulated genes are risk genes
themselves. To allow us to map risk SNPs to genes, we combined
variant set enrichment analysis (VSE)18 with expression quanti-
tative trait loci (eQTL) analysis. eQTL are polymorphisms asso-
ciated with changes in gene expression. Our analysis examined
whether or not breast cancer risk SNPs, and SNPs in linkage
disequilibrium (LD) with these, can act as eQTL for particular
groups of genes, such as FGFR2-responsive genes. This cis-eQTL/
VSE analysis was carried out between breast cancer risk SNPs and
the FGFR2 gene signatures (Exp1–3). First, we repeated the VSE
analysis with the currently reported list of 51 independent breast
cancer GWAS hits ((ref. 18) and GWAS catalogue). Rather than
examining an effect of the tagging SNP at each GWAS locus, this
method defines an associated variant set (AVS) of SNPs in linkage
with each tagging SNP (D0 ¼ 0.99, LOD 43; similar results were
obtained with using r2 4.8 in the AVS selection) and then tests
whether this set is associated with chromatin features (Methods).
As previously reported18, we found that FOXA1- and ESR1-
binding sites are significantly enriched in the breast cancer AVS
(Fig. 2b). Next we carried out a cis-eQTL analysis between the
risk AVS and potential target genes, using gene expression
profiles and genotype data from 997 breast cancer samples
(METABRIC discovery data set19) in 400 kb windows around
each SNP cluster. This analysis found that among the genes
linked to the risk AVS, there was a significant enrichment for
FGFR2-responsive genes (Exp1–3: E2þ FGF10, E2þAP20187,
TetþE2þ FGF10, each compared with E2 treatment alone;
Fig. 1c), but not for oestrogen responsive genes (E2 and Tetþ E2,
each compared with vehicle treatment, Fig. 2). (In this system, the
E2 response compares resting and cycling cells and is likely to
include many genes associated with this change in the cell cycle.)
A cis-eQTL analysis of the FGFR2 and E2 gene signatures with
AVS for prostate or colorectal cancer GWAS and bone mineral
density (BMD) did not shown any significant associations
(Fig. 1d–f). In conclusion, we provide evidence that breast cancer
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risk SNPs are preferentially linked to genes that, on a background
of oestrogen stimulation, are responsive to FGFR2 signalling.

Regulatory network derived from gene expression profiles.
To better understand the pathways involved in the FGFR2 sig-
nalling response, we constructed a regulatory network for breast
cancer based on the METABRIC data set19 (computational
pipeline summarized in Fig. 3). METABRIC consists of a dis-
covery and a validation cohort of 997 and 995 breast tumour
samples each, for which gene expression data are available (¼ a:
gene expression data in Fig. 3). The data were normalized and
probes with low variation removed from the analysis (b: filtered
gene expression data in Fig. 3). The TN14 was then derived by
computing the mutual information (MI) between annotated TFs
(n¼ 1,388 probes) and all potential targets (n¼ 20K probes after
filtering) in each cohort (¼ c in Fig. 3) (Methods). In this net-
work, each TF has been assigned a list of candidate regulated
genes referred to as its regulon. In the TN, each target can be
linked to multiple TFs and regulation can occur as a result of both
direct (TF1–target) and indirect interactions (TF1–TF2–target)15.
We therefore applied the data processing inequality (DPI)
(Methods), which removes the weakest interaction in any
triangle of two TFs and a target gene, thus preserving the
dominant TF-target pairs, resulting in the filtered TN (¼ d in

Fig. 3). The filtered TN has less complexity and highlights the
most significant interactions.

Master regulators of FGFR2 signalling. Next, we used MRA to
identify the MRs of FGFR2 signalling by testing for significant
enrichment of FGFR2-responsive genes (Exp1–3) in each regulon.
We first ranked regulons based on the enrichment score obtained
on the unfiltered TN and found good agreement between Exp1–3,
both for the total set of regulons as well as the top 50 regulons
(Fig. 4), and also between cohort I and II (Supplementary
Figs S4–S6), suggesting that our three model systems identify
similar sets of regulated genes following FGFR2 signalling. Then,
to define a smaller set of functionally important MRs, we applied
the MRA to the filtered TN and found that 20 regulons are sig-
nificantly enriched across the two breast cancer cohorts in at least
one experiment (Fig. 5a). The agreement between the two cohorts
was very high. When a DPI tolerance of 0.05 is allowed, the
regulons of five MRs were enriched in both cohorts in all three
experimental systems (a DPI tolerance from 0.01 to 0.05 gives the
same consensus). These were SPDEF, ESR1 and its co-factors
FOXA1 and GATA3, and PTTG1 (Fig. 5b). None of the identified
regulons were significantly enriched using a random gene set of
comparable size. When carrying out the MRA on a network
derived for a completely independent breast cancer data set
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(TCGA breast cancer data set)20, regulons for four of the five
MRs (SPDEF, ERa, FOXA1 and GATA3) were again found to be
enriched in FGFR2-responsive genes (Supplementary Fig. S7).
We also computed a filtered TN for 144 normal breast tissue
samples from METABRIC patients. In this network, three of the
five MRs (SPDEF, GATA3 and FOXA1) were enriched, and this
enrichment was found in all three experiments (Fig. 5b). Inter-
estingly, ESR1 and PTTG1 regulons are not enriched, possibly
reflecting the fact that in normal breast the majority of epithelial
cells are ER� , non-dividing cells21. GATA3 and FOXA1 have
been postulated to function upstream of ER and are required
early in mammary development22,23 and might therefore be more

easily detected in the network for normal tissue. We also derived
a filtered TN for a gene expression data set from T-cell acute
lymphoblastic leukaemia (T-ALL)24 and found that the PTTG1
regulon in this network was enriched for two of the three FGFR2
gene signatures (Exp2 and Exp3). The enrichment for PTTG1 in
two distinct cancer tissues, but not in normal breast tissue, may
indicate a large number of proliferation-related (and not breast
cancer-specific) genes in the PTTG1 regulon. Our analysis of the
extended MR list supports this idea (Supplementary Fig. S8
and Supplementary Methods). An association of PTTG1 with
proliferation was confirmed by carrying out the MRA using a
proliferation-based gene signature, termed meta-PCNA25, on

Binding site

ESR1

–2 0 2 4 6 8

–2

6.07
5.90

6.76
0.89
0.95

0 2 4 6 8

13.91
4.67

Enrichment
score (VSE)

14
 r

s1
12

49
43

3

29
 r

s1
33

93
57

7
64

 r
s1

33
87

04
2

4 
rs

10
06

96
90

51
 r

s4
41

50
84

1 
rs

93
83

95
1

51
 r

s1
32

81
61

5

71
 r

s8
65

68
6

31
 r

s7
04

01
0

8 
rs

71
07

21
7

45
 r

s3
80

36
62

48
 r

s4
58

68
5

25

4

38
 r

s1
33

85
19

1

19
9 

rs
77

58
22

9

31
 r

s9
46

60
56

1

3

3

2

2

1
0

6
2

2

12
6 

rs
48

11
19

6
16

 r
s2

27
30

61
56

 r
s4

08
72

96
24

 r
s1

18
64

47
7

17
 r

s8
05

75
51

14
0 

rs
93

17
28

4
95

 r
s1

02
11

88
54

 r
s9

59
47

38
72

 r
s1

05
06

70
1

96
 r

s3
73

62
28

14
5 

rs
96

30
18

2
14

 r
s2

16
54

68
71

 r
s4

35
58

01
65

 r
s2

21
46

81
43

 r
s2

90
80

04
31

 r
s4

60
91

39
21

3 
rs

13
20

49
65

69
 r

s1
36

65
94

26
 r

s1
05

46
27

87
 r

s9
29

16
83

37
 r

s1
05

10
62

8
35

 r
s6

71
05

18
1 

rs
17

13
15

47
17

 r
s7

52
41

02

3 
rs

59
34

68
3

15
 r

s4
92

53
86

62
 r

s9
61

25
3

58
 r

s1
04

11
21

0
8 

rs
49

39
82

7
51

 r
s9

92
92

18
9 

rs
47

79
58

4
13

 r
s4

44
42

35
31

 r
s7

31
54

38
45

 r
s1

11
69

55
2

31
 r

s3
80

28
42

86
 r

s3
82

49
99

36
 r

s1
07

95
66

8
28

 r
s1

05
05

47
7

17
 r

s1
68

92
76

6

12
 r

s1
32

13
11

25
 r

s1
09

36
59

9
51

 r
s6

68
77

58
41

 r
s6

69
11

70

90
 r

s2
12

18
75

77
 r

s5
91

94
32

SNPs

8
10
11
15
11

M
ap

pi
ng

 ta
lly

SNPs

SNPsM
ap

pi
ng

 ta
lly

M
ap

pi
ng

 ta
lly

81
 r

s1
32

73
01

17
 r

s7
42

13
4

1 
rs

57
59

16
7

29
 r

s9
62

31
17

8 
rs

10
32

94
5 

rs
27

35
83

9
14

 r
s8

10
24

76
16

 r
s1

85
99

62
1 

rs
72

10
10

0
7 

rs
44

30
79

6
30

 r
s4

77
53

02
45

 r
s1

52
92

76
16

 r
s9

60
00

79
16

 r
s9

02
77

4
21

 r
s1

08
75

94
3

31
 r

s1
12

28
56

5
31

 r
s7

12
79

00
48

 r
s4

96
24

16
27

 r
s1

11
99

87
4

44
 r

s3
12

30
78

3 
rs

81
78

26
45

 r
s1

44
72

95
31

 r
s6

98
32

67
37

 r
s4

45
11

4
32

 r
s6

98
35

61
3 

rs
13

25
47

38
16

 r
s1

01
63

43
35

 r
s1

51
22

68
57

 r
s6

46
56

57
32

 r
s1

04
86

56
7

23
 r

s1
21

55
17

2
96

 r
s9

36
45

54
23

 r
s6

51
16

4
15

0 
rs

33
93

31
91

 r
s1

04
98

79
2

21
 r

s1
98

38
91

15
6 

rs
13

00
67

31
 r

s4
46

61
37

8 
rs

12
65

39
46

3 
rs

22
42

65
2

18
 r

s7
67

96
73

55
 r

s1
70

21
91

8
30

 r
s1

25
00

42
6

13
 r

s1
09

36
63

2
18

2 
rs

34
50

13
32

 r
s6

76
39

31
17

8 
rs

10
93

48
53

32
 r

s1
71

81
17

0
50

 r
s2

66
07

53
31

 r
s9

31
11

71
53

 r
s2

29
28

84
67

 r
s7

58
43

30
50

 r
s1

26
21

27
8

49
 r

s1
01

87
42

4
18

 r
s6

54
59

77
11

 r
s7

21
04

8
19

 r
s1

46
56

18

13
17
12

6

19

SNPs

M
ap

pi
ng

 ta
lly

89
 r

s2
28

43
78

65
 r

s1
04

11
16

1
21

 r
s8

10
02

41
15

 r
s8

17
0

31
 r

s1
97

85
03

3 
rs

20
75

55
5

24
 r

s1
08

71
29

0
27

 r
s3

11
26

12

12
8 

rs
18

76
20

6
43

 r
s4

32
26

00
59

 r
s9

99
73

7
54

 r
s1

92
66

57
76

 r
s1

15
48

65

16
 r

s6
14

36
7

7 
rs

90
91

16
4 

rs
38

17
19

8
92

 r
s1

05
10

10
2

36
 r

s3
75

08
17

13
 r

s1
09

95
19

0
3 

rs
10

82
20

10
3

44
 r

s2
38

02
05

22
 r

s1
01

19
70

44
 r

s1
56

24
30

14
 r

s2
04

86
72

10
 r

s1
02

63
63

9

10
 r

s9
38

39
38

32
 r

s2
04

62
10

38
 r

s3
75

73
18

35
 r

s9
48

53
72

66
 r

s2
18

03
41

70
 r

s1
75

30
06

8
38

 r
s6

55
67

56
75

 r
s1

68
86

16
5

45
 r

s9
81

78
2

12
7 

rs
77

16
60

0

39
 r

s1
09

29
13

30
 r

s6
78

88
95

55
 r

s4
97

37
68

62
 r

s1
04

90
11

3

Bonferroni

Bonferroni

P-value
(–log10)

P-value
(–log10)

P-value
(–log10)

P-value
(–log10)

0.62

–2 0 2 4 6 8

1.20
0.30

0.68
0.30

0 4 6 82–2

0.70
1.80
0.30
0.04
0.02

P-value
(–log10)

E2
Tet+E2

Tet+E2+FGF10

E2

3.58

3.60
4.09

4.19
3.06

0 6 842–2

Enrichment
score (VSE)

Bonferroni

Enrichment
score (VSE)

Bonferroni

Enrichment
score (VSE)

Tet+E2+FGF10
E2+AP20187
E2+FGF10
Tet+E2

Cis-eQTL

E2

Tet+E2+FGF10
E2+AP20187
E2+FGF10
Tet+E2

Cis-eQTL

E2

Tet+E2+FGF10
E2+AP20187
E2+FGF10
Tet+E2

Cis-eQTL

E2+AP20187
E2+FGF10

Cis-eQTL

FOXA1

Figure 2 | Enrichment of the breast cancer AVS in FGFR2-related gene loci. (a) VSE plots for the breast cancer AVS and the FOXA1 and ESR1 cistromes in

E2-treated MCF-7 cells. (b) E2- and FGFR2-responsive genes in MCF-7 cells are tested for functional association with risk AVS by cis-eQTL analysis using

METABRIC tumour gene expression data. (c–e) The same genes tested for functional association with other cancer risk AVS by cis-eQTL: (c) the prostate

cancer AVS, (d) the colorectal cancer AVS and (e) the bone mineal density AVS. Box plots in each panel show the normalized null distributions

(box: 1st–3rd quartiles; bars: extremes). Black diamonds show the corresponding VSE scores. Red diamonds highlight mapping tallies that satisfy a

Bonferroni-corrected threshold for significance (Po1e-4). P-values are based on null distributions from 1,000 MRVSs. Binary matrices show clusters of

risk-associated and linked SNPs with at least one SNP mapping to the genomic annotations and validated by cis-eQTL analysis. The bottom row of

numbers indicates the number of linked SNPs in each SNP cluster. The mapping tally shows the number of clusters per annotation. Rows highlighted in dark

grey show statistically significant enrichment. The cis-eQTL analysis extends the original VSE method by conditioning the mapping tallies to functional

links. Non-disjoint AVSs with risk-associated SNPs in LD were merged in order to avoid inflated mapping tallies.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3464

4 NATURE COMMUNICATIONS | 4:2464 | DOI: 10.1038/ncomms3464 |www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


both cohort I and II of the METABRIC data. The most strongly
enriched regulon in both cohorts is that of PTTG1, while none of
the other MR regulons are enriched (Supplementary Table S1).
Figure 5c depicts the regulons of the five MRs of the FGFR2

response in our breast cancer gene expression network, high-
lighting FGFR2-responsive genes (purple shading). Interestingly,
transcription of SPDEF was not perturbed by FGFR2, but many of
its target genes were (Fig. 5c, Supplementary Fig. S9), suggesting
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that the activity of this TF is regulated at the protein, rather than
the transcriptional level. The identification of SPDEF highlights
the increased power of the MRA over simple differential
expression-based approaches.

Experimental confirmation of computationally defined reg-
ulons. To validate the identified regulons, we examined whether
there was enrichment of TF binding near transcription start sites
(TSS) of genes found in the regulons of a particular MR. This
validation was carried out for MRs whose regulons were enriched
in the cancer and normal breast tissue, but not in T-ALL: ESR1,
FOXA1, GATA3 and SPDEF. Bioinformatic analysis using
position weight matrices (PWM, consensus binding motifs) from

Transfac showed a strong enrichment of binding motifs for ESR1,
FOXA1 and GATA3 in each of their identified regulons (Fig. 6a).
Next, we examined actual TF binding and carried out triplicate
chromatin immunoprecipitation (ChIP)-seq experiments for
ERa and SPDEF in MCF-7 cells (Supplementary Fig. S10,
Supplementary Tables S2, S3 for full QC). Figure 6b shows that
SPDEF binding is strongly enriched near the promoters of its own
regulon. Interestingly, these promoters are also enriched for
GATA3, ESR1 and FOXA1 binding. De novo motif finding within
these data sets reveals PWMs that are very similar to those pre-
viously reported26–29. Enrichment of binding by these four TFs in
each other’s regulons is widespread (Supplementary Fig. S11),
suggesting that these MRs function co-operatively to regulate sets
of genes.
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The target genes for ERa, GATA3 and FOXA1 in MCF-7 cells
are already well defined26–28 and our data fit well with these
results (see above). As validation of the SPDEF and PTTG1
regulons, we carried out small interfering RNA (siRNA) knock
down experiments for these TFs (previously published ESR1
data are included as positive control) to confirm that the
responsive gene sets are indeed enriched in the relevant regulons.
For each of these three putative MRs we find that its own regulon
was significantly enriched (Supplementary Table S4). Further
evidence for cross-regulation between the MRs and all five
MR regulons was obtained by gene set enrichment analysis
(Supplementary Fig. S12 and Supplementary Methods). The

DEG list after PTTG1 knock down was enriched for genes of
the PTTG1 regulon as well as additional proliferation-related
regulons (Supplementary information, MR overlap and synergy
analysis). There is remarkable overlap between the MRs
perturbed after siPTTG1 treatment and MRs enriched with
the proliferation-based meta-PCNA signature25 in both cohorts
(Supplementary Table S1). Our knock-down experiments provide
further experimental support for the computationally derived
network structure.

Finally, to demonstrate the link between the identified MRs
and FGFR2 signalling, we examined ERa occupancy at FGFR2-
responsive genes using ChIP. For the binding sites tested here,
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ERa occupancy is induced by estradiol, but importantly this
occupancy is increased by additional treatment with FGF10 and
reversed by the FGFR kinase inhibitor PD173074 (Fig. 6c–f).
These results were obtained for the known ER-induced genes
MYC and GREB, the ER-repressed gene EGR2 and for TOX3, a
likely breast cancer risk gene, which does not respond to estradiol,
but is induced by FGF10. Our results show that FGF10 signalling
can alter ERa occupancy at FGFR2-responsive genes.

Transcriptional modules of MRs are highly overlapping. To be
able to identify MRs from our gene expression network, we used
the DPI filter in our bioinformatics pipeline to remove overlap
between regulons. However, in a real cellular setting co-operating
TFs regulate overlapping sets of genes, with the expression of
individual genes being affected by the activity of multiple TFs. We
therefore examined the overlap of all TF regulons (based on the
unfiltered TN in cohort I) by unsupervised clustering. Figure 7a
shows the Jaccard coefficient (JC) for overlap between regulons.
Only a few, very highly connected TF clusters exist and the
FGFR2 response is mediated by the largest cluster (centred on
regulon 250 in Fig. 7a). An enlargement of these data for the five
MRs (Fig. 7b) highlights the strong overlap between the ERa
network of TFs (ESR1, GATA3 and FOXA1) and SPDEF and a
smaller overlap with the PTTG1 regulon. The regulons most
highly enriched for the FGFR2 signatures strongly overlap with
those enriched for the estradiol signatures (Fig. 7a,b), but both E2
and FGFR2 unique genes exist, in keeping with our finding that
the two responses peak at different times (Supplementary
Figs S1a–S3a) and differ in their association with risk genes.
We used RedeR30 to visualize the overlap between different TF
regulons in the unfiltered TN in a network graph. The edges
within this network represent inter-regulon overlaps with a JC
40.4 (Fig. 7c). The MRs ESR1, FOXA1 and GATA3 cluster very
closely and the newly identified MR SPDEF is also tightly con-
nected to this central cluster. (See Supplementary Fig. S13 for a
fully annotated network.) The PTTG1 regulon, which is asso-
ciated with both breast cancer and T-ALL, maps to a different
part of the network (Fig. 7c). It is closely linked to E2F2 and
FOXM1, which are part of the extended MR list and have pre-
viously been linked to control of proliferation31,32. The close link
between these regulons was confirmed in our siRNA analysis,
where the E2F2 and FOXM1 regulons were significantly
perturbed by siRNA against PTTG1 (Supplementary Table S4).
The relationship between clusters of TFs was explored using the
previously described synergy and shadowing analyses33

(Supplementary Fig. S14 and Supplementary Methods). Our
results are consistent with identification of a central ER-related
MR cluster and the presence of a second cluster that is likely to be
related to changes in cell proliferation.

Risk SNPs link to FGFR2-responsive genes in MR regulons.
Having defined the regulons, we investigated how risk SNPs are
distributed among them and carried out a cis-eQTL analysis
between the risk SNP list (AVS) and the genes in the regulons for
each of the MRs. Our analysis showed a statistically significant
enrichment for genes in the ESR1, GATA3 and FOXA1 regulons
with breast cancer risk SNPs but not prostate, colon or BMD risk
SNPs (Fig. 8a). This is the first report of a statistically significant
link of GATA3 with risk gene expression. Within each regulon,
we found that only the FGFR2-responsive genes were associated
with risk (Fig. 8b,c). However, we note that all FGFR2 responses
were measured on a background of oestrogen signalling, so that
ER may still play a critical role, but in conjunction with FGFR2.
As an additional control, we examined whether risk is associated
with ER status and only observed significant enrichment when

the regulons were derived for ERþ , but not ER� tumours
(Fig. 8d,e), fully in keeping with the central role for ER that we
postulate.

In conclusion, we demonstrate that at least three of the
identified MRs, ESR1, GATA3 and FOXA1 are linked to risk gene
expression. This association with risk is restricted to the FGFR2-
responsive genes in each regulon, suggesting that FGFR2 activity
is an important determinant of ERþ breast cancer risk.

Discussion
Although the number of known breast cancer risk loci is
increasing rapidly, we still have little knowledge of the cellular
pathways that are perturbed in cancer predisposition. Here we
take a systems biology approach to gain insight into pathways and
networks associated with breast cancer susceptibility. We focus
on FGFR2, the most significant risk locus in multiple independent
GWAS1–3. Using eQTL analysis, we show that breast cancer
risk SNPs are preferentially linked to genes affected by FGFR2
signalling, supporting the idea that breast cancer risk SNPs cluster
in pathways, as has been shown for metabolic diseases34. Our
findings support other evidence that risk SNPs in the intron of
FGFR2 mediate their effect through altering expression of the
FGFR2 gene. We identify MRs of the FGFR2 signalling response
and find a central role for the ERa TN, including ESR1, FOXA1
and GATA3. In addition to these known factors, we identify
SPDEF as a novel co-regulator of the ERa network. Our analysis
separates this network from MRs related to proliferation changes,
especially PTTG1, which is also known as securin and specifically
interacts with p53 (ref. 35).

Several lines of evidence support the identification of these five
MRs and regulons. The genes whose expression is altered by
FGFR2 signalling were consistent across the three methods used
to activate FGFR2. The gene expression networks identified from
the METABRIC samples, and the MRs identified by subsequent
analysis, were again consistent across the methods of FGFR2
activation and between the discovery and validation cohorts. Four
of the five MRs consistently identified from the breast cancer
signalling networks were absent from a similar analysis using
networks obtained from another malignancy, T-ALL, as a control.
The same four MRs were also identified when a parallel analysis
was carried out on the TCGA breast cancer data set. Finally, the
unfiltered TN for breast cancer groups together many TFs
that have previously been linked to ERa activity, such as GATA3
(ref. 28), FOXA1 (ref. 27) and XBP36. The striking overlap of the
network defined by our analysis with previously described
regulatory circuits37 supports the validity of our approach.

Further support for the importance of these MRs comes from
comparison with somatic alterations in breast cancer20. Two of
the five MRs of the FGFR2 response, FOXA1 and GATA3, are
frequently mutated in breast tumours20, suggesting that pathways
mediating susceptibility overlap with those perturbed during
cancer progression.

The identification of the ERa-network, which has long been
known to be critical to mammary gland development and cancer
progression, as central mediator of the FGFR2 response is
consistent with the epidemiological findings that the FGFR2 risk
is restricted to ERþ disease1,4. Furthermore, the identification
of FOXA1 and GATA3 as TFs associated with the expression of
breast cancer risk genes is consistent with functional analysis
of risk loci available to date. FOXA1 has been confirmed as a
mediator of risk at the TOX3 gene18 and GATA3 binds to one of
the causative SNPs at the CCND1 risk locus38.

SPDEF is of interest as a MR of the FGFR2 response and as a
novel cofactor of the ERa-network, as validated by both our
network and ChIP-seq analysis. SPDEF is normally expressed in a
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range of epithelial cell types, especially in hormone-regulated
tissues39, and has previously been associated with cancer: The
SPDEF protein is overexpressed in breast cancer cells compared
with normal tissue40,41, but is often lost in high grade, invasive
tumours42. SPDEF was originally identified as a co-factor of
AR43 and acts to suppress metastasis in prostate tumour models
in vivo44. Similarly, SPDEF overexpression in breast cancer cell
lines also results in an inhibition of invasion, migration and
growth42.

Using a network approach has allowed us to distinguish two
key components of the FGFR2 response: the ERa-related MRs
(ESR1, FOXA1, GATA3 and SPDEF) and a proliferation-related
cluster around PTTG1. These results improve on analyses based
on differential gene expression, which primarily reflect increased
proliferation25. By identifying specific MRs we also improve on
GO-term enrichment-based methods that identify very broad
biological categories45. Our approach of testing MR regulons for
association with risk SNP clusters should be widely applicable to
the follow-up of other GWAS.

Although consistently the ‘top hit’ in GWAS, FGFR2 is merely
a contributor to a much larger picture of polygenic susceptibility.
A large amount of this susceptibility remains unexplained, the
so-called ‘missing heritability’. Our finding that SNPs cluster in
pathways suggests that FGFR2-regulated gene loci near SNPs that
may not have reached genome-wide significance may also be
functional and may account for some of this missing heritability.

Our results are also relevant to prevention. The risk variant in
FGFR2 has an estimated population attributable fraction of 19%,
which implies that restoring FGFR2 signalling to the wild-type

state in the population could in principle reduce breast cancer
incidence by that amount. The network approach revealed ERa as
a mediator of the FGFR2 effect, a finding fully consistent with the
successful use of anti-estrogens in prevention. However, our
findings strongly suggest that FGFR2 has a role in risk beyond
that of ERa. If so, the FGFR2 pathway may be an additional target
for both therapy and prevention46.

Methods
Cell culture. MCF-7 human breast cancer cells were cultured in DMEM supple-
mented with 10% HI-FCS and antibiotics. In addition, iF2-expressing cells were
supplemented with 500mgml� 1 G418 (Invitrogen) and FGFR2b overexpressing
cells with 300mgml� 1 Zeocin and 2mgml� 1 blasticidin (Invitrogen) and tetra-
cycline-free FCS was used (Bioscience Autogen). FGFR2b overexpression was
induced by tetracycline (final concentration of 1mgml� 1). Cell synchronisation via
oestrogen deprivation was carried out for at least 3 days in phenol red-free DMEM
(Invitrogen) supplemented with 5% charcoal dextran-treated HI-FBS (Hyclone) and
1% penicillin–streptomycin. All cells were grown at 37 �C in 5% CO2.

Establishment of model FGFR2 signalling systems. MCF-7 cells were trans-
fected with iF2-pCR3.1 using Lipofectamine 2000 (Invitrogen). Single-cell clones
resistant to 1,000mgml� 1 G418 were expanded and iF2 expression confirmed
by western blot and immunofluorescent staining. The FGFR2b tetracycline-
inducible overexpression MCF-7 line was established by double-transfection of
FspI-linearised F2b-pcDNA4/TO and pcDNA6/TR in a 1:5 ratio by DNA. Single-
cell clones were expanded under selection using 500 mgml� 1 Zeocin and
3 mgml� 1 blasticidin. Tetracycline induction of FGFR2b expression was confirmed
by western blot.

Stimulation of FGFR2 signalling. Oestrogen-deprived cells were stimulated with
1 nM estradiol (Sigma); 100 ngml� 1 FGF10 (Invitrogen); 100 ngml� 1 PD173074
(Sigma-Aldrich). iF2 was activated with 100 nM AP20187 (Takara Biosciences).
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Figure 8 | Enrichment of the breast cancer AVS in FGFR2 master regulators following cis-eQTL validation. (a) VSE plots and cis-eQTL for all genes

in the regulons. (b) VSE plots and cis-eQTL for genes that respond to FGFR2 perturbation. (c) VSE plots and cis-eQTL for genes that do not respond

to FGFR2 perturbation. (d–e) VSE plots and cis-eQTL for genes that respond to FGFR2 perturbation using regulons either derived from ERþ (d) or ER�
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VSE scores. Red diamonds highlight mapping tallies that satisfy a Bonferroni-corrected threshold for significance (Po1e–4). P-values are based on

null distributions from 1,000 MRVSs.
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RNA collection and microarray processing. RNA was extracted using the
miRNeasy spin column kit (Qiagen) and quality checked using an RNA 6000 Nano
chip on a 2100 Bioanalyser (Agilent). RNA (250 ng; RIN47) was used for cRNA
amplification and labelling using the Illumina TotalPrep-96 kit (Ambion 4397949).
cRNA was hybridized to HumanHT-12 v4 Expression BeadChips according to the
Illumina protocol (Illumina WGGX DirectHyb Assay Guide 11286331 RevA). Raw
image files were processed and analysed using the beadarray package47 from
Bioconductor. The full data sets are available at the R package Fletcher2013a.

Quantitative RT–PCR and data analysis. After reverse transcription, quantitative
PCR was performed using Power SYBR Green FAST on a 9800HT qPCR machine
(all Applied Biosystems). Raw data were collected using SDS 2.3 and then further
analysed in Microsoft Excel. Ct values were normalized using the DDCt method to
(i) levels of DGUOK and UBC housekeeping gene expression per sample and (ii) to
vehicle treatment at each timepoint. All conditions were examined in three inde-
pendent replicates. Relevant primers are listed in Supplementary Table S6.

IL8 ELISA. After stimulation culture media was removed daily, stored and assayed
by ELISA for IL8 (Enzo Life Sciences). Absorbance was read on a PHERAstar
microplate reader (BMG Labtech) and raw OD converted into protein con-
centration. IL8 levels per 500K cells were normalized to levels in vehicle-treated
cells and corrected for media volume changes. All experimental conditions were
tested in triplicate.

Chromatin immunoprecipitation. For ERa ChIP-seq, cells were oestrogen starved
and E2-stimulated for 45min. For SPDEF ChIP-seq, cells growing asynchronously
in full DMEM were collected. ChIP-seq was performed as previously described48.
Briefly, cells were cross-linked in 1% formaldehyde for 10min. Nuclear extracts
were prepared and sonicated using a Bioruptor (Diagenode) for 15min on the
‘high’ setting with cycles of 30 s on and 30 s off. Sonicated lysate was mixed with
Protein A Dynabeads (Invitrogen) pre-incubated with antibodies against ERa
(sc543; 10mg of antibody in 50 ml volume, diluted 1:25 in sonicated nuclear extract)
and SPDEF (sc67022-X; 10 mg of antibody in 5 ml diluted 1:250 in sonicated nuclear
extract) (both Santa Cruz Biotechnology). Immunoprecipitated chromatin was
used to prepare Solexa sequencing libraries. The full ChIP-seq data set is available
within the R package Fletcher2013b and quality control metrics are given in
Supplementary Tables S2 and S3. Primers used in ChIP–RT–PCR are listed in
Supplementary Table S6. The experiment was carried out in duplicate with similar
results. A representative example is shown with error bars denoting the technical
error in three RT–PCR repeats.

siRNA knockdown of TFs. siRNA SMARTpools (Dharmacon) targeting PTTG1
(L-004309) and SPDEF (L-020199) and a control non-targeting pool (D-001810)
were transfected into MCF-7 cells using Lipofectamine RNAiMAX (Invitrogen).
RNA was collected after 72 h and processed for microarray analysis. The data
(available within the R package Fletcher2013a) was compared with published data49

for ESR1.

Analysis of gene expression data. The limma50 package in Bioconductor was
used to call DEGs and principal component analysis demonstrated low
experimental variation and the specificity of the FGFR response. The source code
for the data analysis is available in the R package Fletcher2013a (also see the
Vignette for Fletcher2013a).

Variant set enrichment. The VSE analysis was carried out as described by
Cowper-Sal lari et al.18 Briefly, the VSE method tests enrichment of the AVS for a
particular trait in a genomic annotation. Although the first represents clusters of
risk-associated and linked SNPs, the second corresponds to chromosomal
coordinates to which a particular property or function has been attributed. The
enrichment statistics assesses the overlap between these clusters and the genomic
annotation, a quantity referred to as the mapping tally. This corresponds to the
number of SNP clusters in the AVS that contain at least one linked SNP that
overlaps the genomic annotation. The enrichment score is then obtained by
comparing the observed mapping tally to a null distribution based on random
permutations of the AVS (that is, matched random variant sets—MRVS). All risk-
associated SNPs were obtained from the GWAS catalogue (accessed January 2013;
http:/www.genome.gov/gwastudies/). The list of all SNPs in strong LD with each
risk-associated SNP was obtained from the HapMap project data (CEPH HapMap
Linkage Disequilibrium, release no. 27, NCBI B36), using LD threshold based on
LOD 43 and D0 40.99.

Extended variant set enrichment. The VSE method provides a robust framework
to cope with the heterogeneous structure of haplotype blocks, and has been
designed to test enrichment in cistromes and epigenomes. In order to extend the
variant set enrichment to gene loci here we applied an additional step using
expression quantitative trait loci (eQTLs). The rationale of this extended approach
is that the simple overlap between a given cluster of SNPs and a particular gene

locus does not imply functional association with gene expression. Therefore, the
VSE analysis was conditioned to a cis-eQTL validation. We assessed cis eQTLs
using METABRIC data19 by applying a multivariate linear model, placing on the
right hand side of the model the genotypes as predictors (representing a given
cluster of risk-associated and linked SNPs that have been genotyped in
METABRIC, with the assumption of additive effect), and in the left hand side the
gene expression as response variable (representing a given gene set or regulon,
assuming a Gaussian distribution). Cis-eQTL analysis was carried out only for
genes 200 kb up- or downstream from a particular cluster. Provided that HapMap
linkage disequilibrium data have been mapped for markers up to 200 kb apart, the
effective cis-eQTL analysis extended up to 400 kb radius around the AVS. The
overall exact P-value for the AVS, conditioned to the cis-eQTL validation, was
obtained from the null distribution derived from 1,000 MRVS as described by
Cowper-Sal lari et al.18 Only enrichment scores satisfying the Bonferroni-corrected
threshold (Po0.001) are reported as significant. The extended step of the VSE
analysis was executed in R51 (http://www.R-project.org/) using the stats package,
including lm and manova functions.

In Fig. 2, the Exp1 gene list is balanced to generate comparable sized lists ( also
see Supplementary information).

Network inference. METABRIC breast cancer gene expression data set19 included
a test (n¼ 997), a validation (n¼ 995) and a normal breast expression data set
(n¼ 144); the T-ALL control (n¼ 57) was downloaded from GEO (accession
number GSE33469)24 and the TCGA breast cancer gene expression data set
(n¼ 155) was downloaded from the dedicated website20 (https://tcga-data.nci.
nih.gov/docs/publications/brca_2012). Each data set was analysed separately and
the results from each network compared (see Fig. 3; for the source code of the
network analysis see the R package Fletcher2013b).

Probes were filtered based on their coefficient of variation and MI was
calculated in the R package minet52. To derive the regulatory network we re-
implemented ARACNe/MRA13 in R, the source code is available in the R package
RTN. The Vignette for Fletcher2013b gives additional information on the MI
computation, application of the DPI15 and MRA. Follow-up analysis included
clustering analysis, generation of enrichment maps, gene set enrichment analysis53

and synergy and shadow analysis33. (Also see R package Fletcher2013b and the
associated Vignette.) For the network visualization we used the R package RedeR30.

Network validation. ChIP-Seq reads were aligned to genome build hg18 and
filtered by removing reads either with quality less than five or overlapping ‘signal
artefact’ regions54. Peaks were called using model-based analysis for ChIP-Seq55,
run using default parameters. Binding events that occurred in at least two out of
three biological replicates were considered.

ChIP-Seq peaks were ranked by P-value and 75 bp sequences centred on the
summits of 150 peaks were selected for de novo motif analysis. DNA sequences
were retrieved using the Genome Browser56 (assembly NCBI36/hg18) and motif
searching was performed using the command line version of MEME 4.8.1 (ref. 57).
Motifs between 9 and 15 bases were searched from both strands assuming one
binding site per sequence model (mod¼ oops). Similar motifs were also obtained
from peak summits ranked 1–1,000 and zero or one binding site per sequence
model (mod¼ zoops).

Further detail on the statistical analysis and the source code that reproduces the
statistical analysis on the ChIP-Seq data is available in the R package Fletcher2013b.
This also includes the analysis of siRNA data and the analysis of the meta-PCNA
signature.
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